wenzelm@252
|
1 |
(* Title: Pure/drule.ML
|
clasohm@0
|
2 |
ID: $Id$
|
wenzelm@252
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
4 |
Copyright 1993 University of Cambridge
|
clasohm@0
|
5 |
|
wenzelm@3766
|
6 |
Derived rules and other operations on theorems.
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
wenzelm@21578
|
9 |
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
|
clasohm@0
|
10 |
|
wenzelm@5903
|
11 |
signature BASIC_DRULE =
|
wenzelm@3766
|
12 |
sig
|
wenzelm@18179
|
13 |
val mk_implies: cterm * cterm -> cterm
|
wenzelm@18179
|
14 |
val list_implies: cterm list * cterm -> cterm
|
wenzelm@18179
|
15 |
val dest_implies: cterm -> cterm * cterm
|
wenzelm@18179
|
16 |
val dest_equals: cterm -> cterm * cterm
|
wenzelm@20904
|
17 |
val dest_equals_lhs: cterm -> cterm
|
wenzelm@20669
|
18 |
val dest_equals_rhs: cterm -> cterm
|
wenzelm@18179
|
19 |
val strip_imp_prems: cterm -> cterm list
|
wenzelm@18179
|
20 |
val strip_imp_concl: cterm -> cterm
|
wenzelm@18179
|
21 |
val cprems_of: thm -> cterm list
|
wenzelm@18179
|
22 |
val cterm_fun: (term -> term) -> (cterm -> cterm)
|
wenzelm@18179
|
23 |
val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
|
wenzelm@18206
|
24 |
val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
|
wenzelm@18206
|
25 |
(indexname -> typ option) * (indexname -> sort option) -> string list ->
|
wenzelm@18206
|
26 |
(indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
|
wenzelm@4285
|
27 |
val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
|
wenzelm@18179
|
28 |
val forall_intr_list: cterm list -> thm -> thm
|
wenzelm@18179
|
29 |
val forall_intr_frees: thm -> thm
|
wenzelm@18179
|
30 |
val forall_intr_vars: thm -> thm
|
wenzelm@18179
|
31 |
val forall_elim_list: cterm list -> thm -> thm
|
wenzelm@18179
|
32 |
val forall_elim_var: int -> thm -> thm
|
wenzelm@18179
|
33 |
val forall_elim_vars: int -> thm -> thm
|
wenzelm@18179
|
34 |
val gen_all: thm -> thm
|
wenzelm@18179
|
35 |
val lift_all: cterm -> thm -> thm
|
wenzelm@18179
|
36 |
val freeze_thaw: thm -> thm * (thm -> thm)
|
paulson@15495
|
37 |
val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
|
wenzelm@18179
|
38 |
val implies_elim_list: thm -> thm list -> thm
|
wenzelm@18179
|
39 |
val implies_intr_list: cterm list -> thm -> thm
|
wenzelm@18206
|
40 |
val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
|
wenzelm@18179
|
41 |
val zero_var_indexes: thm -> thm
|
wenzelm@18179
|
42 |
val implies_intr_hyps: thm -> thm
|
wenzelm@18179
|
43 |
val standard: thm -> thm
|
wenzelm@18179
|
44 |
val standard': thm -> thm
|
wenzelm@18179
|
45 |
val rotate_prems: int -> thm -> thm
|
wenzelm@18179
|
46 |
val rearrange_prems: int list -> thm -> thm
|
wenzelm@18179
|
47 |
val RSN: thm * (int * thm) -> thm
|
wenzelm@18179
|
48 |
val RS: thm * thm -> thm
|
wenzelm@18179
|
49 |
val RLN: thm list * (int * thm list) -> thm list
|
wenzelm@18179
|
50 |
val RL: thm list * thm list -> thm list
|
wenzelm@18179
|
51 |
val MRS: thm list * thm -> thm
|
wenzelm@18179
|
52 |
val MRL: thm list list * thm list -> thm list
|
wenzelm@18179
|
53 |
val OF: thm * thm list -> thm
|
wenzelm@18179
|
54 |
val compose: thm * int * thm -> thm list
|
wenzelm@18179
|
55 |
val COMP: thm * thm -> thm
|
wenzelm@21578
|
56 |
val INCR_COMP: thm * thm -> thm
|
wenzelm@21578
|
57 |
val COMP_INCR: thm * thm -> thm
|
wenzelm@16425
|
58 |
val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
|
wenzelm@18179
|
59 |
val read_instantiate: (string*string)list -> thm -> thm
|
wenzelm@18179
|
60 |
val cterm_instantiate: (cterm*cterm)list -> thm -> thm
|
wenzelm@18179
|
61 |
val eq_thm_thy: thm * thm -> bool
|
wenzelm@18179
|
62 |
val eq_thm_prop: thm * thm -> bool
|
wenzelm@19878
|
63 |
val equiv_thm: thm * thm -> bool
|
wenzelm@18179
|
64 |
val size_of_thm: thm -> int
|
wenzelm@18179
|
65 |
val reflexive_thm: thm
|
wenzelm@18179
|
66 |
val symmetric_thm: thm
|
wenzelm@18179
|
67 |
val transitive_thm: thm
|
wenzelm@18179
|
68 |
val symmetric_fun: thm -> thm
|
wenzelm@18179
|
69 |
val extensional: thm -> thm
|
wenzelm@18820
|
70 |
val equals_cong: thm
|
wenzelm@18179
|
71 |
val imp_cong: thm
|
wenzelm@18179
|
72 |
val swap_prems_eq: thm
|
wenzelm@18179
|
73 |
val asm_rl: thm
|
wenzelm@18179
|
74 |
val cut_rl: thm
|
wenzelm@18179
|
75 |
val revcut_rl: thm
|
wenzelm@18179
|
76 |
val thin_rl: thm
|
wenzelm@4285
|
77 |
val triv_forall_equality: thm
|
wenzelm@19051
|
78 |
val distinct_prems_rl: thm
|
wenzelm@18179
|
79 |
val swap_prems_rl: thm
|
wenzelm@18179
|
80 |
val equal_intr_rule: thm
|
wenzelm@18179
|
81 |
val equal_elim_rule1: thm
|
wenzelm@19421
|
82 |
val equal_elim_rule2: thm
|
wenzelm@18179
|
83 |
val inst: string -> string -> thm -> thm
|
wenzelm@18179
|
84 |
val instantiate': ctyp option list -> cterm option list -> thm -> thm
|
wenzelm@5903
|
85 |
end;
|
wenzelm@5903
|
86 |
|
wenzelm@5903
|
87 |
signature DRULE =
|
wenzelm@5903
|
88 |
sig
|
wenzelm@5903
|
89 |
include BASIC_DRULE
|
wenzelm@19999
|
90 |
val generalize: string list * string list -> thm -> thm
|
paulson@15949
|
91 |
val list_comb: cterm * cterm list -> cterm
|
berghofe@12908
|
92 |
val strip_comb: cterm -> cterm * cterm list
|
berghofe@15262
|
93 |
val strip_type: ctyp -> ctyp list * ctyp
|
wenzelm@20904
|
94 |
val lhs_of: thm -> cterm
|
wenzelm@20904
|
95 |
val rhs_of: thm -> cterm
|
paulson@15949
|
96 |
val beta_conv: cterm -> cterm -> cterm
|
wenzelm@15875
|
97 |
val plain_prop_of: thm -> term
|
wenzelm@20298
|
98 |
val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
|
wenzelm@15669
|
99 |
val add_used: thm -> string list -> string list
|
berghofe@17713
|
100 |
val flexflex_unique: thm -> thm
|
wenzelm@11975
|
101 |
val close_derivation: thm -> thm
|
wenzelm@12005
|
102 |
val local_standard: thm -> thm
|
wenzelm@19421
|
103 |
val store_thm: bstring -> thm -> thm
|
wenzelm@19421
|
104 |
val store_standard_thm: bstring -> thm -> thm
|
wenzelm@19421
|
105 |
val store_thm_open: bstring -> thm -> thm
|
wenzelm@19421
|
106 |
val store_standard_thm_open: bstring -> thm -> thm
|
wenzelm@11975
|
107 |
val compose_single: thm * int * thm -> thm
|
wenzelm@12373
|
108 |
val add_rule: thm -> thm list -> thm list
|
wenzelm@12373
|
109 |
val del_rule: thm -> thm list -> thm list
|
wenzelm@11975
|
110 |
val merge_rules: thm list * thm list -> thm list
|
wenzelm@18468
|
111 |
val imp_cong_rule: thm -> thm -> thm
|
skalberg@15001
|
112 |
val beta_eta_conversion: cterm -> thm
|
berghofe@15925
|
113 |
val eta_long_conversion: cterm -> thm
|
paulson@20861
|
114 |
val eta_contraction_rule: thm -> thm
|
wenzelm@18468
|
115 |
val forall_conv: int -> (cterm -> thm) -> cterm -> thm
|
wenzelm@18468
|
116 |
val concl_conv: int -> (cterm -> thm) -> cterm -> thm
|
wenzelm@18468
|
117 |
val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
|
wenzelm@18179
|
118 |
val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
|
wenzelm@18179
|
119 |
val fconv_rule: (cterm -> thm) -> thm -> thm
|
wenzelm@11975
|
120 |
val norm_hhf_eq: thm
|
wenzelm@12800
|
121 |
val is_norm_hhf: term -> bool
|
wenzelm@16425
|
122 |
val norm_hhf: theory -> term -> term
|
wenzelm@20298
|
123 |
val norm_hhf_cterm: cterm -> cterm
|
wenzelm@19878
|
124 |
val unvarify: thm -> thm
|
wenzelm@18025
|
125 |
val protect: cterm -> cterm
|
wenzelm@18025
|
126 |
val protectI: thm
|
wenzelm@18025
|
127 |
val protectD: thm
|
wenzelm@18179
|
128 |
val protect_cong: thm
|
wenzelm@18025
|
129 |
val implies_intr_protected: cterm list -> thm -> thm
|
wenzelm@19775
|
130 |
val termI: thm
|
wenzelm@19775
|
131 |
val mk_term: cterm -> thm
|
wenzelm@19775
|
132 |
val dest_term: thm -> cterm
|
wenzelm@21519
|
133 |
val cterm_rule: (thm -> thm) -> cterm -> cterm
|
wenzelm@20881
|
134 |
val term_rule: theory -> (thm -> thm) -> term -> term
|
wenzelm@19523
|
135 |
val sort_triv: theory -> typ * sort -> thm list
|
wenzelm@19504
|
136 |
val unconstrainTs: thm -> thm
|
berghofe@14081
|
137 |
val rename_bvars: (string * string) list -> thm -> thm
|
berghofe@14081
|
138 |
val rename_bvars': string option list -> thm -> thm
|
wenzelm@19124
|
139 |
val incr_indexes: thm -> thm -> thm
|
wenzelm@19124
|
140 |
val incr_indexes2: thm -> thm -> thm -> thm
|
wenzelm@12297
|
141 |
val remdups_rl: thm
|
wenzelm@18225
|
142 |
val multi_resolve: thm list -> thm -> thm Seq.seq
|
wenzelm@18225
|
143 |
val multi_resolves: thm list -> thm list -> thm Seq.seq
|
berghofe@13325
|
144 |
val abs_def: thm -> thm
|
wenzelm@16425
|
145 |
val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
|
berghofe@15797
|
146 |
val read_instantiate': (indexname * string) list -> thm -> thm
|
wenzelm@3766
|
147 |
end;
|
clasohm@0
|
148 |
|
wenzelm@5903
|
149 |
structure Drule: DRULE =
|
clasohm@0
|
150 |
struct
|
clasohm@0
|
151 |
|
wenzelm@3991
|
152 |
|
wenzelm@16682
|
153 |
(** some cterm->cterm operations: faster than calling cterm_of! **)
|
lcp@708
|
154 |
|
paulson@2004
|
155 |
fun dest_implies ct =
|
wenzelm@16682
|
156 |
(case Thm.term_of ct of
|
wenzelm@20669
|
157 |
Const ("==>", _) $ _ $ _ => Thm.dest_binop ct
|
wenzelm@20669
|
158 |
| _ => raise TERM ("dest_implies", [Thm.term_of ct]));
|
clasohm@1703
|
159 |
|
berghofe@10414
|
160 |
fun dest_equals ct =
|
wenzelm@16682
|
161 |
(case Thm.term_of ct of
|
wenzelm@20669
|
162 |
Const ("==", _) $ _ $ _ => Thm.dest_binop ct
|
wenzelm@20669
|
163 |
| _ => raise TERM ("dest_equals", [Thm.term_of ct]));
|
wenzelm@20669
|
164 |
|
wenzelm@20904
|
165 |
fun dest_equals_lhs ct =
|
wenzelm@20904
|
166 |
(case Thm.term_of ct of
|
wenzelm@20904
|
167 |
Const ("==", _) $ _ $ _ => #1 (Thm.dest_binop ct)
|
wenzelm@20904
|
168 |
| _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct]));
|
wenzelm@20904
|
169 |
|
wenzelm@20669
|
170 |
fun dest_equals_rhs ct =
|
wenzelm@20669
|
171 |
(case Thm.term_of ct of
|
wenzelm@20669
|
172 |
Const ("==", _) $ _ $ _ => Thm.dest_arg ct
|
wenzelm@20669
|
173 |
| _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
|
berghofe@10414
|
174 |
|
wenzelm@20904
|
175 |
val lhs_of = dest_equals_lhs o Thm.cprop_of;
|
wenzelm@20904
|
176 |
val rhs_of = dest_equals_rhs o Thm.cprop_of;
|
wenzelm@20904
|
177 |
|
lcp@708
|
178 |
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
|
paulson@2004
|
179 |
fun strip_imp_prems ct =
|
wenzelm@20579
|
180 |
let val (cA, cB) = dest_implies ct
|
wenzelm@20579
|
181 |
in cA :: strip_imp_prems cB end
|
wenzelm@20579
|
182 |
handle TERM _ => [];
|
lcp@708
|
183 |
|
paulson@2004
|
184 |
(* A1==>...An==>B goes to B, where B is not an implication *)
|
paulson@2004
|
185 |
fun strip_imp_concl ct =
|
wenzelm@20579
|
186 |
(case Thm.term_of ct of
|
wenzelm@20579
|
187 |
Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
|
wenzelm@20579
|
188 |
| _ => ct);
|
paulson@2004
|
189 |
|
lcp@708
|
190 |
(*The premises of a theorem, as a cterm list*)
|
berghofe@13659
|
191 |
val cprems_of = strip_imp_prems o cprop_of;
|
lcp@708
|
192 |
|
berghofe@15797
|
193 |
fun cterm_fun f ct =
|
wenzelm@16425
|
194 |
let val {t, thy, ...} = Thm.rep_cterm ct
|
wenzelm@16425
|
195 |
in Thm.cterm_of thy (f t) end;
|
berghofe@15797
|
196 |
|
berghofe@15797
|
197 |
fun ctyp_fun f cT =
|
wenzelm@16425
|
198 |
let val {T, thy, ...} = Thm.rep_ctyp cT
|
wenzelm@16425
|
199 |
in Thm.ctyp_of thy (f T) end;
|
berghofe@15797
|
200 |
|
wenzelm@19421
|
201 |
val cert = cterm_of ProtoPure.thy;
|
paulson@9547
|
202 |
|
wenzelm@19421
|
203 |
val implies = cert Term.implies;
|
wenzelm@19183
|
204 |
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
|
paulson@9547
|
205 |
|
paulson@9547
|
206 |
(*cterm version of list_implies: [A1,...,An], B goes to [|A1;==>;An|]==>B *)
|
paulson@9547
|
207 |
fun list_implies([], B) = B
|
paulson@9547
|
208 |
| list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
|
paulson@9547
|
209 |
|
paulson@15949
|
210 |
(*cterm version of list_comb: maps (f, [t1,...,tn]) to f(t1,...,tn) *)
|
paulson@15949
|
211 |
fun list_comb (f, []) = f
|
paulson@15949
|
212 |
| list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
|
paulson@15949
|
213 |
|
berghofe@12908
|
214 |
(*cterm version of strip_comb: maps f(t1,...,tn) to (f, [t1,...,tn]) *)
|
wenzelm@18179
|
215 |
fun strip_comb ct =
|
berghofe@12908
|
216 |
let
|
berghofe@12908
|
217 |
fun stripc (p as (ct, cts)) =
|
berghofe@12908
|
218 |
let val (ct1, ct2) = Thm.dest_comb ct
|
berghofe@12908
|
219 |
in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
|
berghofe@12908
|
220 |
in stripc (ct, []) end;
|
berghofe@12908
|
221 |
|
berghofe@15262
|
222 |
(* cterm version of strip_type: maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T) *)
|
berghofe@15262
|
223 |
fun strip_type cT = (case Thm.typ_of cT of
|
berghofe@15262
|
224 |
Type ("fun", _) =>
|
berghofe@15262
|
225 |
let
|
berghofe@15262
|
226 |
val [cT1, cT2] = Thm.dest_ctyp cT;
|
berghofe@15262
|
227 |
val (cTs, cT') = strip_type cT2
|
berghofe@15262
|
228 |
in (cT1 :: cTs, cT') end
|
berghofe@15262
|
229 |
| _ => ([], cT));
|
berghofe@15262
|
230 |
|
paulson@15949
|
231 |
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
|
paulson@15949
|
232 |
of the meta-equality returned by the beta_conversion rule.*)
|
wenzelm@18179
|
233 |
fun beta_conv x y =
|
wenzelm@20579
|
234 |
Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
|
paulson@15949
|
235 |
|
wenzelm@15875
|
236 |
fun plain_prop_of raw_thm =
|
wenzelm@15875
|
237 |
let
|
wenzelm@15875
|
238 |
val thm = Thm.strip_shyps raw_thm;
|
wenzelm@15875
|
239 |
fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
|
wenzelm@15875
|
240 |
val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
|
wenzelm@15875
|
241 |
in
|
wenzelm@15875
|
242 |
if not (null hyps) then
|
wenzelm@15875
|
243 |
err "theorem may not contain hypotheses"
|
wenzelm@15875
|
244 |
else if not (null (Thm.extra_shyps thm)) then
|
wenzelm@15875
|
245 |
err "theorem may not contain sort hypotheses"
|
wenzelm@15875
|
246 |
else if not (null tpairs) then
|
wenzelm@15875
|
247 |
err "theorem may not contain flex-flex pairs"
|
wenzelm@15875
|
248 |
else prop
|
wenzelm@15875
|
249 |
end;
|
wenzelm@15875
|
250 |
|
wenzelm@20298
|
251 |
fun fold_terms f th =
|
wenzelm@20298
|
252 |
let val {tpairs, prop, hyps, ...} = Thm.rep_thm th
|
wenzelm@20298
|
253 |
in fold (fn (t, u) => f t #> f u) tpairs #> f prop #> fold f hyps end;
|
wenzelm@20298
|
254 |
|
wenzelm@15875
|
255 |
|
lcp@708
|
256 |
|
lcp@229
|
257 |
(** reading of instantiations **)
|
lcp@229
|
258 |
|
lcp@229
|
259 |
fun absent ixn =
|
lcp@229
|
260 |
error("No such variable in term: " ^ Syntax.string_of_vname ixn);
|
lcp@229
|
261 |
|
lcp@229
|
262 |
fun inst_failure ixn =
|
lcp@229
|
263 |
error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
|
lcp@229
|
264 |
|
wenzelm@16425
|
265 |
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
|
wenzelm@10403
|
266 |
let
|
berghofe@15442
|
267 |
fun is_tv ((a, _), _) =
|
berghofe@15442
|
268 |
(case Symbol.explode a of "'" :: _ => true | _ => false);
|
skalberg@15570
|
269 |
val (tvs, vs) = List.partition is_tv insts;
|
berghofe@15797
|
270 |
fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
|
berghofe@15442
|
271 |
fun readT (ixn, st) =
|
berghofe@15797
|
272 |
let val S = sort_of ixn;
|
wenzelm@16425
|
273 |
val T = Sign.read_typ (thy,sorts) st;
|
wenzelm@16425
|
274 |
in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
|
nipkow@4281
|
275 |
else inst_failure ixn
|
nipkow@4281
|
276 |
end
|
nipkow@4281
|
277 |
val tye = map readT tvs;
|
nipkow@4281
|
278 |
fun mkty(ixn,st) = (case rtypes ixn of
|
skalberg@15531
|
279 |
SOME T => (ixn,(st,typ_subst_TVars tye T))
|
skalberg@15531
|
280 |
| NONE => absent ixn);
|
nipkow@4281
|
281 |
val ixnsTs = map mkty vs;
|
nipkow@4281
|
282 |
val ixns = map fst ixnsTs
|
nipkow@4281
|
283 |
and sTs = map snd ixnsTs
|
wenzelm@16425
|
284 |
val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
|
nipkow@4281
|
285 |
fun mkcVar(ixn,T) =
|
nipkow@4281
|
286 |
let val U = typ_subst_TVars tye2 T
|
wenzelm@16425
|
287 |
in cterm_of thy (Var(ixn,U)) end
|
nipkow@4281
|
288 |
val ixnTs = ListPair.zip(ixns, map snd sTs)
|
wenzelm@16425
|
289 |
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
|
wenzelm@16425
|
290 |
ctyp_of thy T)) (tye2 @ tye),
|
nipkow@4281
|
291 |
ListPair.zip(map mkcVar ixnTs,cts))
|
nipkow@4281
|
292 |
end;
|
lcp@229
|
293 |
|
lcp@229
|
294 |
|
wenzelm@252
|
295 |
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
|
clasohm@0
|
296 |
Used for establishing default types (of variables) and sorts (of
|
clasohm@0
|
297 |
type variables) when reading another term.
|
clasohm@0
|
298 |
Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
|
clasohm@0
|
299 |
***)
|
clasohm@0
|
300 |
|
clasohm@0
|
301 |
fun types_sorts thm =
|
wenzelm@20329
|
302 |
let
|
wenzelm@20329
|
303 |
val vars = fold_terms Term.add_vars thm [];
|
wenzelm@20329
|
304 |
val frees = fold_terms Term.add_frees thm [];
|
wenzelm@20329
|
305 |
val tvars = fold_terms Term.add_tvars thm [];
|
wenzelm@20329
|
306 |
val tfrees = fold_terms Term.add_tfrees thm [];
|
wenzelm@20329
|
307 |
fun types (a, i) =
|
wenzelm@20329
|
308 |
if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
|
wenzelm@20329
|
309 |
fun sorts (a, i) =
|
wenzelm@20329
|
310 |
if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
|
wenzelm@20329
|
311 |
in (types, sorts) end;
|
clasohm@0
|
312 |
|
wenzelm@20329
|
313 |
val add_used =
|
wenzelm@20329
|
314 |
(fold_terms o fold_types o fold_atyps)
|
wenzelm@20329
|
315 |
(fn TFree (a, _) => insert (op =) a
|
wenzelm@20329
|
316 |
| TVar ((a, _), _) => insert (op =) a
|
wenzelm@20329
|
317 |
| _ => I);
|
wenzelm@15669
|
318 |
|
wenzelm@7636
|
319 |
|
wenzelm@9455
|
320 |
|
clasohm@0
|
321 |
(** Standardization of rules **)
|
clasohm@0
|
322 |
|
wenzelm@19523
|
323 |
(* type classes and sorts *)
|
wenzelm@19523
|
324 |
|
wenzelm@19523
|
325 |
fun sort_triv thy (T, S) =
|
wenzelm@19523
|
326 |
let
|
wenzelm@19523
|
327 |
val certT = Thm.ctyp_of thy;
|
wenzelm@19523
|
328 |
val cT = certT T;
|
wenzelm@19523
|
329 |
fun class_triv c =
|
wenzelm@19523
|
330 |
Thm.class_triv thy c
|
wenzelm@19523
|
331 |
|> Thm.instantiate ([(certT (TVar (("'a", 0), [c])), cT)], []);
|
wenzelm@19523
|
332 |
in map class_triv S end;
|
wenzelm@19523
|
333 |
|
wenzelm@19504
|
334 |
fun unconstrainTs th =
|
wenzelm@20298
|
335 |
fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
|
wenzelm@20298
|
336 |
(fold_terms Term.add_tvars th []) th;
|
wenzelm@19504
|
337 |
|
wenzelm@19730
|
338 |
(*Generalization over a list of variables*)
|
wenzelm@19730
|
339 |
val forall_intr_list = fold_rev forall_intr;
|
clasohm@0
|
340 |
|
clasohm@0
|
341 |
(*Generalization over all suitable Free variables*)
|
clasohm@0
|
342 |
fun forall_intr_frees th =
|
wenzelm@19730
|
343 |
let
|
wenzelm@19730
|
344 |
val {prop, hyps, tpairs, thy,...} = rep_thm th;
|
wenzelm@19730
|
345 |
val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
|
wenzelm@19730
|
346 |
val frees = Term.fold_aterms (fn Free v =>
|
wenzelm@19730
|
347 |
if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
|
wenzelm@19730
|
348 |
in fold (forall_intr o cterm_of thy o Free) frees th end;
|
clasohm@0
|
349 |
|
wenzelm@18535
|
350 |
(*Generalization over Vars -- canonical order*)
|
wenzelm@18535
|
351 |
fun forall_intr_vars th =
|
wenzelm@20298
|
352 |
fold forall_intr
|
wenzelm@20298
|
353 |
(map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (fold_terms Term.add_vars th [])) th;
|
wenzelm@18535
|
354 |
|
wenzelm@7898
|
355 |
val forall_elim_var = PureThy.forall_elim_var;
|
wenzelm@7898
|
356 |
val forall_elim_vars = PureThy.forall_elim_vars;
|
clasohm@0
|
357 |
|
wenzelm@18025
|
358 |
fun outer_params t =
|
wenzelm@20077
|
359 |
let val vs = Term.strip_all_vars t
|
wenzelm@20077
|
360 |
in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
|
wenzelm@18025
|
361 |
|
wenzelm@18025
|
362 |
(*generalize outermost parameters*)
|
wenzelm@18025
|
363 |
fun gen_all th =
|
wenzelm@12719
|
364 |
let
|
wenzelm@18025
|
365 |
val {thy, prop, maxidx, ...} = Thm.rep_thm th;
|
wenzelm@18025
|
366 |
val cert = Thm.cterm_of thy;
|
wenzelm@18025
|
367 |
fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
|
wenzelm@18025
|
368 |
in fold elim (outer_params prop) th end;
|
wenzelm@18025
|
369 |
|
wenzelm@18025
|
370 |
(*lift vars wrt. outermost goal parameters
|
wenzelm@18118
|
371 |
-- reverses the effect of gen_all modulo higher-order unification*)
|
wenzelm@18025
|
372 |
fun lift_all goal th =
|
wenzelm@18025
|
373 |
let
|
wenzelm@18025
|
374 |
val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
|
wenzelm@18025
|
375 |
val cert = Thm.cterm_of thy;
|
wenzelm@19421
|
376 |
val maxidx = Thm.maxidx_of th;
|
wenzelm@18025
|
377 |
val ps = outer_params (Thm.term_of goal)
|
wenzelm@18025
|
378 |
|> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
|
wenzelm@18025
|
379 |
val Ts = map Term.fastype_of ps;
|
wenzelm@20298
|
380 |
val inst = fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
|
wenzelm@18025
|
381 |
(cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
|
wenzelm@18025
|
382 |
in
|
wenzelm@18025
|
383 |
th |> Thm.instantiate ([], inst)
|
wenzelm@18025
|
384 |
|> fold_rev (Thm.forall_intr o cert) ps
|
wenzelm@18025
|
385 |
end;
|
wenzelm@18025
|
386 |
|
wenzelm@19999
|
387 |
(*direct generalization*)
|
wenzelm@19999
|
388 |
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
|
wenzelm@9554
|
389 |
|
wenzelm@16949
|
390 |
(*specialization over a list of cterms*)
|
wenzelm@16949
|
391 |
val forall_elim_list = fold forall_elim;
|
clasohm@0
|
392 |
|
wenzelm@16949
|
393 |
(*maps A1,...,An |- B to [| A1;...;An |] ==> B*)
|
wenzelm@16949
|
394 |
val implies_intr_list = fold_rev implies_intr;
|
clasohm@0
|
395 |
|
wenzelm@16949
|
396 |
(*maps [| A1;...;An |] ==> B and [A1,...,An] to B*)
|
skalberg@15570
|
397 |
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
|
clasohm@0
|
398 |
|
clasohm@0
|
399 |
(*Reset Var indexes to zero, renaming to preserve distinctness*)
|
wenzelm@252
|
400 |
fun zero_var_indexes th =
|
wenzelm@16949
|
401 |
let
|
wenzelm@16949
|
402 |
val thy = Thm.theory_of_thm th;
|
wenzelm@16949
|
403 |
val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
|
wenzelm@20509
|
404 |
val (instT, inst) = TermSubst.zero_var_indexes_inst (Thm.full_prop_of th);
|
wenzelm@16949
|
405 |
val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
|
wenzelm@16949
|
406 |
val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
|
wenzelm@20260
|
407 |
in Thm.adjust_maxidx_thm ~1 (Thm.instantiate (cinstT, cinst) th) end;
|
clasohm@0
|
408 |
|
clasohm@0
|
409 |
|
paulson@14394
|
410 |
(** Standard form of object-rule: no hypotheses, flexflex constraints,
|
paulson@14394
|
411 |
Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
|
wenzelm@10515
|
412 |
|
wenzelm@16595
|
413 |
(*Discharge all hypotheses.*)
|
wenzelm@16595
|
414 |
fun implies_intr_hyps th =
|
wenzelm@16595
|
415 |
fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
|
wenzelm@16595
|
416 |
|
paulson@14394
|
417 |
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
|
paulson@14394
|
418 |
This step can lose information.*)
|
paulson@14387
|
419 |
fun flexflex_unique th =
|
berghofe@17713
|
420 |
if null (tpairs_of th) then th else
|
wenzelm@19861
|
421 |
case Seq.chop 2 (flexflex_rule th) of
|
paulson@14387
|
422 |
([th],_) => th
|
paulson@14387
|
423 |
| ([],_) => raise THM("flexflex_unique: impossible constraints", 0, [th])
|
paulson@14387
|
424 |
| _ => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
|
paulson@14387
|
425 |
|
wenzelm@10515
|
426 |
fun close_derivation thm =
|
wenzelm@10515
|
427 |
if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
|
wenzelm@10515
|
428 |
else thm;
|
wenzelm@10515
|
429 |
|
wenzelm@16949
|
430 |
val standard' =
|
wenzelm@16949
|
431 |
implies_intr_hyps
|
wenzelm@16949
|
432 |
#> forall_intr_frees
|
wenzelm@19421
|
433 |
#> `Thm.maxidx_of
|
wenzelm@16949
|
434 |
#-> (fn maxidx =>
|
wenzelm@16949
|
435 |
forall_elim_vars (maxidx + 1)
|
wenzelm@20904
|
436 |
#> Thm.strip_shyps
|
wenzelm@16949
|
437 |
#> zero_var_indexes
|
wenzelm@16949
|
438 |
#> Thm.varifyT
|
wenzelm@16949
|
439 |
#> Thm.compress);
|
wenzelm@1218
|
440 |
|
wenzelm@16949
|
441 |
val standard =
|
wenzelm@16949
|
442 |
flexflex_unique
|
wenzelm@16949
|
443 |
#> standard'
|
wenzelm@16949
|
444 |
#> close_derivation;
|
berghofe@11512
|
445 |
|
wenzelm@16949
|
446 |
val local_standard =
|
wenzelm@20904
|
447 |
flexflex_unique
|
wenzelm@20904
|
448 |
#> Thm.strip_shyps
|
wenzelm@16949
|
449 |
#> zero_var_indexes
|
wenzelm@16949
|
450 |
#> Thm.compress
|
wenzelm@16949
|
451 |
#> close_derivation;
|
wenzelm@12005
|
452 |
|
clasohm@0
|
453 |
|
wenzelm@8328
|
454 |
(*Convert all Vars in a theorem to Frees. Also return a function for
|
paulson@4610
|
455 |
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.
|
paulson@4610
|
456 |
Similar code in type/freeze_thaw*)
|
paulson@15495
|
457 |
|
paulson@15495
|
458 |
fun freeze_thaw_robust th =
|
wenzelm@19878
|
459 |
let val fth = Thm.freezeT th
|
wenzelm@16425
|
460 |
val {prop, tpairs, thy, ...} = rep_thm fth
|
paulson@15495
|
461 |
in
|
skalberg@15574
|
462 |
case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
|
paulson@15495
|
463 |
[] => (fth, fn i => fn x => x) (*No vars: nothing to do!*)
|
paulson@15495
|
464 |
| vars =>
|
paulson@19753
|
465 |
let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
|
paulson@19753
|
466 |
val alist = map newName vars
|
paulson@15495
|
467 |
fun mk_inst (Var(v,T)) =
|
wenzelm@16425
|
468 |
(cterm_of thy (Var(v,T)),
|
haftmann@17325
|
469 |
cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
|
paulson@15495
|
470 |
val insts = map mk_inst vars
|
paulson@15495
|
471 |
fun thaw i th' = (*i is non-negative increment for Var indexes*)
|
paulson@15495
|
472 |
th' |> forall_intr_list (map #2 insts)
|
paulson@15495
|
473 |
|> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
|
paulson@15495
|
474 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@15495
|
475 |
end;
|
paulson@15495
|
476 |
|
paulson@15495
|
477 |
(*Basic version of the function above. No option to rename Vars apart in thaw.
|
wenzelm@19999
|
478 |
The Frees created from Vars have nice names. FIXME: does not check for
|
paulson@19753
|
479 |
clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
|
paulson@4610
|
480 |
fun freeze_thaw th =
|
wenzelm@19878
|
481 |
let val fth = Thm.freezeT th
|
wenzelm@16425
|
482 |
val {prop, tpairs, thy, ...} = rep_thm fth
|
paulson@7248
|
483 |
in
|
skalberg@15574
|
484 |
case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
|
paulson@7248
|
485 |
[] => (fth, fn x => x)
|
paulson@7248
|
486 |
| vars =>
|
wenzelm@8328
|
487 |
let fun newName (Var(ix,_), (pairs,used)) =
|
wenzelm@20077
|
488 |
let val v = Name.variant used (string_of_indexname ix)
|
wenzelm@8328
|
489 |
in ((ix,v)::pairs, v::used) end;
|
skalberg@15574
|
490 |
val (alist, _) = foldr newName ([], Library.foldr add_term_names
|
skalberg@15574
|
491 |
(prop :: Thm.terms_of_tpairs tpairs, [])) vars
|
wenzelm@8328
|
492 |
fun mk_inst (Var(v,T)) =
|
wenzelm@16425
|
493 |
(cterm_of thy (Var(v,T)),
|
haftmann@17325
|
494 |
cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
|
wenzelm@8328
|
495 |
val insts = map mk_inst vars
|
wenzelm@8328
|
496 |
fun thaw th' =
|
wenzelm@8328
|
497 |
th' |> forall_intr_list (map #2 insts)
|
wenzelm@8328
|
498 |
|> forall_elim_list (map #1 insts)
|
wenzelm@8328
|
499 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@7248
|
500 |
end;
|
paulson@4610
|
501 |
|
paulson@7248
|
502 |
(*Rotates a rule's premises to the left by k*)
|
paulson@7248
|
503 |
val rotate_prems = permute_prems 0;
|
paulson@4610
|
504 |
|
oheimb@11163
|
505 |
(* permute prems, where the i-th position in the argument list (counting from 0)
|
oheimb@11163
|
506 |
gives the position within the original thm to be transferred to position i.
|
oheimb@11163
|
507 |
Any remaining trailing positions are left unchanged. *)
|
oheimb@11163
|
508 |
val rearrange_prems = let
|
oheimb@11163
|
509 |
fun rearr new [] thm = thm
|
wenzelm@11815
|
510 |
| rearr new (p::ps) thm = rearr (new+1)
|
oheimb@11163
|
511 |
(map (fn q => if new<=q andalso q<p then q+1 else q) ps)
|
oheimb@11163
|
512 |
(permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
|
oheimb@11163
|
513 |
in rearr 0 end;
|
paulson@4610
|
514 |
|
wenzelm@252
|
515 |
(*Resolution: exactly one resolvent must be produced.*)
|
clasohm@0
|
516 |
fun tha RSN (i,thb) =
|
wenzelm@19861
|
517 |
case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
|
clasohm@0
|
518 |
([th],_) => th
|
clasohm@0
|
519 |
| ([],_) => raise THM("RSN: no unifiers", i, [tha,thb])
|
clasohm@0
|
520 |
| _ => raise THM("RSN: multiple unifiers", i, [tha,thb]);
|
clasohm@0
|
521 |
|
clasohm@0
|
522 |
(*resolution: P==>Q, Q==>R gives P==>R. *)
|
clasohm@0
|
523 |
fun tha RS thb = tha RSN (1,thb);
|
clasohm@0
|
524 |
|
clasohm@0
|
525 |
(*For joining lists of rules*)
|
wenzelm@252
|
526 |
fun thas RLN (i,thbs) =
|
clasohm@0
|
527 |
let val resolve = biresolution false (map (pair false) thas) i
|
wenzelm@4270
|
528 |
fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
|
wenzelm@19482
|
529 |
in maps resb thbs end;
|
clasohm@0
|
530 |
|
clasohm@0
|
531 |
fun thas RL thbs = thas RLN (1,thbs);
|
clasohm@0
|
532 |
|
lcp@11
|
533 |
(*Resolve a list of rules against bottom_rl from right to left;
|
lcp@11
|
534 |
makes proof trees*)
|
wenzelm@252
|
535 |
fun rls MRS bottom_rl =
|
lcp@11
|
536 |
let fun rs_aux i [] = bottom_rl
|
wenzelm@252
|
537 |
| rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
|
lcp@11
|
538 |
in rs_aux 1 rls end;
|
lcp@11
|
539 |
|
lcp@11
|
540 |
(*As above, but for rule lists*)
|
wenzelm@252
|
541 |
fun rlss MRL bottom_rls =
|
lcp@11
|
542 |
let fun rs_aux i [] = bottom_rls
|
wenzelm@252
|
543 |
| rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
|
lcp@11
|
544 |
in rs_aux 1 rlss end;
|
lcp@11
|
545 |
|
wenzelm@9288
|
546 |
(*A version of MRS with more appropriate argument order*)
|
wenzelm@9288
|
547 |
fun bottom_rl OF rls = rls MRS bottom_rl;
|
wenzelm@9288
|
548 |
|
wenzelm@252
|
549 |
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
|
clasohm@0
|
550 |
with no lifting or renaming! Q may contain ==> or meta-quants
|
clasohm@0
|
551 |
ALWAYS deletes premise i *)
|
wenzelm@252
|
552 |
fun compose(tha,i,thb) =
|
wenzelm@4270
|
553 |
Seq.list_of (bicompose false (false,tha,0) i thb);
|
clasohm@0
|
554 |
|
wenzelm@6946
|
555 |
fun compose_single (tha,i,thb) =
|
wenzelm@6946
|
556 |
(case compose (tha,i,thb) of
|
wenzelm@6946
|
557 |
[th] => th
|
wenzelm@6946
|
558 |
| _ => raise THM ("compose: unique result expected", i, [tha,thb]));
|
wenzelm@6946
|
559 |
|
clasohm@0
|
560 |
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
|
clasohm@0
|
561 |
fun tha COMP thb =
|
clasohm@0
|
562 |
case compose(tha,1,thb) of
|
wenzelm@252
|
563 |
[th] => th
|
clasohm@0
|
564 |
| _ => raise THM("COMP", 1, [tha,thb]);
|
clasohm@0
|
565 |
|
wenzelm@13105
|
566 |
|
wenzelm@4016
|
567 |
(** theorem equality **)
|
clasohm@0
|
568 |
|
wenzelm@16425
|
569 |
(*True if the two theorems have the same theory.*)
|
wenzelm@16425
|
570 |
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
|
paulson@13650
|
571 |
|
paulson@13650
|
572 |
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
|
wenzelm@16720
|
573 |
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
|
clasohm@0
|
574 |
|
clasohm@0
|
575 |
(*Useful "distance" function for BEST_FIRST*)
|
wenzelm@16720
|
576 |
val size_of_thm = size_of_term o Thm.full_prop_of;
|
clasohm@0
|
577 |
|
wenzelm@9829
|
578 |
(*maintain lists of theorems --- preserving canonical order*)
|
wenzelm@18922
|
579 |
val del_rule = remove eq_thm_prop;
|
wenzelm@18922
|
580 |
fun add_rule th = cons th o del_rule th;
|
wenzelm@18922
|
581 |
val merge_rules = Library.merge eq_thm_prop;
|
wenzelm@9829
|
582 |
|
wenzelm@19878
|
583 |
(*pattern equivalence*)
|
wenzelm@19878
|
584 |
fun equiv_thm ths =
|
wenzelm@19878
|
585 |
Pattern.equiv (Theory.merge (pairself Thm.theory_of_thm ths)) (pairself Thm.full_prop_of ths);
|
lcp@1194
|
586 |
|
lcp@1194
|
587 |
|
clasohm@0
|
588 |
(*** Meta-Rewriting Rules ***)
|
clasohm@0
|
589 |
|
wenzelm@16425
|
590 |
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
|
paulson@4610
|
591 |
|
wenzelm@9455
|
592 |
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
|
wenzelm@9455
|
593 |
fun store_standard_thm name thm = store_thm name (standard thm);
|
wenzelm@12135
|
594 |
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
|
wenzelm@12135
|
595 |
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
|
wenzelm@4016
|
596 |
|
clasohm@0
|
597 |
val reflexive_thm =
|
wenzelm@19421
|
598 |
let val cx = cert (Var(("x",0),TVar(("'a",0),[])))
|
wenzelm@12135
|
599 |
in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
|
clasohm@0
|
600 |
|
clasohm@0
|
601 |
val symmetric_thm =
|
wenzelm@14854
|
602 |
let val xy = read_prop "x == y"
|
wenzelm@16595
|
603 |
in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
|
clasohm@0
|
604 |
|
clasohm@0
|
605 |
val transitive_thm =
|
wenzelm@14854
|
606 |
let val xy = read_prop "x == y"
|
wenzelm@14854
|
607 |
val yz = read_prop "y == z"
|
clasohm@0
|
608 |
val xythm = Thm.assume xy and yzthm = Thm.assume yz
|
wenzelm@12135
|
609 |
in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
|
clasohm@0
|
610 |
|
nipkow@4679
|
611 |
fun symmetric_fun thm = thm RS symmetric_thm;
|
nipkow@4679
|
612 |
|
berghofe@11512
|
613 |
fun extensional eq =
|
berghofe@11512
|
614 |
let val eq' =
|
wenzelm@20579
|
615 |
abstract_rule "x" (Thm.dest_arg (fst (dest_equals (cprop_of eq)))) eq
|
berghofe@11512
|
616 |
in equal_elim (eta_conversion (cprop_of eq')) eq' end;
|
berghofe@11512
|
617 |
|
wenzelm@18820
|
618 |
val equals_cong =
|
wenzelm@18820
|
619 |
store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x == y"));
|
wenzelm@18820
|
620 |
|
berghofe@10414
|
621 |
val imp_cong =
|
berghofe@10414
|
622 |
let
|
berghofe@10414
|
623 |
val ABC = read_prop "PROP A ==> PROP B == PROP C"
|
berghofe@10414
|
624 |
val AB = read_prop "PROP A ==> PROP B"
|
berghofe@10414
|
625 |
val AC = read_prop "PROP A ==> PROP C"
|
berghofe@10414
|
626 |
val A = read_prop "PROP A"
|
berghofe@10414
|
627 |
in
|
wenzelm@12135
|
628 |
store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
|
berghofe@10414
|
629 |
(implies_intr AB (implies_intr A
|
berghofe@10414
|
630 |
(equal_elim (implies_elim (assume ABC) (assume A))
|
berghofe@10414
|
631 |
(implies_elim (assume AB) (assume A)))))
|
berghofe@10414
|
632 |
(implies_intr AC (implies_intr A
|
berghofe@10414
|
633 |
(equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
|
berghofe@10414
|
634 |
(implies_elim (assume AC) (assume A)))))))
|
berghofe@10414
|
635 |
end;
|
berghofe@10414
|
636 |
|
berghofe@10414
|
637 |
val swap_prems_eq =
|
berghofe@10414
|
638 |
let
|
berghofe@10414
|
639 |
val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
|
berghofe@10414
|
640 |
val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
|
berghofe@10414
|
641 |
val A = read_prop "PROP A"
|
berghofe@10414
|
642 |
val B = read_prop "PROP B"
|
berghofe@10414
|
643 |
in
|
wenzelm@12135
|
644 |
store_standard_thm_open "swap_prems_eq" (equal_intr
|
berghofe@10414
|
645 |
(implies_intr ABC (implies_intr B (implies_intr A
|
berghofe@10414
|
646 |
(implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
|
berghofe@10414
|
647 |
(implies_intr BAC (implies_intr A (implies_intr B
|
berghofe@10414
|
648 |
(implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
|
berghofe@10414
|
649 |
end;
|
lcp@229
|
650 |
|
wenzelm@18468
|
651 |
val imp_cong_rule = combination o combination (reflexive implies);
|
clasohm@0
|
652 |
|
skalberg@15001
|
653 |
local
|
skalberg@15001
|
654 |
val dest_eq = dest_equals o cprop_of
|
skalberg@15001
|
655 |
val rhs_of = snd o dest_eq
|
skalberg@15001
|
656 |
in
|
skalberg@15001
|
657 |
fun beta_eta_conversion t =
|
skalberg@15001
|
658 |
let val thm = beta_conversion true t
|
skalberg@15001
|
659 |
in transitive thm (eta_conversion (rhs_of thm)) end
|
skalberg@15001
|
660 |
end;
|
skalberg@15001
|
661 |
|
berghofe@15925
|
662 |
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
|
berghofe@15925
|
663 |
(symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
|
berghofe@15925
|
664 |
|
paulson@20861
|
665 |
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
|
paulson@20861
|
666 |
fun eta_contraction_rule th =
|
paulson@20861
|
667 |
equal_elim (eta_conversion (cprop_of th)) th;
|
paulson@20861
|
668 |
|
wenzelm@18337
|
669 |
val abs_def =
|
wenzelm@18337
|
670 |
let
|
wenzelm@18337
|
671 |
fun contract_lhs th =
|
wenzelm@18337
|
672 |
Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
|
wenzelm@18777
|
673 |
fun abstract cx th = Thm.abstract_rule
|
wenzelm@18777
|
674 |
(case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
|
wenzelm@18777
|
675 |
handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
|
wenzelm@18337
|
676 |
in
|
wenzelm@18337
|
677 |
contract_lhs
|
wenzelm@18337
|
678 |
#> `(snd o strip_comb o fst o dest_equals o cprop_of)
|
wenzelm@18337
|
679 |
#-> fold_rev abstract
|
wenzelm@18337
|
680 |
#> contract_lhs
|
wenzelm@18337
|
681 |
end;
|
wenzelm@18337
|
682 |
|
wenzelm@18468
|
683 |
(*rewrite B in !!x1 ... xn. B*)
|
wenzelm@18251
|
684 |
fun forall_conv 0 cv ct = cv ct
|
wenzelm@18251
|
685 |
| forall_conv n cv ct =
|
wenzelm@18468
|
686 |
(case try Thm.dest_comb ct of
|
wenzelm@18468
|
687 |
NONE => cv ct
|
wenzelm@18468
|
688 |
| SOME (A, B) =>
|
wenzelm@18468
|
689 |
(case (term_of A, term_of B) of
|
wenzelm@18468
|
690 |
(Const ("all", _), Abs (x, _, _)) =>
|
wenzelm@18468
|
691 |
let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
|
wenzelm@18468
|
692 |
Thm.combination (Thm.reflexive A)
|
wenzelm@18468
|
693 |
(Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
|
wenzelm@18468
|
694 |
end
|
wenzelm@18468
|
695 |
| _ => cv ct));
|
wenzelm@18468
|
696 |
|
wenzelm@18468
|
697 |
(*rewrite B in A1 ==> ... ==> An ==> B*)
|
wenzelm@18468
|
698 |
fun concl_conv 0 cv ct = cv ct
|
wenzelm@18468
|
699 |
| concl_conv n cv ct =
|
wenzelm@18468
|
700 |
(case try dest_implies ct of
|
wenzelm@18468
|
701 |
NONE => cv ct
|
wenzelm@18468
|
702 |
| SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
|
skalberg@15001
|
703 |
|
wenzelm@18468
|
704 |
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
|
wenzelm@18468
|
705 |
fun prems_conv 0 _ = reflexive
|
wenzelm@18468
|
706 |
| prems_conv n cv =
|
wenzelm@18468
|
707 |
let
|
wenzelm@18468
|
708 |
fun conv i ct =
|
wenzelm@18468
|
709 |
if i = n + 1 then reflexive ct
|
wenzelm@18468
|
710 |
else
|
wenzelm@18468
|
711 |
(case try dest_implies ct of
|
wenzelm@18468
|
712 |
NONE => reflexive ct
|
wenzelm@18468
|
713 |
| SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
|
wenzelm@18468
|
714 |
in conv 1 end;
|
wenzelm@18468
|
715 |
|
wenzelm@18468
|
716 |
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
|
skalberg@15001
|
717 |
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
|
skalberg@15001
|
718 |
|
wenzelm@18468
|
719 |
|
wenzelm@15669
|
720 |
(*** Some useful meta-theorems ***)
|
clasohm@0
|
721 |
|
clasohm@0
|
722 |
(*The rule V/V, obtains assumption solving for eresolve_tac*)
|
wenzelm@12135
|
723 |
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
|
wenzelm@7380
|
724 |
val _ = store_thm "_" asm_rl;
|
clasohm@0
|
725 |
|
clasohm@0
|
726 |
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
|
wenzelm@4016
|
727 |
val cut_rl =
|
wenzelm@12135
|
728 |
store_standard_thm_open "cut_rl"
|
wenzelm@9455
|
729 |
(Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
|
clasohm@0
|
730 |
|
wenzelm@252
|
731 |
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
|
clasohm@0
|
732 |
[| PROP V; PROP V ==> PROP W |] ==> PROP W *)
|
clasohm@0
|
733 |
val revcut_rl =
|
paulson@4610
|
734 |
let val V = read_prop "PROP V"
|
paulson@4610
|
735 |
and VW = read_prop "PROP V ==> PROP W";
|
wenzelm@4016
|
736 |
in
|
wenzelm@12135
|
737 |
store_standard_thm_open "revcut_rl"
|
wenzelm@4016
|
738 |
(implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
|
clasohm@0
|
739 |
end;
|
clasohm@0
|
740 |
|
lcp@668
|
741 |
(*for deleting an unwanted assumption*)
|
lcp@668
|
742 |
val thin_rl =
|
paulson@4610
|
743 |
let val V = read_prop "PROP V"
|
paulson@4610
|
744 |
and W = read_prop "PROP W";
|
wenzelm@12135
|
745 |
in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
|
lcp@668
|
746 |
|
clasohm@0
|
747 |
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
|
clasohm@0
|
748 |
val triv_forall_equality =
|
paulson@4610
|
749 |
let val V = read_prop "PROP V"
|
paulson@4610
|
750 |
and QV = read_prop "!!x::'a. PROP V"
|
wenzelm@19421
|
751 |
and x = cert (Free ("x", Term.aT []));
|
wenzelm@4016
|
752 |
in
|
wenzelm@12135
|
753 |
store_standard_thm_open "triv_forall_equality"
|
berghofe@11512
|
754 |
(equal_intr (implies_intr QV (forall_elim x (assume QV)))
|
berghofe@11512
|
755 |
(implies_intr V (forall_intr x (assume V))))
|
clasohm@0
|
756 |
end;
|
clasohm@0
|
757 |
|
wenzelm@19051
|
758 |
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
|
wenzelm@19051
|
759 |
(PROP ?Phi ==> PROP ?Psi)
|
wenzelm@19051
|
760 |
*)
|
wenzelm@19051
|
761 |
val distinct_prems_rl =
|
wenzelm@19051
|
762 |
let
|
wenzelm@19051
|
763 |
val AAB = read_prop "PROP Phi ==> PROP Phi ==> PROP Psi"
|
wenzelm@19051
|
764 |
val A = read_prop "PROP Phi";
|
wenzelm@19051
|
765 |
in
|
wenzelm@19051
|
766 |
store_standard_thm_open "distinct_prems_rl"
|
wenzelm@19051
|
767 |
(implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
|
wenzelm@19051
|
768 |
end;
|
wenzelm@19051
|
769 |
|
nipkow@1756
|
770 |
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
|
nipkow@1756
|
771 |
(PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
|
nipkow@1756
|
772 |
`thm COMP swap_prems_rl' swaps the first two premises of `thm'
|
nipkow@1756
|
773 |
*)
|
nipkow@1756
|
774 |
val swap_prems_rl =
|
paulson@4610
|
775 |
let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
|
nipkow@1756
|
776 |
val major = assume cmajor;
|
paulson@4610
|
777 |
val cminor1 = read_prop "PROP PhiA";
|
nipkow@1756
|
778 |
val minor1 = assume cminor1;
|
paulson@4610
|
779 |
val cminor2 = read_prop "PROP PhiB";
|
nipkow@1756
|
780 |
val minor2 = assume cminor2;
|
wenzelm@12135
|
781 |
in store_standard_thm_open "swap_prems_rl"
|
nipkow@1756
|
782 |
(implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
|
nipkow@1756
|
783 |
(implies_elim (implies_elim major minor1) minor2))))
|
nipkow@1756
|
784 |
end;
|
nipkow@1756
|
785 |
|
nipkow@3653
|
786 |
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
|
nipkow@3653
|
787 |
==> PROP ?phi == PROP ?psi
|
wenzelm@8328
|
788 |
Introduction rule for == as a meta-theorem.
|
nipkow@3653
|
789 |
*)
|
nipkow@3653
|
790 |
val equal_intr_rule =
|
paulson@4610
|
791 |
let val PQ = read_prop "PROP phi ==> PROP psi"
|
paulson@4610
|
792 |
and QP = read_prop "PROP psi ==> PROP phi"
|
wenzelm@4016
|
793 |
in
|
wenzelm@12135
|
794 |
store_standard_thm_open "equal_intr_rule"
|
wenzelm@4016
|
795 |
(implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
|
nipkow@3653
|
796 |
end;
|
nipkow@3653
|
797 |
|
wenzelm@19421
|
798 |
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
|
wenzelm@13368
|
799 |
val equal_elim_rule1 =
|
wenzelm@13368
|
800 |
let val eq = read_prop "PROP phi == PROP psi"
|
wenzelm@13368
|
801 |
and P = read_prop "PROP phi"
|
wenzelm@13368
|
802 |
in store_standard_thm_open "equal_elim_rule1"
|
wenzelm@13368
|
803 |
(Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
|
wenzelm@13368
|
804 |
end;
|
wenzelm@4285
|
805 |
|
wenzelm@19421
|
806 |
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
|
wenzelm@19421
|
807 |
val equal_elim_rule2 =
|
wenzelm@19421
|
808 |
store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
|
wenzelm@19421
|
809 |
|
wenzelm@12297
|
810 |
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
|
wenzelm@12297
|
811 |
val remdups_rl =
|
wenzelm@12297
|
812 |
let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
|
wenzelm@12297
|
813 |
in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
|
wenzelm@12297
|
814 |
|
wenzelm@12297
|
815 |
|
wenzelm@9554
|
816 |
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
|
wenzelm@12297
|
817 |
Rewrite rule for HHF normalization.*)
|
wenzelm@9554
|
818 |
|
wenzelm@9554
|
819 |
val norm_hhf_eq =
|
wenzelm@9554
|
820 |
let
|
wenzelm@14854
|
821 |
val aT = TFree ("'a", []);
|
wenzelm@9554
|
822 |
val all = Term.all aT;
|
wenzelm@9554
|
823 |
val x = Free ("x", aT);
|
wenzelm@9554
|
824 |
val phi = Free ("phi", propT);
|
wenzelm@9554
|
825 |
val psi = Free ("psi", aT --> propT);
|
wenzelm@9554
|
826 |
|
wenzelm@9554
|
827 |
val cx = cert x;
|
wenzelm@9554
|
828 |
val cphi = cert phi;
|
wenzelm@9554
|
829 |
val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
|
wenzelm@9554
|
830 |
val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
|
wenzelm@9554
|
831 |
in
|
wenzelm@9554
|
832 |
Thm.equal_intr
|
wenzelm@9554
|
833 |
(Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
|
wenzelm@9554
|
834 |
|> Thm.forall_elim cx
|
wenzelm@9554
|
835 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
836 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
837 |
|> Thm.implies_intr lhs)
|
wenzelm@9554
|
838 |
(Thm.implies_elim
|
wenzelm@9554
|
839 |
(Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
|
wenzelm@9554
|
840 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
841 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
842 |
|> Thm.implies_intr rhs)
|
wenzelm@12135
|
843 |
|> store_standard_thm_open "norm_hhf_eq"
|
wenzelm@9554
|
844 |
end;
|
wenzelm@9554
|
845 |
|
wenzelm@18179
|
846 |
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
|
wenzelm@18179
|
847 |
|
wenzelm@12800
|
848 |
fun is_norm_hhf tm =
|
wenzelm@12800
|
849 |
let
|
wenzelm@12800
|
850 |
fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
|
wenzelm@12800
|
851 |
| is_norm (t $ u) = is_norm t andalso is_norm u
|
wenzelm@12800
|
852 |
| is_norm (Abs (_, _, t)) = is_norm t
|
wenzelm@12800
|
853 |
| is_norm _ = true;
|
wenzelm@18929
|
854 |
in is_norm (Envir.beta_eta_contract tm) end;
|
wenzelm@12800
|
855 |
|
wenzelm@16425
|
856 |
fun norm_hhf thy t =
|
wenzelm@12800
|
857 |
if is_norm_hhf t then t
|
wenzelm@18179
|
858 |
else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
|
wenzelm@18179
|
859 |
|
wenzelm@20298
|
860 |
fun norm_hhf_cterm ct =
|
wenzelm@20298
|
861 |
if is_norm_hhf (Thm.term_of ct) then ct
|
wenzelm@20298
|
862 |
else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
|
wenzelm@20298
|
863 |
|
wenzelm@12800
|
864 |
|
wenzelm@9554
|
865 |
|
wenzelm@16425
|
866 |
(*** Instantiate theorem th, reading instantiations in theory thy ****)
|
paulson@8129
|
867 |
|
paulson@8129
|
868 |
(*Version that normalizes the result: Thm.instantiate no longer does that*)
|
paulson@8129
|
869 |
fun instantiate instpair th = Thm.instantiate instpair th COMP asm_rl;
|
paulson@8129
|
870 |
|
wenzelm@16425
|
871 |
fun read_instantiate_sg' thy sinsts th =
|
paulson@8129
|
872 |
let val ts = types_sorts th;
|
wenzelm@15669
|
873 |
val used = add_used th [];
|
wenzelm@16425
|
874 |
in instantiate (read_insts thy ts ts used sinsts) th end;
|
berghofe@15797
|
875 |
|
wenzelm@16425
|
876 |
fun read_instantiate_sg thy sinsts th =
|
wenzelm@20298
|
877 |
read_instantiate_sg' thy (map (apfst Syntax.read_indexname) sinsts) th;
|
paulson@8129
|
878 |
|
paulson@8129
|
879 |
(*Instantiate theorem th, reading instantiations under theory of th*)
|
paulson@8129
|
880 |
fun read_instantiate sinsts th =
|
wenzelm@16425
|
881 |
read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
|
paulson@8129
|
882 |
|
berghofe@15797
|
883 |
fun read_instantiate' sinsts th =
|
wenzelm@16425
|
884 |
read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
|
berghofe@15797
|
885 |
|
paulson@8129
|
886 |
|
paulson@8129
|
887 |
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
|
paulson@8129
|
888 |
Instantiates distinct Vars by terms, inferring type instantiations. *)
|
paulson@8129
|
889 |
local
|
wenzelm@16425
|
890 |
fun add_types ((ct,cu), (thy,tye,maxidx)) =
|
wenzelm@16425
|
891 |
let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
|
wenzelm@16425
|
892 |
and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
|
paulson@8129
|
893 |
val maxi = Int.max(maxidx, Int.max(maxt, maxu));
|
wenzelm@16425
|
894 |
val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
|
wenzelm@16949
|
895 |
val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
|
wenzelm@10403
|
896 |
handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
|
wenzelm@16425
|
897 |
in (thy', tye', maxi') end;
|
paulson@8129
|
898 |
in
|
paulson@8129
|
899 |
fun cterm_instantiate ctpairs0 th =
|
wenzelm@16425
|
900 |
let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
|
wenzelm@18179
|
901 |
fun instT(ct,cu) =
|
wenzelm@16425
|
902 |
let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
|
paulson@14340
|
903 |
in (inst ct, inst cu) end
|
wenzelm@16425
|
904 |
fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
|
berghofe@8406
|
905 |
in instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th end
|
paulson@8129
|
906 |
handle TERM _ =>
|
wenzelm@16425
|
907 |
raise THM("cterm_instantiate: incompatible theories",0,[th])
|
paulson@8129
|
908 |
| TYPE (msg, _, _) => raise THM(msg, 0, [th])
|
paulson@8129
|
909 |
end;
|
paulson@8129
|
910 |
|
paulson@8129
|
911 |
|
wenzelm@19878
|
912 |
(* global schematic variables *)
|
wenzelm@19878
|
913 |
|
wenzelm@19878
|
914 |
fun unvarify th =
|
wenzelm@19878
|
915 |
let
|
wenzelm@19878
|
916 |
val thy = Thm.theory_of_thm th;
|
wenzelm@19878
|
917 |
val cert = Thm.cterm_of thy;
|
wenzelm@19878
|
918 |
val certT = Thm.ctyp_of thy;
|
wenzelm@19878
|
919 |
|
wenzelm@19878
|
920 |
val prop = Thm.full_prop_of th;
|
wenzelm@19878
|
921 |
val _ = map Logic.unvarify (prop :: Thm.hyps_of th)
|
wenzelm@19878
|
922 |
handle TERM (msg, _) => raise THM (msg, 0, [th]);
|
wenzelm@19878
|
923 |
|
wenzelm@19878
|
924 |
val instT0 = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
|
wenzelm@19878
|
925 |
val instT = map (fn (v, T) => (certT (TVar v), certT T)) instT0;
|
wenzelm@19878
|
926 |
val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
|
wenzelm@20509
|
927 |
let val T' = TermSubst.instantiateT instT0 T
|
wenzelm@19878
|
928 |
in (cert (Var ((a, i), T')), cert (Free ((a, T')))) end);
|
wenzelm@19878
|
929 |
in Thm.instantiate (instT, inst) th end;
|
wenzelm@19878
|
930 |
|
wenzelm@19878
|
931 |
|
wenzelm@19775
|
932 |
(** protected propositions and embedded terms **)
|
wenzelm@4789
|
933 |
|
wenzelm@4789
|
934 |
local
|
wenzelm@18025
|
935 |
val A = cert (Free ("A", propT));
|
wenzelm@19878
|
936 |
val prop_def = unvarify ProtoPure.prop_def;
|
wenzelm@19878
|
937 |
val term_def = unvarify ProtoPure.term_def;
|
wenzelm@4789
|
938 |
in
|
wenzelm@18025
|
939 |
val protect = Thm.capply (cert Logic.protectC);
|
wenzelm@21437
|
940 |
val protectI = store_thm "protectI" (PureThy.kind_rule Thm.internalK (standard
|
wenzelm@18025
|
941 |
(Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
|
wenzelm@21437
|
942 |
val protectD = store_thm "protectD" (PureThy.kind_rule Thm.internalK (standard
|
wenzelm@18025
|
943 |
(Thm.equal_elim prop_def (Thm.assume (protect A)))));
|
wenzelm@18179
|
944 |
val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
|
wenzelm@19775
|
945 |
|
wenzelm@21437
|
946 |
val termI = store_thm "termI" (PureThy.kind_rule Thm.internalK (standard
|
wenzelm@19775
|
947 |
(Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
|
wenzelm@4789
|
948 |
end;
|
wenzelm@4789
|
949 |
|
wenzelm@18025
|
950 |
fun implies_intr_protected asms th =
|
wenzelm@18118
|
951 |
let val asms' = map protect asms in
|
wenzelm@18118
|
952 |
implies_elim_list
|
wenzelm@18118
|
953 |
(implies_intr_list asms th)
|
wenzelm@18118
|
954 |
(map (fn asm' => Thm.assume asm' RS protectD) asms')
|
wenzelm@18118
|
955 |
|> implies_intr_list asms'
|
wenzelm@18118
|
956 |
end;
|
wenzelm@11815
|
957 |
|
wenzelm@19775
|
958 |
fun mk_term ct =
|
wenzelm@19775
|
959 |
let
|
wenzelm@19775
|
960 |
val {thy, T, ...} = Thm.rep_cterm ct;
|
wenzelm@19775
|
961 |
val cert = Thm.cterm_of thy;
|
wenzelm@19775
|
962 |
val certT = Thm.ctyp_of thy;
|
wenzelm@19775
|
963 |
val a = certT (TVar (("'a", 0), []));
|
wenzelm@19775
|
964 |
val x = cert (Var (("x", 0), T));
|
wenzelm@19775
|
965 |
in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
|
wenzelm@19775
|
966 |
|
wenzelm@19775
|
967 |
fun dest_term th =
|
wenzelm@21566
|
968 |
let val cprop = strip_imp_concl (Thm.cprop_of th) in
|
wenzelm@19775
|
969 |
if can Logic.dest_term (Thm.term_of cprop) then
|
wenzelm@20579
|
970 |
Thm.dest_arg cprop
|
wenzelm@19775
|
971 |
else raise THM ("dest_term", 0, [th])
|
wenzelm@19775
|
972 |
end;
|
wenzelm@19775
|
973 |
|
wenzelm@21519
|
974 |
fun cterm_rule f = dest_term o f o mk_term;
|
wenzelm@21519
|
975 |
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
|
wenzelm@20881
|
976 |
|
wenzelm@19775
|
977 |
|
wenzelm@4789
|
978 |
|
wenzelm@5688
|
979 |
(** variations on instantiate **)
|
wenzelm@4285
|
980 |
|
paulson@8550
|
981 |
(*shorthand for instantiating just one variable in the current theory*)
|
wenzelm@16425
|
982 |
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
|
paulson@8550
|
983 |
|
paulson@8550
|
984 |
|
wenzelm@4285
|
985 |
(* instantiate by left-to-right occurrence of variables *)
|
wenzelm@4285
|
986 |
|
wenzelm@4285
|
987 |
fun instantiate' cTs cts thm =
|
wenzelm@4285
|
988 |
let
|
wenzelm@4285
|
989 |
fun err msg =
|
wenzelm@4285
|
990 |
raise TYPE ("instantiate': " ^ msg,
|
wenzelm@19482
|
991 |
map_filter (Option.map Thm.typ_of) cTs,
|
wenzelm@19482
|
992 |
map_filter (Option.map Thm.term_of) cts);
|
wenzelm@4285
|
993 |
|
wenzelm@4285
|
994 |
fun inst_of (v, ct) =
|
wenzelm@16425
|
995 |
(Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
|
wenzelm@4285
|
996 |
handle TYPE (msg, _, _) => err msg;
|
wenzelm@4285
|
997 |
|
berghofe@15797
|
998 |
fun tyinst_of (v, cT) =
|
wenzelm@16425
|
999 |
(Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
|
berghofe@15797
|
1000 |
handle TYPE (msg, _, _) => err msg;
|
berghofe@15797
|
1001 |
|
wenzelm@20298
|
1002 |
fun zip_vars xs ys =
|
wenzelm@20298
|
1003 |
zip_options xs ys handle Library.UnequalLengths =>
|
wenzelm@20298
|
1004 |
err "more instantiations than variables in thm";
|
wenzelm@4285
|
1005 |
|
wenzelm@4285
|
1006 |
(*instantiate types first!*)
|
wenzelm@4285
|
1007 |
val thm' =
|
wenzelm@4285
|
1008 |
if forall is_none cTs then thm
|
wenzelm@20298
|
1009 |
else Thm.instantiate
|
wenzelm@20298
|
1010 |
(map tyinst_of (zip_vars (rev (fold_terms Term.add_tvars thm [])) cTs), []) thm;
|
wenzelm@20579
|
1011 |
val thm'' =
|
wenzelm@4285
|
1012 |
if forall is_none cts then thm'
|
wenzelm@20298
|
1013 |
else Thm.instantiate
|
wenzelm@20298
|
1014 |
([], map inst_of (zip_vars (rev (fold_terms Term.add_vars thm' [])) cts)) thm';
|
wenzelm@20298
|
1015 |
in thm'' end;
|
wenzelm@4285
|
1016 |
|
wenzelm@4285
|
1017 |
|
berghofe@14081
|
1018 |
|
berghofe@14081
|
1019 |
(** renaming of bound variables **)
|
berghofe@14081
|
1020 |
|
berghofe@14081
|
1021 |
(* replace bound variables x_i in thm by y_i *)
|
berghofe@14081
|
1022 |
(* where vs = [(x_1, y_1), ..., (x_n, y_n)] *)
|
berghofe@14081
|
1023 |
|
berghofe@14081
|
1024 |
fun rename_bvars [] thm = thm
|
berghofe@14081
|
1025 |
| rename_bvars vs thm =
|
berghofe@14081
|
1026 |
let
|
wenzelm@16425
|
1027 |
val {thy, prop, ...} = rep_thm thm;
|
haftmann@17325
|
1028 |
fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
|
berghofe@14081
|
1029 |
| ren (t $ u) = ren t $ ren u
|
berghofe@14081
|
1030 |
| ren t = t;
|
wenzelm@16425
|
1031 |
in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
|
berghofe@14081
|
1032 |
|
berghofe@14081
|
1033 |
|
berghofe@14081
|
1034 |
(* renaming in left-to-right order *)
|
berghofe@14081
|
1035 |
|
berghofe@14081
|
1036 |
fun rename_bvars' xs thm =
|
berghofe@14081
|
1037 |
let
|
wenzelm@16425
|
1038 |
val {thy, prop, ...} = rep_thm thm;
|
berghofe@14081
|
1039 |
fun rename [] t = ([], t)
|
berghofe@14081
|
1040 |
| rename (x' :: xs) (Abs (x, T, t)) =
|
berghofe@14081
|
1041 |
let val (xs', t') = rename xs t
|
wenzelm@18929
|
1042 |
in (xs', Abs (the_default x x', T, t')) end
|
berghofe@14081
|
1043 |
| rename xs (t $ u) =
|
berghofe@14081
|
1044 |
let
|
berghofe@14081
|
1045 |
val (xs', t') = rename xs t;
|
berghofe@14081
|
1046 |
val (xs'', u') = rename xs' u
|
berghofe@14081
|
1047 |
in (xs'', t' $ u') end
|
berghofe@14081
|
1048 |
| rename xs t = (xs, t);
|
berghofe@14081
|
1049 |
in case rename xs prop of
|
wenzelm@16425
|
1050 |
([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
|
berghofe@14081
|
1051 |
| _ => error "More names than abstractions in theorem"
|
berghofe@14081
|
1052 |
end;
|
berghofe@14081
|
1053 |
|
berghofe@14081
|
1054 |
|
wenzelm@19906
|
1055 |
(* var indexes *)
|
wenzelm@6435
|
1056 |
|
wenzelm@19421
|
1057 |
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
|
wenzelm@18025
|
1058 |
|
wenzelm@19124
|
1059 |
fun incr_indexes2 th1 th2 =
|
wenzelm@19421
|
1060 |
Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
|
wenzelm@6435
|
1061 |
|
wenzelm@21578
|
1062 |
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
|
wenzelm@21578
|
1063 |
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
|
wenzelm@21578
|
1064 |
|
wenzelm@6435
|
1065 |
|
wenzelm@11975
|
1066 |
|
wenzelm@18225
|
1067 |
(** multi_resolve **)
|
wenzelm@18225
|
1068 |
|
wenzelm@18225
|
1069 |
local
|
wenzelm@18225
|
1070 |
|
wenzelm@18225
|
1071 |
fun res th i rule =
|
wenzelm@18225
|
1072 |
Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
|
wenzelm@18225
|
1073 |
|
wenzelm@18225
|
1074 |
fun multi_res _ [] rule = Seq.single rule
|
wenzelm@18225
|
1075 |
| multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
|
wenzelm@18225
|
1076 |
|
wenzelm@18225
|
1077 |
in
|
wenzelm@18225
|
1078 |
|
wenzelm@18225
|
1079 |
val multi_resolve = multi_res 1;
|
wenzelm@18225
|
1080 |
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
|
wenzelm@18225
|
1081 |
|
wenzelm@18225
|
1082 |
end;
|
wenzelm@18225
|
1083 |
|
wenzelm@11975
|
1084 |
end;
|
wenzelm@5903
|
1085 |
|
wenzelm@5903
|
1086 |
structure BasicDrule: BASIC_DRULE = Drule;
|
wenzelm@5903
|
1087 |
open BasicDrule;
|