src/Pure/drule.ML
author wenzelm
Wed Nov 29 04:11:11 2006 +0100 (2006-11-29 ago)
changeset 21578 a89f786b301a
parent 21566 af2932baf068
child 21596 486cae91868f
permissions -rw-r--r--
added INCR_COMP, COMP_INCR;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@21578
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val dest_implies: cterm -> cterm * cterm
wenzelm@18179
    16
  val dest_equals: cterm -> cterm * cterm
wenzelm@20904
    17
  val dest_equals_lhs: cterm -> cterm
wenzelm@20669
    18
  val dest_equals_rhs: cterm -> cterm
wenzelm@18179
    19
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    20
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    21
  val cprems_of: thm -> cterm list
wenzelm@18179
    22
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    23
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    24
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    25
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    26
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    27
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    28
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    29
  val forall_intr_frees: thm -> thm
wenzelm@18179
    30
  val forall_intr_vars: thm -> thm
wenzelm@18179
    31
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    32
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    33
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    34
  val gen_all: thm -> thm
wenzelm@18179
    35
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    36
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    37
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    38
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    39
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    40
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@18179
    41
  val zero_var_indexes: thm -> thm
wenzelm@18179
    42
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    43
  val standard: thm -> thm
wenzelm@18179
    44
  val standard': thm -> thm
wenzelm@18179
    45
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    46
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    47
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    48
  val RS: thm * thm -> thm
wenzelm@18179
    49
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    50
  val RL: thm list * thm list -> thm list
wenzelm@18179
    51
  val MRS: thm list * thm -> thm
wenzelm@18179
    52
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    53
  val OF: thm * thm list -> thm
wenzelm@18179
    54
  val compose: thm * int * thm -> thm list
wenzelm@18179
    55
  val COMP: thm * thm -> thm
wenzelm@21578
    56
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    57
  val COMP_INCR: thm * thm -> thm
wenzelm@16425
    58
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    59
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    60
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    61
  val eq_thm_thy: thm * thm -> bool
wenzelm@18179
    62
  val eq_thm_prop: thm * thm -> bool
wenzelm@19878
    63
  val equiv_thm: thm * thm -> bool
wenzelm@18179
    64
  val size_of_thm: thm -> int
wenzelm@18179
    65
  val reflexive_thm: thm
wenzelm@18179
    66
  val symmetric_thm: thm
wenzelm@18179
    67
  val transitive_thm: thm
wenzelm@18179
    68
  val symmetric_fun: thm -> thm
wenzelm@18179
    69
  val extensional: thm -> thm
wenzelm@18820
    70
  val equals_cong: thm
wenzelm@18179
    71
  val imp_cong: thm
wenzelm@18179
    72
  val swap_prems_eq: thm
wenzelm@18179
    73
  val asm_rl: thm
wenzelm@18179
    74
  val cut_rl: thm
wenzelm@18179
    75
  val revcut_rl: thm
wenzelm@18179
    76
  val thin_rl: thm
wenzelm@4285
    77
  val triv_forall_equality: thm
wenzelm@19051
    78
  val distinct_prems_rl: thm
wenzelm@18179
    79
  val swap_prems_rl: thm
wenzelm@18179
    80
  val equal_intr_rule: thm
wenzelm@18179
    81
  val equal_elim_rule1: thm
wenzelm@19421
    82
  val equal_elim_rule2: thm
wenzelm@18179
    83
  val inst: string -> string -> thm -> thm
wenzelm@18179
    84
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    85
end;
wenzelm@5903
    86
wenzelm@5903
    87
signature DRULE =
wenzelm@5903
    88
sig
wenzelm@5903
    89
  include BASIC_DRULE
wenzelm@19999
    90
  val generalize: string list * string list -> thm -> thm
paulson@15949
    91
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    92
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    93
  val strip_type: ctyp -> ctyp list * ctyp
wenzelm@20904
    94
  val lhs_of: thm -> cterm
wenzelm@20904
    95
  val rhs_of: thm -> cterm
paulson@15949
    96
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15875
    97
  val plain_prop_of: thm -> term
wenzelm@20298
    98
  val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
wenzelm@15669
    99
  val add_used: thm -> string list -> string list
berghofe@17713
   100
  val flexflex_unique: thm -> thm
wenzelm@11975
   101
  val close_derivation: thm -> thm
wenzelm@12005
   102
  val local_standard: thm -> thm
wenzelm@19421
   103
  val store_thm: bstring -> thm -> thm
wenzelm@19421
   104
  val store_standard_thm: bstring -> thm -> thm
wenzelm@19421
   105
  val store_thm_open: bstring -> thm -> thm
wenzelm@19421
   106
  val store_standard_thm_open: bstring -> thm -> thm
wenzelm@11975
   107
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   108
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   109
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   110
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
   111
  val imp_cong_rule: thm -> thm -> thm
skalberg@15001
   112
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   113
  val eta_long_conversion: cterm -> thm
paulson@20861
   114
  val eta_contraction_rule: thm -> thm
wenzelm@18468
   115
  val forall_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   116
  val concl_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   117
  val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18179
   118
  val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
wenzelm@18179
   119
  val fconv_rule: (cterm -> thm) -> thm -> thm
wenzelm@11975
   120
  val norm_hhf_eq: thm
wenzelm@12800
   121
  val is_norm_hhf: term -> bool
wenzelm@16425
   122
  val norm_hhf: theory -> term -> term
wenzelm@20298
   123
  val norm_hhf_cterm: cterm -> cterm
wenzelm@19878
   124
  val unvarify: thm -> thm
wenzelm@18025
   125
  val protect: cterm -> cterm
wenzelm@18025
   126
  val protectI: thm
wenzelm@18025
   127
  val protectD: thm
wenzelm@18179
   128
  val protect_cong: thm
wenzelm@18025
   129
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   130
  val termI: thm
wenzelm@19775
   131
  val mk_term: cterm -> thm
wenzelm@19775
   132
  val dest_term: thm -> cterm
wenzelm@21519
   133
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   134
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@19523
   135
  val sort_triv: theory -> typ * sort -> thm list
wenzelm@19504
   136
  val unconstrainTs: thm -> thm
berghofe@14081
   137
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   138
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   139
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   140
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   141
  val remdups_rl: thm
wenzelm@18225
   142
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   143
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   144
  val abs_def: thm -> thm
wenzelm@16425
   145
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   146
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   147
end;
clasohm@0
   148
wenzelm@5903
   149
structure Drule: DRULE =
clasohm@0
   150
struct
clasohm@0
   151
wenzelm@3991
   152
wenzelm@16682
   153
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   154
paulson@2004
   155
fun dest_implies ct =
wenzelm@16682
   156
  (case Thm.term_of ct of
wenzelm@20669
   157
    Const ("==>", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   158
  | _ => raise TERM ("dest_implies", [Thm.term_of ct]));
clasohm@1703
   159
berghofe@10414
   160
fun dest_equals ct =
wenzelm@16682
   161
  (case Thm.term_of ct of
wenzelm@20669
   162
    Const ("==", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   163
  | _ => raise TERM ("dest_equals", [Thm.term_of ct]));
wenzelm@20669
   164
wenzelm@20904
   165
fun dest_equals_lhs ct =
wenzelm@20904
   166
  (case Thm.term_of ct of
wenzelm@20904
   167
    Const ("==", _) $ _ $ _ => #1 (Thm.dest_binop ct)
wenzelm@20904
   168
  | _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct]));
wenzelm@20904
   169
wenzelm@20669
   170
fun dest_equals_rhs ct =
wenzelm@20669
   171
  (case Thm.term_of ct of
wenzelm@20669
   172
    Const ("==", _) $ _ $ _ => Thm.dest_arg ct
wenzelm@20669
   173
  | _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
berghofe@10414
   174
wenzelm@20904
   175
val lhs_of = dest_equals_lhs o Thm.cprop_of;
wenzelm@20904
   176
val rhs_of = dest_equals_rhs o Thm.cprop_of;
wenzelm@20904
   177
lcp@708
   178
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   179
fun strip_imp_prems ct =
wenzelm@20579
   180
  let val (cA, cB) = dest_implies ct
wenzelm@20579
   181
  in cA :: strip_imp_prems cB end
wenzelm@20579
   182
  handle TERM _ => [];
lcp@708
   183
paulson@2004
   184
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   185
fun strip_imp_concl ct =
wenzelm@20579
   186
  (case Thm.term_of ct of
wenzelm@20579
   187
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   188
  | _ => ct);
paulson@2004
   189
lcp@708
   190
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   191
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   192
berghofe@15797
   193
fun cterm_fun f ct =
wenzelm@16425
   194
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   195
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   196
berghofe@15797
   197
fun ctyp_fun f cT =
wenzelm@16425
   198
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   199
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   200
wenzelm@19421
   201
val cert = cterm_of ProtoPure.thy;
paulson@9547
   202
wenzelm@19421
   203
val implies = cert Term.implies;
wenzelm@19183
   204
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   205
paulson@9547
   206
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   207
fun list_implies([], B) = B
paulson@9547
   208
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   209
paulson@15949
   210
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   211
fun list_comb (f, []) = f
paulson@15949
   212
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   213
berghofe@12908
   214
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   215
fun strip_comb ct =
berghofe@12908
   216
  let
berghofe@12908
   217
    fun stripc (p as (ct, cts)) =
berghofe@12908
   218
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   219
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   220
  in stripc (ct, []) end;
berghofe@12908
   221
berghofe@15262
   222
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   223
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   224
    Type ("fun", _) =>
berghofe@15262
   225
      let
berghofe@15262
   226
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   227
        val (cTs, cT') = strip_type cT2
berghofe@15262
   228
      in (cT1 :: cTs, cT') end
berghofe@15262
   229
  | _ => ([], cT));
berghofe@15262
   230
paulson@15949
   231
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   232
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   233
fun beta_conv x y =
wenzelm@20579
   234
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   235
wenzelm@15875
   236
fun plain_prop_of raw_thm =
wenzelm@15875
   237
  let
wenzelm@15875
   238
    val thm = Thm.strip_shyps raw_thm;
wenzelm@15875
   239
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
wenzelm@15875
   240
    val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15875
   241
  in
wenzelm@15875
   242
    if not (null hyps) then
wenzelm@15875
   243
      err "theorem may not contain hypotheses"
wenzelm@15875
   244
    else if not (null (Thm.extra_shyps thm)) then
wenzelm@15875
   245
      err "theorem may not contain sort hypotheses"
wenzelm@15875
   246
    else if not (null tpairs) then
wenzelm@15875
   247
      err "theorem may not contain flex-flex pairs"
wenzelm@15875
   248
    else prop
wenzelm@15875
   249
  end;
wenzelm@15875
   250
wenzelm@20298
   251
fun fold_terms f th =
wenzelm@20298
   252
  let val {tpairs, prop, hyps, ...} = Thm.rep_thm th
wenzelm@20298
   253
  in fold (fn (t, u) => f t #> f u) tpairs #> f prop #> fold f hyps end;
wenzelm@20298
   254
wenzelm@15875
   255
lcp@708
   256
lcp@229
   257
(** reading of instantiations **)
lcp@229
   258
lcp@229
   259
fun absent ixn =
lcp@229
   260
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   261
lcp@229
   262
fun inst_failure ixn =
lcp@229
   263
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   264
wenzelm@16425
   265
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   266
let
berghofe@15442
   267
    fun is_tv ((a, _), _) =
berghofe@15442
   268
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   269
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   270
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   271
    fun readT (ixn, st) =
berghofe@15797
   272
        let val S = sort_of ixn;
wenzelm@16425
   273
            val T = Sign.read_typ (thy,sorts) st;
wenzelm@16425
   274
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   275
           else inst_failure ixn
nipkow@4281
   276
        end
nipkow@4281
   277
    val tye = map readT tvs;
nipkow@4281
   278
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   279
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   280
                        | NONE => absent ixn);
nipkow@4281
   281
    val ixnsTs = map mkty vs;
nipkow@4281
   282
    val ixns = map fst ixnsTs
nipkow@4281
   283
    and sTs  = map snd ixnsTs
wenzelm@16425
   284
    val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   285
    fun mkcVar(ixn,T) =
nipkow@4281
   286
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   287
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   288
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   289
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   290
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   291
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   292
end;
lcp@229
   293
lcp@229
   294
wenzelm@252
   295
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   296
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   297
     type variables) when reading another term.
clasohm@0
   298
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   299
***)
clasohm@0
   300
clasohm@0
   301
fun types_sorts thm =
wenzelm@20329
   302
  let
wenzelm@20329
   303
    val vars = fold_terms Term.add_vars thm [];
wenzelm@20329
   304
    val frees = fold_terms Term.add_frees thm [];
wenzelm@20329
   305
    val tvars = fold_terms Term.add_tvars thm [];
wenzelm@20329
   306
    val tfrees = fold_terms Term.add_tfrees thm [];
wenzelm@20329
   307
    fun types (a, i) =
wenzelm@20329
   308
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   309
    fun sorts (a, i) =
wenzelm@20329
   310
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   311
  in (types, sorts) end;
clasohm@0
   312
wenzelm@20329
   313
val add_used =
wenzelm@20329
   314
  (fold_terms o fold_types o fold_atyps)
wenzelm@20329
   315
    (fn TFree (a, _) => insert (op =) a
wenzelm@20329
   316
      | TVar ((a, _), _) => insert (op =) a
wenzelm@20329
   317
      | _ => I);
wenzelm@15669
   318
wenzelm@7636
   319
wenzelm@9455
   320
clasohm@0
   321
(** Standardization of rules **)
clasohm@0
   322
wenzelm@19523
   323
(* type classes and sorts *)
wenzelm@19523
   324
wenzelm@19523
   325
fun sort_triv thy (T, S) =
wenzelm@19523
   326
  let
wenzelm@19523
   327
    val certT = Thm.ctyp_of thy;
wenzelm@19523
   328
    val cT = certT T;
wenzelm@19523
   329
    fun class_triv c =
wenzelm@19523
   330
      Thm.class_triv thy c
wenzelm@19523
   331
      |> Thm.instantiate ([(certT (TVar (("'a", 0), [c])), cT)], []);
wenzelm@19523
   332
  in map class_triv S end;
wenzelm@19523
   333
wenzelm@19504
   334
fun unconstrainTs th =
wenzelm@20298
   335
  fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
wenzelm@20298
   336
    (fold_terms Term.add_tvars th []) th;
wenzelm@19504
   337
wenzelm@19730
   338
(*Generalization over a list of variables*)
wenzelm@19730
   339
val forall_intr_list = fold_rev forall_intr;
clasohm@0
   340
clasohm@0
   341
(*Generalization over all suitable Free variables*)
clasohm@0
   342
fun forall_intr_frees th =
wenzelm@19730
   343
    let
wenzelm@19730
   344
      val {prop, hyps, tpairs, thy,...} = rep_thm th;
wenzelm@19730
   345
      val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
wenzelm@19730
   346
      val frees = Term.fold_aterms (fn Free v =>
wenzelm@19730
   347
        if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
wenzelm@19730
   348
    in fold (forall_intr o cterm_of thy o Free) frees th end;
clasohm@0
   349
wenzelm@18535
   350
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   351
fun forall_intr_vars th =
wenzelm@20298
   352
  fold forall_intr
wenzelm@20298
   353
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (fold_terms Term.add_vars th [])) th;
wenzelm@18535
   354
wenzelm@7898
   355
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   356
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   357
wenzelm@18025
   358
fun outer_params t =
wenzelm@20077
   359
  let val vs = Term.strip_all_vars t
wenzelm@20077
   360
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   361
wenzelm@18025
   362
(*generalize outermost parameters*)
wenzelm@18025
   363
fun gen_all th =
wenzelm@12719
   364
  let
wenzelm@18025
   365
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   366
    val cert = Thm.cterm_of thy;
wenzelm@18025
   367
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   368
  in fold elim (outer_params prop) th end;
wenzelm@18025
   369
wenzelm@18025
   370
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   371
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   372
fun lift_all goal th =
wenzelm@18025
   373
  let
wenzelm@18025
   374
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   375
    val cert = Thm.cterm_of thy;
wenzelm@19421
   376
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   377
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   378
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   379
    val Ts = map Term.fastype_of ps;
wenzelm@20298
   380
    val inst = fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   381
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   382
  in
wenzelm@18025
   383
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   384
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   385
  end;
wenzelm@18025
   386
wenzelm@19999
   387
(*direct generalization*)
wenzelm@19999
   388
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   389
wenzelm@16949
   390
(*specialization over a list of cterms*)
wenzelm@16949
   391
val forall_elim_list = fold forall_elim;
clasohm@0
   392
wenzelm@16949
   393
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   394
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   395
wenzelm@16949
   396
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   397
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   398
clasohm@0
   399
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   400
fun zero_var_indexes th =
wenzelm@16949
   401
  let
wenzelm@16949
   402
    val thy = Thm.theory_of_thm th;
wenzelm@16949
   403
    val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@20509
   404
    val (instT, inst) = TermSubst.zero_var_indexes_inst (Thm.full_prop_of th);
wenzelm@16949
   405
    val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@16949
   406
    val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@20260
   407
  in Thm.adjust_maxidx_thm ~1 (Thm.instantiate (cinstT, cinst) th) end;
clasohm@0
   408
clasohm@0
   409
paulson@14394
   410
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   411
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   412
wenzelm@16595
   413
(*Discharge all hypotheses.*)
wenzelm@16595
   414
fun implies_intr_hyps th =
wenzelm@16595
   415
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   416
paulson@14394
   417
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   418
  This step can lose information.*)
paulson@14387
   419
fun flexflex_unique th =
berghofe@17713
   420
  if null (tpairs_of th) then th else
wenzelm@19861
   421
    case Seq.chop 2 (flexflex_rule th) of
paulson@14387
   422
      ([th],_) => th
paulson@14387
   423
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   424
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   425
wenzelm@10515
   426
fun close_derivation thm =
wenzelm@10515
   427
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   428
  else thm;
wenzelm@10515
   429
wenzelm@16949
   430
val standard' =
wenzelm@16949
   431
  implies_intr_hyps
wenzelm@16949
   432
  #> forall_intr_frees
wenzelm@19421
   433
  #> `Thm.maxidx_of
wenzelm@16949
   434
  #-> (fn maxidx =>
wenzelm@16949
   435
    forall_elim_vars (maxidx + 1)
wenzelm@20904
   436
    #> Thm.strip_shyps
wenzelm@16949
   437
    #> zero_var_indexes
wenzelm@16949
   438
    #> Thm.varifyT
wenzelm@16949
   439
    #> Thm.compress);
wenzelm@1218
   440
wenzelm@16949
   441
val standard =
wenzelm@16949
   442
  flexflex_unique
wenzelm@16949
   443
  #> standard'
wenzelm@16949
   444
  #> close_derivation;
berghofe@11512
   445
wenzelm@16949
   446
val local_standard =
wenzelm@20904
   447
  flexflex_unique
wenzelm@20904
   448
  #> Thm.strip_shyps
wenzelm@16949
   449
  #> zero_var_indexes
wenzelm@16949
   450
  #> Thm.compress
wenzelm@16949
   451
  #> close_derivation;
wenzelm@12005
   452
clasohm@0
   453
wenzelm@8328
   454
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   455
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   456
  Similar code in type/freeze_thaw*)
paulson@15495
   457
paulson@15495
   458
fun freeze_thaw_robust th =
wenzelm@19878
   459
 let val fth = Thm.freezeT th
wenzelm@16425
   460
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   461
 in
skalberg@15574
   462
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   463
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   464
     | vars =>
paulson@19753
   465
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   466
             val alist = map newName vars
paulson@15495
   467
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   468
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   469
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   470
             val insts = map mk_inst vars
paulson@15495
   471
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   472
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   473
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   474
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   475
 end;
paulson@15495
   476
paulson@15495
   477
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@19999
   478
  The Frees created from Vars have nice names. FIXME: does not check for
paulson@19753
   479
  clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
paulson@4610
   480
fun freeze_thaw th =
wenzelm@19878
   481
 let val fth = Thm.freezeT th
wenzelm@16425
   482
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   483
 in
skalberg@15574
   484
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   485
       [] => (fth, fn x => x)
paulson@7248
   486
     | vars =>
wenzelm@8328
   487
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   488
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   489
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   490
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   491
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   492
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   493
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   494
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   495
             val insts = map mk_inst vars
wenzelm@8328
   496
             fun thaw th' =
wenzelm@8328
   497
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   498
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   499
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   500
 end;
paulson@4610
   501
paulson@7248
   502
(*Rotates a rule's premises to the left by k*)
paulson@7248
   503
val rotate_prems = permute_prems 0;
paulson@4610
   504
oheimb@11163
   505
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   506
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   507
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   508
val rearrange_prems = let
oheimb@11163
   509
  fun rearr new []      thm = thm
wenzelm@11815
   510
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   511
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   512
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   513
  in rearr 0 end;
paulson@4610
   514
wenzelm@252
   515
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   516
fun tha RSN (i,thb) =
wenzelm@19861
   517
  case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
clasohm@0
   518
      ([th],_) => th
clasohm@0
   519
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   520
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   521
clasohm@0
   522
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   523
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   524
clasohm@0
   525
(*For joining lists of rules*)
wenzelm@252
   526
fun thas RLN (i,thbs) =
clasohm@0
   527
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   528
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   529
  in maps resb thbs end;
clasohm@0
   530
clasohm@0
   531
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   532
lcp@11
   533
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   534
  makes proof trees*)
wenzelm@252
   535
fun rls MRS bottom_rl =
lcp@11
   536
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   537
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   538
  in  rs_aux 1 rls  end;
lcp@11
   539
lcp@11
   540
(*As above, but for rule lists*)
wenzelm@252
   541
fun rlss MRL bottom_rls =
lcp@11
   542
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   543
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   544
  in  rs_aux 1 rlss  end;
lcp@11
   545
wenzelm@9288
   546
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   547
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   548
wenzelm@252
   549
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   550
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   551
  ALWAYS deletes premise i *)
wenzelm@252
   552
fun compose(tha,i,thb) =
wenzelm@4270
   553
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   554
wenzelm@6946
   555
fun compose_single (tha,i,thb) =
wenzelm@6946
   556
  (case compose (tha,i,thb) of
wenzelm@6946
   557
    [th] => th
wenzelm@6946
   558
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   559
clasohm@0
   560
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   561
fun tha COMP thb =
clasohm@0
   562
    case compose(tha,1,thb) of
wenzelm@252
   563
        [th] => th
clasohm@0
   564
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   565
wenzelm@13105
   566
wenzelm@4016
   567
(** theorem equality **)
clasohm@0
   568
wenzelm@16425
   569
(*True if the two theorems have the same theory.*)
wenzelm@16425
   570
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
paulson@13650
   571
paulson@13650
   572
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@16720
   573
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
clasohm@0
   574
clasohm@0
   575
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   576
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   577
wenzelm@9829
   578
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@18922
   579
val del_rule = remove eq_thm_prop;
wenzelm@18922
   580
fun add_rule th = cons th o del_rule th;
wenzelm@18922
   581
val merge_rules = Library.merge eq_thm_prop;
wenzelm@9829
   582
wenzelm@19878
   583
(*pattern equivalence*)
wenzelm@19878
   584
fun equiv_thm ths =
wenzelm@19878
   585
  Pattern.equiv (Theory.merge (pairself Thm.theory_of_thm ths)) (pairself Thm.full_prop_of ths);
lcp@1194
   586
lcp@1194
   587
clasohm@0
   588
(*** Meta-Rewriting Rules ***)
clasohm@0
   589
wenzelm@16425
   590
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
paulson@4610
   591
wenzelm@9455
   592
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   593
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   594
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   595
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   596
clasohm@0
   597
val reflexive_thm =
wenzelm@19421
   598
  let val cx = cert (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   599
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   600
clasohm@0
   601
val symmetric_thm =
wenzelm@14854
   602
  let val xy = read_prop "x == y"
wenzelm@16595
   603
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   604
clasohm@0
   605
val transitive_thm =
wenzelm@14854
   606
  let val xy = read_prop "x == y"
wenzelm@14854
   607
      val yz = read_prop "y == z"
clasohm@0
   608
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   609
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   610
nipkow@4679
   611
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   612
berghofe@11512
   613
fun extensional eq =
berghofe@11512
   614
  let val eq' =
wenzelm@20579
   615
    abstract_rule "x" (Thm.dest_arg (fst (dest_equals (cprop_of eq)))) eq
berghofe@11512
   616
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   617
wenzelm@18820
   618
val equals_cong =
wenzelm@18820
   619
  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x == y"));
wenzelm@18820
   620
berghofe@10414
   621
val imp_cong =
berghofe@10414
   622
  let
berghofe@10414
   623
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   624
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   625
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   626
    val A = read_prop "PROP A"
berghofe@10414
   627
  in
wenzelm@12135
   628
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   629
      (implies_intr AB (implies_intr A
berghofe@10414
   630
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   631
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   632
      (implies_intr AC (implies_intr A
berghofe@10414
   633
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   634
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   635
  end;
berghofe@10414
   636
berghofe@10414
   637
val swap_prems_eq =
berghofe@10414
   638
  let
berghofe@10414
   639
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   640
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   641
    val A = read_prop "PROP A"
berghofe@10414
   642
    val B = read_prop "PROP B"
berghofe@10414
   643
  in
wenzelm@12135
   644
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   645
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   646
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   647
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   648
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   649
  end;
lcp@229
   650
wenzelm@18468
   651
val imp_cong_rule = combination o combination (reflexive implies);
clasohm@0
   652
skalberg@15001
   653
local
skalberg@15001
   654
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   655
  val rhs_of = snd o dest_eq
skalberg@15001
   656
in
skalberg@15001
   657
fun beta_eta_conversion t =
skalberg@15001
   658
  let val thm = beta_conversion true t
skalberg@15001
   659
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   660
end;
skalberg@15001
   661
berghofe@15925
   662
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   663
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   664
paulson@20861
   665
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   666
fun eta_contraction_rule th =
paulson@20861
   667
  equal_elim (eta_conversion (cprop_of th)) th;
paulson@20861
   668
wenzelm@18337
   669
val abs_def =
wenzelm@18337
   670
  let
wenzelm@18337
   671
    fun contract_lhs th =
wenzelm@18337
   672
      Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
wenzelm@18777
   673
    fun abstract cx th = Thm.abstract_rule
wenzelm@18777
   674
        (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
wenzelm@18777
   675
      handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
wenzelm@18337
   676
  in
wenzelm@18337
   677
    contract_lhs
wenzelm@18337
   678
    #> `(snd o strip_comb o fst o dest_equals o cprop_of)
wenzelm@18337
   679
    #-> fold_rev abstract
wenzelm@18337
   680
    #> contract_lhs
wenzelm@18337
   681
  end;
wenzelm@18337
   682
wenzelm@18468
   683
(*rewrite B in !!x1 ... xn. B*)
wenzelm@18251
   684
fun forall_conv 0 cv ct = cv ct
wenzelm@18251
   685
  | forall_conv n cv ct =
wenzelm@18468
   686
      (case try Thm.dest_comb ct of
wenzelm@18468
   687
        NONE => cv ct
wenzelm@18468
   688
      | SOME (A, B) =>
wenzelm@18468
   689
          (case (term_of A, term_of B) of
wenzelm@18468
   690
            (Const ("all", _), Abs (x, _, _)) =>
wenzelm@18468
   691
              let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
wenzelm@18468
   692
                Thm.combination (Thm.reflexive A)
wenzelm@18468
   693
                  (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
wenzelm@18468
   694
              end
wenzelm@18468
   695
          | _ => cv ct));
wenzelm@18468
   696
wenzelm@18468
   697
(*rewrite B in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   698
fun concl_conv 0 cv ct = cv ct
wenzelm@18468
   699
  | concl_conv n cv ct =
wenzelm@18468
   700
      (case try dest_implies ct of
wenzelm@18468
   701
        NONE => cv ct
wenzelm@18468
   702
      | SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
skalberg@15001
   703
wenzelm@18468
   704
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   705
fun prems_conv 0 _ = reflexive
wenzelm@18468
   706
  | prems_conv n cv =
wenzelm@18468
   707
      let
wenzelm@18468
   708
        fun conv i ct =
wenzelm@18468
   709
          if i = n + 1 then reflexive ct
wenzelm@18468
   710
          else
wenzelm@18468
   711
            (case try dest_implies ct of
wenzelm@18468
   712
              NONE => reflexive ct
wenzelm@18468
   713
            | SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
wenzelm@18468
   714
  in conv 1 end;
wenzelm@18468
   715
wenzelm@18468
   716
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
skalberg@15001
   717
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   718
wenzelm@18468
   719
wenzelm@15669
   720
(*** Some useful meta-theorems ***)
clasohm@0
   721
clasohm@0
   722
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   723
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   724
val _ = store_thm "_" asm_rl;
clasohm@0
   725
clasohm@0
   726
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   727
val cut_rl =
wenzelm@12135
   728
  store_standard_thm_open "cut_rl"
wenzelm@9455
   729
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   730
wenzelm@252
   731
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   732
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   733
val revcut_rl =
paulson@4610
   734
  let val V = read_prop "PROP V"
paulson@4610
   735
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   736
  in
wenzelm@12135
   737
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   738
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   739
  end;
clasohm@0
   740
lcp@668
   741
(*for deleting an unwanted assumption*)
lcp@668
   742
val thin_rl =
paulson@4610
   743
  let val V = read_prop "PROP V"
paulson@4610
   744
      and W = read_prop "PROP W";
wenzelm@12135
   745
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   746
clasohm@0
   747
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   748
val triv_forall_equality =
paulson@4610
   749
  let val V  = read_prop "PROP V"
paulson@4610
   750
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@19421
   751
      and x  = cert (Free ("x", Term.aT []));
wenzelm@4016
   752
  in
wenzelm@12135
   753
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   754
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   755
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   756
  end;
clasohm@0
   757
wenzelm@19051
   758
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   759
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   760
*)
wenzelm@19051
   761
val distinct_prems_rl =
wenzelm@19051
   762
  let
wenzelm@19051
   763
    val AAB = read_prop "PROP Phi ==> PROP Phi ==> PROP Psi"
wenzelm@19051
   764
    val A = read_prop "PROP Phi";
wenzelm@19051
   765
  in
wenzelm@19051
   766
    store_standard_thm_open "distinct_prems_rl"
wenzelm@19051
   767
      (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
wenzelm@19051
   768
  end;
wenzelm@19051
   769
nipkow@1756
   770
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   771
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   772
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   773
*)
nipkow@1756
   774
val swap_prems_rl =
paulson@4610
   775
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   776
      val major = assume cmajor;
paulson@4610
   777
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   778
      val minor1 = assume cminor1;
paulson@4610
   779
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   780
      val minor2 = assume cminor2;
wenzelm@12135
   781
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   782
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   783
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   784
  end;
nipkow@1756
   785
nipkow@3653
   786
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   787
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   788
   Introduction rule for == as a meta-theorem.
nipkow@3653
   789
*)
nipkow@3653
   790
val equal_intr_rule =
paulson@4610
   791
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   792
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   793
  in
wenzelm@12135
   794
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   795
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   796
  end;
nipkow@3653
   797
wenzelm@19421
   798
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   799
val equal_elim_rule1 =
wenzelm@13368
   800
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   801
      and P = read_prop "PROP phi"
wenzelm@13368
   802
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   803
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   804
  end;
wenzelm@4285
   805
wenzelm@19421
   806
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   807
val equal_elim_rule2 =
wenzelm@19421
   808
  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   809
wenzelm@12297
   810
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   811
val remdups_rl =
wenzelm@12297
   812
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   813
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   814
wenzelm@12297
   815
wenzelm@9554
   816
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   817
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   818
wenzelm@9554
   819
val norm_hhf_eq =
wenzelm@9554
   820
  let
wenzelm@14854
   821
    val aT = TFree ("'a", []);
wenzelm@9554
   822
    val all = Term.all aT;
wenzelm@9554
   823
    val x = Free ("x", aT);
wenzelm@9554
   824
    val phi = Free ("phi", propT);
wenzelm@9554
   825
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   826
wenzelm@9554
   827
    val cx = cert x;
wenzelm@9554
   828
    val cphi = cert phi;
wenzelm@9554
   829
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   830
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   831
  in
wenzelm@9554
   832
    Thm.equal_intr
wenzelm@9554
   833
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   834
        |> Thm.forall_elim cx
wenzelm@9554
   835
        |> Thm.implies_intr cphi
wenzelm@9554
   836
        |> Thm.forall_intr cx
wenzelm@9554
   837
        |> Thm.implies_intr lhs)
wenzelm@9554
   838
      (Thm.implies_elim
wenzelm@9554
   839
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   840
        |> Thm.forall_intr cx
wenzelm@9554
   841
        |> Thm.implies_intr cphi
wenzelm@9554
   842
        |> Thm.implies_intr rhs)
wenzelm@12135
   843
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   844
  end;
wenzelm@9554
   845
wenzelm@18179
   846
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   847
wenzelm@12800
   848
fun is_norm_hhf tm =
wenzelm@12800
   849
  let
wenzelm@12800
   850
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   851
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   852
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   853
      | is_norm _ = true;
wenzelm@18929
   854
  in is_norm (Envir.beta_eta_contract tm) end;
wenzelm@12800
   855
wenzelm@16425
   856
fun norm_hhf thy t =
wenzelm@12800
   857
  if is_norm_hhf t then t
wenzelm@18179
   858
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   859
wenzelm@20298
   860
fun norm_hhf_cterm ct =
wenzelm@20298
   861
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   862
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   863
wenzelm@12800
   864
wenzelm@9554
   865
wenzelm@16425
   866
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   867
paulson@8129
   868
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   869
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   870
wenzelm@16425
   871
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   872
    let val ts = types_sorts th;
wenzelm@15669
   873
        val used = add_used th [];
wenzelm@16425
   874
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   875
wenzelm@16425
   876
fun read_instantiate_sg thy sinsts th =
wenzelm@20298
   877
  read_instantiate_sg' thy (map (apfst Syntax.read_indexname) sinsts) th;
paulson@8129
   878
paulson@8129
   879
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   880
fun read_instantiate sinsts th =
wenzelm@16425
   881
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   882
berghofe@15797
   883
fun read_instantiate' sinsts th =
wenzelm@16425
   884
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   885
paulson@8129
   886
paulson@8129
   887
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   888
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   889
local
wenzelm@16425
   890
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   891
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   892
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   893
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   894
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   895
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   896
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   897
    in  (thy', tye', maxi')  end;
paulson@8129
   898
in
paulson@8129
   899
fun cterm_instantiate ctpairs0 th =
wenzelm@16425
   900
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   901
      fun instT(ct,cu) =
wenzelm@16425
   902
        let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
paulson@14340
   903
        in (inst ct, inst cu) end
wenzelm@16425
   904
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
berghofe@8406
   905
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   906
  handle TERM _ =>
wenzelm@16425
   907
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   908
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   909
end;
paulson@8129
   910
paulson@8129
   911
wenzelm@19878
   912
(* global schematic variables *)
wenzelm@19878
   913
wenzelm@19878
   914
fun unvarify th =
wenzelm@19878
   915
  let
wenzelm@19878
   916
    val thy = Thm.theory_of_thm th;
wenzelm@19878
   917
    val cert = Thm.cterm_of thy;
wenzelm@19878
   918
    val certT = Thm.ctyp_of thy;
wenzelm@19878
   919
wenzelm@19878
   920
    val prop = Thm.full_prop_of th;
wenzelm@19878
   921
    val _ = map Logic.unvarify (prop :: Thm.hyps_of th)
wenzelm@19878
   922
      handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@19878
   923
wenzelm@19878
   924
    val instT0 = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
wenzelm@19878
   925
    val instT = map (fn (v, T) => (certT (TVar v), certT T)) instT0;
wenzelm@19878
   926
    val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
wenzelm@20509
   927
      let val T' = TermSubst.instantiateT instT0 T
wenzelm@19878
   928
      in (cert (Var ((a, i), T')), cert (Free ((a, T')))) end);
wenzelm@19878
   929
  in Thm.instantiate (instT, inst) th end;
wenzelm@19878
   930
wenzelm@19878
   931
wenzelm@19775
   932
(** protected propositions and embedded terms **)
wenzelm@4789
   933
wenzelm@4789
   934
local
wenzelm@18025
   935
  val A = cert (Free ("A", propT));
wenzelm@19878
   936
  val prop_def = unvarify ProtoPure.prop_def;
wenzelm@19878
   937
  val term_def = unvarify ProtoPure.term_def;
wenzelm@4789
   938
in
wenzelm@18025
   939
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@21437
   940
  val protectI = store_thm "protectI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   941
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@21437
   942
  val protectD = store_thm "protectD" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   943
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   944
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@19775
   945
wenzelm@21437
   946
  val termI = store_thm "termI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@19775
   947
      (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
wenzelm@4789
   948
end;
wenzelm@4789
   949
wenzelm@18025
   950
fun implies_intr_protected asms th =
wenzelm@18118
   951
  let val asms' = map protect asms in
wenzelm@18118
   952
    implies_elim_list
wenzelm@18118
   953
      (implies_intr_list asms th)
wenzelm@18118
   954
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
   955
    |> implies_intr_list asms'
wenzelm@18118
   956
  end;
wenzelm@11815
   957
wenzelm@19775
   958
fun mk_term ct =
wenzelm@19775
   959
  let
wenzelm@19775
   960
    val {thy, T, ...} = Thm.rep_cterm ct;
wenzelm@19775
   961
    val cert = Thm.cterm_of thy;
wenzelm@19775
   962
    val certT = Thm.ctyp_of thy;
wenzelm@19775
   963
    val a = certT (TVar (("'a", 0), []));
wenzelm@19775
   964
    val x = cert (Var (("x", 0), T));
wenzelm@19775
   965
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@19775
   966
wenzelm@19775
   967
fun dest_term th =
wenzelm@21566
   968
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@19775
   969
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@20579
   970
      Thm.dest_arg cprop
wenzelm@19775
   971
    else raise THM ("dest_term", 0, [th])
wenzelm@19775
   972
  end;
wenzelm@19775
   973
wenzelm@21519
   974
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@21519
   975
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@20881
   976
wenzelm@19775
   977
wenzelm@4789
   978
wenzelm@5688
   979
(** variations on instantiate **)
wenzelm@4285
   980
paulson@8550
   981
(*shorthand for instantiating just one variable in the current theory*)
wenzelm@16425
   982
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
paulson@8550
   983
paulson@8550
   984
wenzelm@4285
   985
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   986
wenzelm@4285
   987
fun instantiate' cTs cts thm =
wenzelm@4285
   988
  let
wenzelm@4285
   989
    fun err msg =
wenzelm@4285
   990
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   991
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   992
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   993
wenzelm@4285
   994
    fun inst_of (v, ct) =
wenzelm@16425
   995
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   996
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   997
berghofe@15797
   998
    fun tyinst_of (v, cT) =
wenzelm@16425
   999
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
  1000
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
  1001
wenzelm@20298
  1002
    fun zip_vars xs ys =
wenzelm@20298
  1003
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
  1004
        err "more instantiations than variables in thm";
wenzelm@4285
  1005
wenzelm@4285
  1006
    (*instantiate types first!*)
wenzelm@4285
  1007
    val thm' =
wenzelm@4285
  1008
      if forall is_none cTs then thm
wenzelm@20298
  1009
      else Thm.instantiate
wenzelm@20298
  1010
        (map tyinst_of (zip_vars (rev (fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
  1011
    val thm'' =
wenzelm@4285
  1012
      if forall is_none cts then thm'
wenzelm@20298
  1013
      else Thm.instantiate
wenzelm@20298
  1014
        ([], map inst_of (zip_vars (rev (fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
  1015
    in thm'' end;
wenzelm@4285
  1016
wenzelm@4285
  1017
berghofe@14081
  1018
berghofe@14081
  1019
(** renaming of bound variables **)
berghofe@14081
  1020
berghofe@14081
  1021
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
  1022
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
  1023
berghofe@14081
  1024
fun rename_bvars [] thm = thm
berghofe@14081
  1025
  | rename_bvars vs thm =
berghofe@14081
  1026
    let
wenzelm@16425
  1027
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
  1028
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
  1029
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1030
        | ren t = t;
wenzelm@16425
  1031
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1032
berghofe@14081
  1033
berghofe@14081
  1034
(* renaming in left-to-right order *)
berghofe@14081
  1035
berghofe@14081
  1036
fun rename_bvars' xs thm =
berghofe@14081
  1037
  let
wenzelm@16425
  1038
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1039
    fun rename [] t = ([], t)
berghofe@14081
  1040
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1041
          let val (xs', t') = rename xs t
wenzelm@18929
  1042
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
  1043
      | rename xs (t $ u) =
berghofe@14081
  1044
          let
berghofe@14081
  1045
            val (xs', t') = rename xs t;
berghofe@14081
  1046
            val (xs'', u') = rename xs' u
berghofe@14081
  1047
          in (xs'', t' $ u') end
berghofe@14081
  1048
      | rename xs t = (xs, t);
berghofe@14081
  1049
  in case rename xs prop of
wenzelm@16425
  1050
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1051
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1052
  end;
berghofe@14081
  1053
berghofe@14081
  1054
wenzelm@19906
  1055
(* var indexes *)
wenzelm@6435
  1056
wenzelm@19421
  1057
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@18025
  1058
wenzelm@19124
  1059
fun incr_indexes2 th1 th2 =
wenzelm@19421
  1060
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@6435
  1061
wenzelm@21578
  1062
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21578
  1063
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21578
  1064
wenzelm@6435
  1065
wenzelm@11975
  1066
wenzelm@18225
  1067
(** multi_resolve **)
wenzelm@18225
  1068
wenzelm@18225
  1069
local
wenzelm@18225
  1070
wenzelm@18225
  1071
fun res th i rule =
wenzelm@18225
  1072
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
  1073
wenzelm@18225
  1074
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
  1075
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
  1076
wenzelm@18225
  1077
in
wenzelm@18225
  1078
wenzelm@18225
  1079
val multi_resolve = multi_res 1;
wenzelm@18225
  1080
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
  1081
wenzelm@18225
  1082
end;
wenzelm@18225
  1083
wenzelm@11975
  1084
end;
wenzelm@5903
  1085
wenzelm@5903
  1086
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1087
open BasicDrule;