wenzelm@252
|
1 |
(* Title: Pure/drule.ML
|
wenzelm@252
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
3 |
|
wenzelm@3766
|
4 |
Derived rules and other operations on theorems.
|
clasohm@0
|
5 |
*)
|
clasohm@0
|
6 |
|
wenzelm@46470
|
7 |
infix 0 RS RSN RL RLN MRS OF COMP INCR_COMP COMP_INCR;
|
clasohm@0
|
8 |
|
wenzelm@5903
|
9 |
signature BASIC_DRULE =
|
wenzelm@3766
|
10 |
sig
|
wenzelm@18179
|
11 |
val mk_implies: cterm * cterm -> cterm
|
wenzelm@18179
|
12 |
val list_implies: cterm list * cterm -> cterm
|
wenzelm@18179
|
13 |
val strip_imp_prems: cterm -> cterm list
|
wenzelm@18179
|
14 |
val strip_imp_concl: cterm -> cterm
|
wenzelm@18179
|
15 |
val cprems_of: thm -> cterm list
|
wenzelm@18179
|
16 |
val cterm_fun: (term -> term) -> (cterm -> cterm)
|
wenzelm@18179
|
17 |
val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
|
wenzelm@18179
|
18 |
val forall_intr_list: cterm list -> thm -> thm
|
wenzelm@18179
|
19 |
val forall_intr_vars: thm -> thm
|
wenzelm@18179
|
20 |
val forall_elim_list: cterm list -> thm -> thm
|
wenzelm@18179
|
21 |
val gen_all: thm -> thm
|
wenzelm@18179
|
22 |
val lift_all: cterm -> thm -> thm
|
wenzelm@33832
|
23 |
val legacy_freeze_thaw: thm -> thm * (thm -> thm)
|
wenzelm@33832
|
24 |
val legacy_freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
|
wenzelm@18179
|
25 |
val implies_elim_list: thm -> thm list -> thm
|
wenzelm@18179
|
26 |
val implies_intr_list: cterm list -> thm -> thm
|
wenzelm@43333
|
27 |
val instantiate_normalize: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
|
wenzelm@21603
|
28 |
val zero_var_indexes_list: thm list -> thm list
|
wenzelm@18179
|
29 |
val zero_var_indexes: thm -> thm
|
wenzelm@18179
|
30 |
val implies_intr_hyps: thm -> thm
|
wenzelm@18179
|
31 |
val rotate_prems: int -> thm -> thm
|
wenzelm@18179
|
32 |
val rearrange_prems: int list -> thm -> thm
|
wenzelm@18179
|
33 |
val RSN: thm * (int * thm) -> thm
|
wenzelm@18179
|
34 |
val RS: thm * thm -> thm
|
wenzelm@18179
|
35 |
val RLN: thm list * (int * thm list) -> thm list
|
wenzelm@18179
|
36 |
val RL: thm list * thm list -> thm list
|
wenzelm@18179
|
37 |
val MRS: thm list * thm -> thm
|
wenzelm@18179
|
38 |
val OF: thm * thm list -> thm
|
wenzelm@18179
|
39 |
val compose: thm * int * thm -> thm list
|
wenzelm@18179
|
40 |
val COMP: thm * thm -> thm
|
wenzelm@21578
|
41 |
val INCR_COMP: thm * thm -> thm
|
wenzelm@21578
|
42 |
val COMP_INCR: thm * thm -> thm
|
wenzelm@46186
|
43 |
val cterm_instantiate: (cterm * cterm) list -> thm -> thm
|
wenzelm@18179
|
44 |
val size_of_thm: thm -> int
|
wenzelm@18179
|
45 |
val reflexive_thm: thm
|
wenzelm@18179
|
46 |
val symmetric_thm: thm
|
wenzelm@18179
|
47 |
val transitive_thm: thm
|
wenzelm@18179
|
48 |
val symmetric_fun: thm -> thm
|
wenzelm@18179
|
49 |
val extensional: thm -> thm
|
wenzelm@18179
|
50 |
val asm_rl: thm
|
wenzelm@18179
|
51 |
val cut_rl: thm
|
wenzelm@18179
|
52 |
val revcut_rl: thm
|
wenzelm@18179
|
53 |
val thin_rl: thm
|
wenzelm@18179
|
54 |
val instantiate': ctyp option list -> cterm option list -> thm -> thm
|
wenzelm@5903
|
55 |
end;
|
wenzelm@5903
|
56 |
|
wenzelm@5903
|
57 |
signature DRULE =
|
wenzelm@5903
|
58 |
sig
|
wenzelm@5903
|
59 |
include BASIC_DRULE
|
wenzelm@19999
|
60 |
val generalize: string list * string list -> thm -> thm
|
paulson@15949
|
61 |
val list_comb: cterm * cterm list -> cterm
|
berghofe@12908
|
62 |
val strip_comb: cterm -> cterm * cterm list
|
berghofe@15262
|
63 |
val strip_type: ctyp -> ctyp list * ctyp
|
paulson@15949
|
64 |
val beta_conv: cterm -> cterm -> cterm
|
wenzelm@27156
|
65 |
val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
|
berghofe@17713
|
66 |
val flexflex_unique: thm -> thm
|
wenzelm@35021
|
67 |
val export_without_context: thm -> thm
|
wenzelm@35021
|
68 |
val export_without_context_open: thm -> thm
|
wenzelm@33277
|
69 |
val store_thm: binding -> thm -> thm
|
wenzelm@33277
|
70 |
val store_standard_thm: binding -> thm -> thm
|
wenzelm@33277
|
71 |
val store_thm_open: binding -> thm -> thm
|
wenzelm@33277
|
72 |
val store_standard_thm_open: binding -> thm -> thm
|
wenzelm@11975
|
73 |
val compose_single: thm * int * thm -> thm
|
wenzelm@46186
|
74 |
val equals_cong: thm
|
wenzelm@46186
|
75 |
val imp_cong: thm
|
wenzelm@46186
|
76 |
val swap_prems_eq: thm
|
wenzelm@18468
|
77 |
val imp_cong_rule: thm -> thm -> thm
|
wenzelm@22939
|
78 |
val arg_cong_rule: cterm -> thm -> thm
|
wenzelm@23568
|
79 |
val binop_cong_rule: cterm -> thm -> thm -> thm
|
wenzelm@22939
|
80 |
val fun_cong_rule: thm -> cterm -> thm
|
skalberg@15001
|
81 |
val beta_eta_conversion: cterm -> thm
|
berghofe@15925
|
82 |
val eta_long_conversion: cterm -> thm
|
paulson@20861
|
83 |
val eta_contraction_rule: thm -> thm
|
wenzelm@11975
|
84 |
val norm_hhf_eq: thm
|
wenzelm@28618
|
85 |
val norm_hhf_eqs: thm list
|
wenzelm@12800
|
86 |
val is_norm_hhf: term -> bool
|
wenzelm@16425
|
87 |
val norm_hhf: theory -> term -> term
|
wenzelm@20298
|
88 |
val norm_hhf_cterm: cterm -> cterm
|
wenzelm@18025
|
89 |
val protect: cterm -> cterm
|
wenzelm@18025
|
90 |
val protectI: thm
|
wenzelm@18025
|
91 |
val protectD: thm
|
wenzelm@18179
|
92 |
val protect_cong: thm
|
wenzelm@18025
|
93 |
val implies_intr_protected: cterm list -> thm -> thm
|
wenzelm@19775
|
94 |
val termI: thm
|
wenzelm@19775
|
95 |
val mk_term: cterm -> thm
|
wenzelm@19775
|
96 |
val dest_term: thm -> cterm
|
wenzelm@21519
|
97 |
val cterm_rule: (thm -> thm) -> cterm -> cterm
|
wenzelm@20881
|
98 |
val term_rule: theory -> (thm -> thm) -> term -> term
|
wenzelm@24005
|
99 |
val dummy_thm: thm
|
wenzelm@28618
|
100 |
val sort_constraintI: thm
|
wenzelm@28618
|
101 |
val sort_constraint_eq: thm
|
wenzelm@23423
|
102 |
val with_subgoal: int -> (thm -> thm) -> thm -> thm
|
wenzelm@29344
|
103 |
val comp_no_flatten: thm * int -> int -> thm -> thm
|
berghofe@14081
|
104 |
val rename_bvars: (string * string) list -> thm -> thm
|
berghofe@14081
|
105 |
val rename_bvars': string option list -> thm -> thm
|
wenzelm@19124
|
106 |
val incr_indexes: thm -> thm -> thm
|
wenzelm@19124
|
107 |
val incr_indexes2: thm -> thm -> thm -> thm
|
wenzelm@46186
|
108 |
val triv_forall_equality: thm
|
wenzelm@46186
|
109 |
val distinct_prems_rl: thm
|
wenzelm@46186
|
110 |
val swap_prems_rl: thm
|
wenzelm@46186
|
111 |
val equal_intr_rule: thm
|
wenzelm@46186
|
112 |
val equal_elim_rule1: thm
|
wenzelm@46186
|
113 |
val equal_elim_rule2: thm
|
wenzelm@12297
|
114 |
val remdups_rl: thm
|
wenzelm@18225
|
115 |
val multi_resolve: thm list -> thm -> thm Seq.seq
|
wenzelm@18225
|
116 |
val multi_resolves: thm list -> thm list -> thm Seq.seq
|
berghofe@13325
|
117 |
val abs_def: thm -> thm
|
wenzelm@3766
|
118 |
end;
|
clasohm@0
|
119 |
|
wenzelm@5903
|
120 |
structure Drule: DRULE =
|
clasohm@0
|
121 |
struct
|
clasohm@0
|
122 |
|
wenzelm@3991
|
123 |
|
wenzelm@16682
|
124 |
(** some cterm->cterm operations: faster than calling cterm_of! **)
|
lcp@708
|
125 |
|
lcp@708
|
126 |
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
|
paulson@2004
|
127 |
fun strip_imp_prems ct =
|
wenzelm@22906
|
128 |
let val (cA, cB) = Thm.dest_implies ct
|
wenzelm@20579
|
129 |
in cA :: strip_imp_prems cB end
|
wenzelm@20579
|
130 |
handle TERM _ => [];
|
lcp@708
|
131 |
|
paulson@2004
|
132 |
(* A1==>...An==>B goes to B, where B is not an implication *)
|
paulson@2004
|
133 |
fun strip_imp_concl ct =
|
wenzelm@20579
|
134 |
(case Thm.term_of ct of
|
wenzelm@20579
|
135 |
Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
|
wenzelm@20579
|
136 |
| _ => ct);
|
paulson@2004
|
137 |
|
lcp@708
|
138 |
(*The premises of a theorem, as a cterm list*)
|
berghofe@13659
|
139 |
val cprems_of = strip_imp_prems o cprop_of;
|
lcp@708
|
140 |
|
wenzelm@26627
|
141 |
fun cterm_fun f ct = Thm.cterm_of (Thm.theory_of_cterm ct) (f (Thm.term_of ct));
|
wenzelm@26627
|
142 |
fun ctyp_fun f cT = Thm.ctyp_of (Thm.theory_of_ctyp cT) (f (Thm.typ_of cT));
|
berghofe@15797
|
143 |
|
wenzelm@26487
|
144 |
fun certify t = Thm.cterm_of (Context.the_theory (Context.the_thread_data ())) t;
|
paulson@9547
|
145 |
|
wenzelm@27333
|
146 |
val implies = certify Logic.implies;
|
wenzelm@19183
|
147 |
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
|
paulson@9547
|
148 |
|
paulson@9547
|
149 |
(*cterm version of list_implies: [A1,...,An], B goes to [|A1;==>;An|]==>B *)
|
paulson@9547
|
150 |
fun list_implies([], B) = B
|
paulson@9547
|
151 |
| list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
|
paulson@9547
|
152 |
|
paulson@15949
|
153 |
(*cterm version of list_comb: maps (f, [t1,...,tn]) to f(t1,...,tn) *)
|
paulson@15949
|
154 |
fun list_comb (f, []) = f
|
paulson@15949
|
155 |
| list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
|
paulson@15949
|
156 |
|
berghofe@12908
|
157 |
(*cterm version of strip_comb: maps f(t1,...,tn) to (f, [t1,...,tn]) *)
|
wenzelm@18179
|
158 |
fun strip_comb ct =
|
berghofe@12908
|
159 |
let
|
berghofe@12908
|
160 |
fun stripc (p as (ct, cts)) =
|
berghofe@12908
|
161 |
let val (ct1, ct2) = Thm.dest_comb ct
|
berghofe@12908
|
162 |
in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
|
berghofe@12908
|
163 |
in stripc (ct, []) end;
|
berghofe@12908
|
164 |
|
berghofe@15262
|
165 |
(* cterm version of strip_type: maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T) *)
|
berghofe@15262
|
166 |
fun strip_type cT = (case Thm.typ_of cT of
|
berghofe@15262
|
167 |
Type ("fun", _) =>
|
berghofe@15262
|
168 |
let
|
berghofe@15262
|
169 |
val [cT1, cT2] = Thm.dest_ctyp cT;
|
berghofe@15262
|
170 |
val (cTs, cT') = strip_type cT2
|
berghofe@15262
|
171 |
in (cT1 :: cTs, cT') end
|
berghofe@15262
|
172 |
| _ => ([], cT));
|
berghofe@15262
|
173 |
|
paulson@15949
|
174 |
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
|
paulson@15949
|
175 |
of the meta-equality returned by the beta_conversion rule.*)
|
wenzelm@18179
|
176 |
fun beta_conv x y =
|
wenzelm@20579
|
177 |
Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
|
paulson@15949
|
178 |
|
wenzelm@15875
|
179 |
|
lcp@708
|
180 |
|
wenzelm@252
|
181 |
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
|
clasohm@0
|
182 |
Used for establishing default types (of variables) and sorts (of
|
clasohm@0
|
183 |
type variables) when reading another term.
|
clasohm@0
|
184 |
Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
|
clasohm@0
|
185 |
***)
|
clasohm@0
|
186 |
|
clasohm@0
|
187 |
fun types_sorts thm =
|
wenzelm@20329
|
188 |
let
|
wenzelm@22695
|
189 |
val vars = Thm.fold_terms Term.add_vars thm [];
|
wenzelm@22695
|
190 |
val frees = Thm.fold_terms Term.add_frees thm [];
|
wenzelm@22695
|
191 |
val tvars = Thm.fold_terms Term.add_tvars thm [];
|
wenzelm@22695
|
192 |
val tfrees = Thm.fold_terms Term.add_tfrees thm [];
|
wenzelm@20329
|
193 |
fun types (a, i) =
|
wenzelm@20329
|
194 |
if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
|
wenzelm@20329
|
195 |
fun sorts (a, i) =
|
wenzelm@20329
|
196 |
if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
|
wenzelm@20329
|
197 |
in (types, sorts) end;
|
clasohm@0
|
198 |
|
wenzelm@15669
|
199 |
|
wenzelm@7636
|
200 |
|
wenzelm@9455
|
201 |
|
clasohm@0
|
202 |
(** Standardization of rules **)
|
clasohm@0
|
203 |
|
wenzelm@19730
|
204 |
(*Generalization over a list of variables*)
|
wenzelm@36944
|
205 |
val forall_intr_list = fold_rev Thm.forall_intr;
|
clasohm@0
|
206 |
|
wenzelm@18535
|
207 |
(*Generalization over Vars -- canonical order*)
|
wenzelm@18535
|
208 |
fun forall_intr_vars th =
|
wenzelm@36944
|
209 |
fold Thm.forall_intr
|
wenzelm@22695
|
210 |
(map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
|
wenzelm@18535
|
211 |
|
wenzelm@18025
|
212 |
fun outer_params t =
|
wenzelm@20077
|
213 |
let val vs = Term.strip_all_vars t
|
wenzelm@20077
|
214 |
in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
|
wenzelm@18025
|
215 |
|
wenzelm@18025
|
216 |
(*generalize outermost parameters*)
|
wenzelm@18025
|
217 |
fun gen_all th =
|
wenzelm@12719
|
218 |
let
|
wenzelm@26627
|
219 |
val thy = Thm.theory_of_thm th;
|
wenzelm@26627
|
220 |
val {prop, maxidx, ...} = Thm.rep_thm th;
|
wenzelm@18025
|
221 |
val cert = Thm.cterm_of thy;
|
wenzelm@18025
|
222 |
fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
|
wenzelm@18025
|
223 |
in fold elim (outer_params prop) th end;
|
wenzelm@18025
|
224 |
|
wenzelm@18025
|
225 |
(*lift vars wrt. outermost goal parameters
|
wenzelm@18118
|
226 |
-- reverses the effect of gen_all modulo higher-order unification*)
|
wenzelm@18025
|
227 |
fun lift_all goal th =
|
wenzelm@18025
|
228 |
let
|
wenzelm@18025
|
229 |
val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
|
wenzelm@18025
|
230 |
val cert = Thm.cterm_of thy;
|
wenzelm@19421
|
231 |
val maxidx = Thm.maxidx_of th;
|
wenzelm@18025
|
232 |
val ps = outer_params (Thm.term_of goal)
|
wenzelm@18025
|
233 |
|> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
|
wenzelm@18025
|
234 |
val Ts = map Term.fastype_of ps;
|
wenzelm@22695
|
235 |
val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
|
wenzelm@18025
|
236 |
(cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
|
wenzelm@18025
|
237 |
in
|
wenzelm@18025
|
238 |
th |> Thm.instantiate ([], inst)
|
wenzelm@18025
|
239 |
|> fold_rev (Thm.forall_intr o cert) ps
|
wenzelm@18025
|
240 |
end;
|
wenzelm@18025
|
241 |
|
wenzelm@19999
|
242 |
(*direct generalization*)
|
wenzelm@19999
|
243 |
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
|
wenzelm@9554
|
244 |
|
wenzelm@16949
|
245 |
(*specialization over a list of cterms*)
|
wenzelm@36944
|
246 |
val forall_elim_list = fold Thm.forall_elim;
|
clasohm@0
|
247 |
|
wenzelm@16949
|
248 |
(*maps A1,...,An |- B to [| A1;...;An |] ==> B*)
|
wenzelm@36944
|
249 |
val implies_intr_list = fold_rev Thm.implies_intr;
|
clasohm@0
|
250 |
|
wenzelm@16949
|
251 |
(*maps [| A1;...;An |] ==> B and [A1,...,An] to B*)
|
wenzelm@24978
|
252 |
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
|
clasohm@0
|
253 |
|
clasohm@0
|
254 |
(*Reset Var indexes to zero, renaming to preserve distinctness*)
|
wenzelm@21603
|
255 |
fun zero_var_indexes_list [] = []
|
wenzelm@21603
|
256 |
| zero_var_indexes_list ths =
|
wenzelm@21603
|
257 |
let
|
wenzelm@21603
|
258 |
val thy = Theory.merge_list (map Thm.theory_of_thm ths);
|
wenzelm@21603
|
259 |
val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
|
wenzelm@31977
|
260 |
val (instT, inst) = Term_Subst.zero_var_indexes_inst (map Thm.full_prop_of ths);
|
wenzelm@21603
|
261 |
val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
|
wenzelm@21603
|
262 |
val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
|
wenzelm@21603
|
263 |
in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
|
wenzelm@21603
|
264 |
|
wenzelm@21603
|
265 |
val zero_var_indexes = singleton zero_var_indexes_list;
|
clasohm@0
|
266 |
|
clasohm@0
|
267 |
|
paulson@14394
|
268 |
(** Standard form of object-rule: no hypotheses, flexflex constraints,
|
paulson@14394
|
269 |
Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
|
wenzelm@10515
|
270 |
|
wenzelm@16595
|
271 |
(*Discharge all hypotheses.*)
|
wenzelm@16595
|
272 |
fun implies_intr_hyps th =
|
wenzelm@16595
|
273 |
fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
|
wenzelm@16595
|
274 |
|
paulson@14394
|
275 |
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
|
paulson@14394
|
276 |
This step can lose information.*)
|
paulson@14387
|
277 |
fun flexflex_unique th =
|
wenzelm@38709
|
278 |
if null (Thm.tpairs_of th) then th else
|
wenzelm@36944
|
279 |
case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule th)) of
|
paulson@23439
|
280 |
[th] => th
|
paulson@23439
|
281 |
| [] => raise THM("flexflex_unique: impossible constraints", 0, [th])
|
paulson@23439
|
282 |
| _ => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
|
paulson@14387
|
283 |
|
wenzelm@21603
|
284 |
|
wenzelm@35021
|
285 |
(* old-style export without context *)
|
wenzelm@21603
|
286 |
|
wenzelm@35021
|
287 |
val export_without_context_open =
|
wenzelm@16949
|
288 |
implies_intr_hyps
|
wenzelm@35985
|
289 |
#> Thm.forall_intr_frees
|
wenzelm@19421
|
290 |
#> `Thm.maxidx_of
|
wenzelm@16949
|
291 |
#-> (fn maxidx =>
|
wenzelm@26653
|
292 |
Thm.forall_elim_vars (maxidx + 1)
|
wenzelm@20904
|
293 |
#> Thm.strip_shyps
|
wenzelm@16949
|
294 |
#> zero_var_indexes
|
wenzelm@35845
|
295 |
#> Thm.varifyT_global);
|
wenzelm@1218
|
296 |
|
wenzelm@35021
|
297 |
val export_without_context =
|
wenzelm@21600
|
298 |
flexflex_unique
|
wenzelm@35021
|
299 |
#> export_without_context_open
|
wenzelm@26627
|
300 |
#> Thm.close_derivation;
|
berghofe@11512
|
301 |
|
clasohm@0
|
302 |
|
wenzelm@8328
|
303 |
(*Convert all Vars in a theorem to Frees. Also return a function for
|
wenzelm@44117
|
304 |
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.*)
|
paulson@15495
|
305 |
|
wenzelm@33832
|
306 |
fun legacy_freeze_thaw_robust th =
|
wenzelm@36615
|
307 |
let val fth = Thm.legacy_freezeT th
|
wenzelm@26627
|
308 |
val thy = Thm.theory_of_thm fth
|
paulson@15495
|
309 |
in
|
wenzelm@44117
|
310 |
case Thm.fold_terms Term.add_vars fth [] of
|
paulson@15495
|
311 |
[] => (fth, fn i => fn x => x) (*No vars: nothing to do!*)
|
paulson@15495
|
312 |
| vars =>
|
wenzelm@44117
|
313 |
let fun newName (ix,_) = (ix, legacy_gensym (string_of_indexname ix))
|
paulson@19753
|
314 |
val alist = map newName vars
|
wenzelm@44117
|
315 |
fun mk_inst (v,T) =
|
wenzelm@16425
|
316 |
(cterm_of thy (Var(v,T)),
|
haftmann@17325
|
317 |
cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
|
paulson@15495
|
318 |
val insts = map mk_inst vars
|
paulson@15495
|
319 |
fun thaw i th' = (*i is non-negative increment for Var indexes*)
|
paulson@15495
|
320 |
th' |> forall_intr_list (map #2 insts)
|
wenzelm@22906
|
321 |
|> forall_elim_list (map (Thm.incr_indexes_cterm i o #1) insts)
|
paulson@15495
|
322 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@15495
|
323 |
end;
|
paulson@15495
|
324 |
|
paulson@15495
|
325 |
(*Basic version of the function above. No option to rename Vars apart in thaw.
|
wenzelm@33832
|
326 |
The Frees created from Vars have nice names.*)
|
wenzelm@33832
|
327 |
fun legacy_freeze_thaw th =
|
wenzelm@36615
|
328 |
let val fth = Thm.legacy_freezeT th
|
wenzelm@26627
|
329 |
val thy = Thm.theory_of_thm fth
|
paulson@7248
|
330 |
in
|
wenzelm@44117
|
331 |
case Thm.fold_terms Term.add_vars fth [] of
|
paulson@7248
|
332 |
[] => (fth, fn x => x)
|
paulson@7248
|
333 |
| vars =>
|
wenzelm@44117
|
334 |
let fun newName (ix, _) (pairs, used) =
|
wenzelm@43324
|
335 |
let val v = singleton (Name.variant_list used) (string_of_indexname ix)
|
wenzelm@8328
|
336 |
in ((ix,v)::pairs, v::used) end;
|
wenzelm@44117
|
337 |
val (alist, _) =
|
wenzelm@44117
|
338 |
fold_rev newName vars ([], Thm.fold_terms Term.add_free_names fth [])
|
wenzelm@44117
|
339 |
fun mk_inst (v, T) =
|
wenzelm@16425
|
340 |
(cterm_of thy (Var(v,T)),
|
haftmann@17325
|
341 |
cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
|
wenzelm@8328
|
342 |
val insts = map mk_inst vars
|
wenzelm@8328
|
343 |
fun thaw th' =
|
wenzelm@8328
|
344 |
th' |> forall_intr_list (map #2 insts)
|
wenzelm@8328
|
345 |
|> forall_elim_list (map #1 insts)
|
wenzelm@8328
|
346 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@7248
|
347 |
end;
|
paulson@4610
|
348 |
|
paulson@7248
|
349 |
(*Rotates a rule's premises to the left by k*)
|
wenzelm@23537
|
350 |
fun rotate_prems 0 = I
|
wenzelm@31945
|
351 |
| rotate_prems k = Thm.permute_prems 0 k;
|
wenzelm@23537
|
352 |
|
wenzelm@23423
|
353 |
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
|
paulson@4610
|
354 |
|
wenzelm@31945
|
355 |
(*Permute prems, where the i-th position in the argument list (counting from 0)
|
wenzelm@31945
|
356 |
gives the position within the original thm to be transferred to position i.
|
wenzelm@31945
|
357 |
Any remaining trailing positions are left unchanged.*)
|
wenzelm@31945
|
358 |
val rearrange_prems =
|
wenzelm@31945
|
359 |
let
|
wenzelm@31945
|
360 |
fun rearr new [] thm = thm
|
wenzelm@31945
|
361 |
| rearr new (p :: ps) thm =
|
wenzelm@31945
|
362 |
rearr (new + 1)
|
wenzelm@31945
|
363 |
(map (fn q => if new <= q andalso q < p then q + 1 else q) ps)
|
wenzelm@31945
|
364 |
(Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm))
|
oheimb@11163
|
365 |
in rearr 0 end;
|
paulson@4610
|
366 |
|
wenzelm@252
|
367 |
(*Resolution: exactly one resolvent must be produced.*)
|
clasohm@0
|
368 |
fun tha RSN (i,thb) =
|
wenzelm@31945
|
369 |
case Seq.chop 2 (Thm.biresolution false [(false,tha)] i thb) of
|
clasohm@0
|
370 |
([th],_) => th
|
clasohm@0
|
371 |
| ([],_) => raise THM("RSN: no unifiers", i, [tha,thb])
|
clasohm@0
|
372 |
| _ => raise THM("RSN: multiple unifiers", i, [tha,thb]);
|
clasohm@0
|
373 |
|
clasohm@0
|
374 |
(*resolution: P==>Q, Q==>R gives P==>R. *)
|
clasohm@0
|
375 |
fun tha RS thb = tha RSN (1,thb);
|
clasohm@0
|
376 |
|
clasohm@0
|
377 |
(*For joining lists of rules*)
|
wenzelm@252
|
378 |
fun thas RLN (i,thbs) =
|
wenzelm@31945
|
379 |
let val resolve = Thm.biresolution false (map (pair false) thas) i
|
wenzelm@4270
|
380 |
fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
|
wenzelm@19482
|
381 |
in maps resb thbs end;
|
clasohm@0
|
382 |
|
clasohm@0
|
383 |
fun thas RL thbs = thas RLN (1,thbs);
|
clasohm@0
|
384 |
|
lcp@11
|
385 |
(*Resolve a list of rules against bottom_rl from right to left;
|
lcp@11
|
386 |
makes proof trees*)
|
wenzelm@252
|
387 |
fun rls MRS bottom_rl =
|
lcp@11
|
388 |
let fun rs_aux i [] = bottom_rl
|
wenzelm@252
|
389 |
| rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
|
lcp@11
|
390 |
in rs_aux 1 rls end;
|
lcp@11
|
391 |
|
wenzelm@9288
|
392 |
(*A version of MRS with more appropriate argument order*)
|
wenzelm@9288
|
393 |
fun bottom_rl OF rls = rls MRS bottom_rl;
|
wenzelm@9288
|
394 |
|
wenzelm@252
|
395 |
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
|
clasohm@0
|
396 |
with no lifting or renaming! Q may contain ==> or meta-quants
|
clasohm@0
|
397 |
ALWAYS deletes premise i *)
|
wenzelm@252
|
398 |
fun compose(tha,i,thb) =
|
wenzelm@31945
|
399 |
distinct Thm.eq_thm (Seq.list_of (Thm.bicompose false (false,tha,0) i thb));
|
clasohm@0
|
400 |
|
wenzelm@6946
|
401 |
fun compose_single (tha,i,thb) =
|
paulson@24426
|
402 |
case compose (tha,i,thb) of
|
wenzelm@6946
|
403 |
[th] => th
|
paulson@24426
|
404 |
| _ => raise THM ("compose: unique result expected", i, [tha,thb]);
|
wenzelm@6946
|
405 |
|
clasohm@0
|
406 |
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
|
clasohm@0
|
407 |
fun tha COMP thb =
|
paulson@24426
|
408 |
case compose(tha,1,thb) of
|
wenzelm@252
|
409 |
[th] => th
|
clasohm@0
|
410 |
| _ => raise THM("COMP", 1, [tha,thb]);
|
clasohm@0
|
411 |
|
wenzelm@13105
|
412 |
|
wenzelm@4016
|
413 |
(** theorem equality **)
|
clasohm@0
|
414 |
|
clasohm@0
|
415 |
(*Useful "distance" function for BEST_FIRST*)
|
wenzelm@16720
|
416 |
val size_of_thm = size_of_term o Thm.full_prop_of;
|
clasohm@0
|
417 |
|
lcp@1194
|
418 |
|
lcp@1194
|
419 |
|
clasohm@0
|
420 |
(*** Meta-Rewriting Rules ***)
|
clasohm@0
|
421 |
|
wenzelm@33384
|
422 |
val read_prop = certify o Simple_Syntax.read_prop;
|
wenzelm@26487
|
423 |
|
wenzelm@26487
|
424 |
fun store_thm name th =
|
wenzelm@39557
|
425 |
Context.>>> (Context.map_theory_result (Global_Theory.store_thm (name, th)));
|
paulson@4610
|
426 |
|
wenzelm@26487
|
427 |
fun store_thm_open name th =
|
wenzelm@39557
|
428 |
Context.>>> (Context.map_theory_result (Global_Theory.store_thm_open (name, th)));
|
wenzelm@26487
|
429 |
|
wenzelm@35021
|
430 |
fun store_standard_thm name th = store_thm name (export_without_context th);
|
wenzelm@35021
|
431 |
fun store_standard_thm_open name thm = store_thm_open name (export_without_context_open thm);
|
wenzelm@4016
|
432 |
|
clasohm@0
|
433 |
val reflexive_thm =
|
wenzelm@26487
|
434 |
let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
|
wenzelm@33277
|
435 |
in store_standard_thm_open (Binding.name "reflexive") (Thm.reflexive cx) end;
|
clasohm@0
|
436 |
|
clasohm@0
|
437 |
val symmetric_thm =
|
wenzelm@33277
|
438 |
let
|
wenzelm@33277
|
439 |
val xy = read_prop "x::'a == y::'a";
|
wenzelm@33277
|
440 |
val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
|
wenzelm@33277
|
441 |
in store_standard_thm_open (Binding.name "symmetric") thm end;
|
clasohm@0
|
442 |
|
clasohm@0
|
443 |
val transitive_thm =
|
wenzelm@33277
|
444 |
let
|
wenzelm@33277
|
445 |
val xy = read_prop "x::'a == y::'a";
|
wenzelm@33277
|
446 |
val yz = read_prop "y::'a == z::'a";
|
wenzelm@33277
|
447 |
val xythm = Thm.assume xy;
|
wenzelm@33277
|
448 |
val yzthm = Thm.assume yz;
|
wenzelm@33277
|
449 |
val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
|
wenzelm@33277
|
450 |
in store_standard_thm_open (Binding.name "transitive") thm end;
|
clasohm@0
|
451 |
|
nipkow@4679
|
452 |
fun symmetric_fun thm = thm RS symmetric_thm;
|
nipkow@4679
|
453 |
|
berghofe@11512
|
454 |
fun extensional eq =
|
berghofe@11512
|
455 |
let val eq' =
|
wenzelm@36944
|
456 |
Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (cprop_of eq)))) eq
|
wenzelm@36944
|
457 |
in Thm.equal_elim (Thm.eta_conversion (cprop_of eq')) eq' end;
|
berghofe@11512
|
458 |
|
wenzelm@18820
|
459 |
val equals_cong =
|
wenzelm@33277
|
460 |
store_standard_thm_open (Binding.name "equals_cong")
|
wenzelm@33277
|
461 |
(Thm.reflexive (read_prop "x::'a == y::'a"));
|
wenzelm@18820
|
462 |
|
berghofe@10414
|
463 |
val imp_cong =
|
berghofe@10414
|
464 |
let
|
wenzelm@24241
|
465 |
val ABC = read_prop "A ==> B::prop == C::prop"
|
wenzelm@24241
|
466 |
val AB = read_prop "A ==> B"
|
wenzelm@24241
|
467 |
val AC = read_prop "A ==> C"
|
wenzelm@24241
|
468 |
val A = read_prop "A"
|
berghofe@10414
|
469 |
in
|
wenzelm@36944
|
470 |
store_standard_thm_open (Binding.name "imp_cong") (Thm.implies_intr ABC (Thm.equal_intr
|
wenzelm@36944
|
471 |
(Thm.implies_intr AB (Thm.implies_intr A
|
wenzelm@36944
|
472 |
(Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))
|
wenzelm@36944
|
473 |
(Thm.implies_elim (Thm.assume AB) (Thm.assume A)))))
|
wenzelm@36944
|
474 |
(Thm.implies_intr AC (Thm.implies_intr A
|
wenzelm@36944
|
475 |
(Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)))
|
wenzelm@36944
|
476 |
(Thm.implies_elim (Thm.assume AC) (Thm.assume A)))))))
|
berghofe@10414
|
477 |
end;
|
berghofe@10414
|
478 |
|
berghofe@10414
|
479 |
val swap_prems_eq =
|
berghofe@10414
|
480 |
let
|
wenzelm@24241
|
481 |
val ABC = read_prop "A ==> B ==> C"
|
wenzelm@24241
|
482 |
val BAC = read_prop "B ==> A ==> C"
|
wenzelm@24241
|
483 |
val A = read_prop "A"
|
wenzelm@24241
|
484 |
val B = read_prop "B"
|
berghofe@10414
|
485 |
in
|
wenzelm@33277
|
486 |
store_standard_thm_open (Binding.name "swap_prems_eq")
|
wenzelm@36944
|
487 |
(Thm.equal_intr
|
wenzelm@36944
|
488 |
(Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A
|
wenzelm@36944
|
489 |
(Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B)))))
|
wenzelm@36944
|
490 |
(Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B
|
wenzelm@36944
|
491 |
(Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A))))))
|
berghofe@10414
|
492 |
end;
|
lcp@229
|
493 |
|
wenzelm@22938
|
494 |
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
|
wenzelm@22938
|
495 |
|
wenzelm@23537
|
496 |
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th; (*AP_TERM in LCF/HOL*)
|
wenzelm@23537
|
497 |
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct); (*AP_THM in LCF/HOL*)
|
wenzelm@23568
|
498 |
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
|
clasohm@0
|
499 |
|
skalberg@15001
|
500 |
local
|
wenzelm@22906
|
501 |
val dest_eq = Thm.dest_equals o cprop_of
|
skalberg@15001
|
502 |
val rhs_of = snd o dest_eq
|
skalberg@15001
|
503 |
in
|
skalberg@15001
|
504 |
fun beta_eta_conversion t =
|
wenzelm@36944
|
505 |
let val thm = Thm.beta_conversion true t
|
wenzelm@36944
|
506 |
in Thm.transitive thm (Thm.eta_conversion (rhs_of thm)) end
|
skalberg@15001
|
507 |
end;
|
skalberg@15001
|
508 |
|
wenzelm@36944
|
509 |
fun eta_long_conversion ct =
|
wenzelm@36944
|
510 |
Thm.transitive
|
wenzelm@36944
|
511 |
(beta_eta_conversion ct)
|
wenzelm@36944
|
512 |
(Thm.symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
|
berghofe@15925
|
513 |
|
paulson@20861
|
514 |
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
|
paulson@20861
|
515 |
fun eta_contraction_rule th =
|
wenzelm@36944
|
516 |
Thm.equal_elim (Thm.eta_conversion (cprop_of th)) th;
|
paulson@20861
|
517 |
|
wenzelm@24947
|
518 |
|
wenzelm@24947
|
519 |
(* abs_def *)
|
wenzelm@24947
|
520 |
|
wenzelm@24947
|
521 |
(*
|
wenzelm@24947
|
522 |
f ?x1 ... ?xn == u
|
wenzelm@24947
|
523 |
--------------------
|
wenzelm@24947
|
524 |
f == %x1 ... xn. u
|
wenzelm@24947
|
525 |
*)
|
wenzelm@24947
|
526 |
|
wenzelm@24947
|
527 |
local
|
wenzelm@24947
|
528 |
|
wenzelm@24947
|
529 |
fun contract_lhs th =
|
wenzelm@24947
|
530 |
Thm.transitive (Thm.symmetric (beta_eta_conversion
|
wenzelm@24947
|
531 |
(fst (Thm.dest_equals (cprop_of th))))) th;
|
wenzelm@24947
|
532 |
|
wenzelm@24947
|
533 |
fun var_args ct =
|
wenzelm@24947
|
534 |
(case try Thm.dest_comb ct of
|
wenzelm@24947
|
535 |
SOME (f, arg) =>
|
wenzelm@24947
|
536 |
(case Thm.term_of arg of
|
wenzelm@24947
|
537 |
Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
|
wenzelm@24947
|
538 |
| _ => [])
|
wenzelm@24947
|
539 |
| NONE => []);
|
wenzelm@24947
|
540 |
|
wenzelm@24947
|
541 |
in
|
wenzelm@24947
|
542 |
|
wenzelm@24947
|
543 |
fun abs_def th =
|
wenzelm@18337
|
544 |
let
|
wenzelm@24947
|
545 |
val th' = contract_lhs th;
|
wenzelm@24947
|
546 |
val args = var_args (Thm.lhs_of th');
|
wenzelm@24947
|
547 |
in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
|
wenzelm@24947
|
548 |
|
wenzelm@24947
|
549 |
end;
|
wenzelm@24947
|
550 |
|
wenzelm@18337
|
551 |
|
wenzelm@18468
|
552 |
|
wenzelm@15669
|
553 |
(*** Some useful meta-theorems ***)
|
clasohm@0
|
554 |
|
clasohm@0
|
555 |
(*The rule V/V, obtains assumption solving for eresolve_tac*)
|
wenzelm@33277
|
556 |
val asm_rl = store_standard_thm_open (Binding.name "asm_rl") (Thm.trivial (read_prop "?psi"));
|
clasohm@0
|
557 |
|
clasohm@0
|
558 |
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
|
wenzelm@4016
|
559 |
val cut_rl =
|
wenzelm@33277
|
560 |
store_standard_thm_open (Binding.name "cut_rl")
|
wenzelm@24241
|
561 |
(Thm.trivial (read_prop "?psi ==> ?theta"));
|
clasohm@0
|
562 |
|
wenzelm@252
|
563 |
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
|
clasohm@0
|
564 |
[| PROP V; PROP V ==> PROP W |] ==> PROP W *)
|
clasohm@0
|
565 |
val revcut_rl =
|
wenzelm@33277
|
566 |
let
|
wenzelm@33277
|
567 |
val V = read_prop "V";
|
wenzelm@33277
|
568 |
val VW = read_prop "V ==> W";
|
wenzelm@4016
|
569 |
in
|
wenzelm@33277
|
570 |
store_standard_thm_open (Binding.name "revcut_rl")
|
wenzelm@36944
|
571 |
(Thm.implies_intr V (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V))))
|
clasohm@0
|
572 |
end;
|
clasohm@0
|
573 |
|
lcp@668
|
574 |
(*for deleting an unwanted assumption*)
|
lcp@668
|
575 |
val thin_rl =
|
wenzelm@33277
|
576 |
let
|
wenzelm@33277
|
577 |
val V = read_prop "V";
|
wenzelm@33277
|
578 |
val W = read_prop "W";
|
wenzelm@36944
|
579 |
val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W));
|
wenzelm@33277
|
580 |
in store_standard_thm_open (Binding.name "thin_rl") thm end;
|
lcp@668
|
581 |
|
clasohm@0
|
582 |
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
|
clasohm@0
|
583 |
val triv_forall_equality =
|
wenzelm@33277
|
584 |
let
|
wenzelm@33277
|
585 |
val V = read_prop "V";
|
wenzelm@33277
|
586 |
val QV = read_prop "!!x::'a. V";
|
wenzelm@33277
|
587 |
val x = certify (Free ("x", Term.aT []));
|
wenzelm@4016
|
588 |
in
|
wenzelm@33277
|
589 |
store_standard_thm_open (Binding.name "triv_forall_equality")
|
wenzelm@36944
|
590 |
(Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV)))
|
wenzelm@36944
|
591 |
(Thm.implies_intr V (Thm.forall_intr x (Thm.assume V))))
|
clasohm@0
|
592 |
end;
|
clasohm@0
|
593 |
|
wenzelm@19051
|
594 |
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
|
wenzelm@19051
|
595 |
(PROP ?Phi ==> PROP ?Psi)
|
wenzelm@19051
|
596 |
*)
|
wenzelm@19051
|
597 |
val distinct_prems_rl =
|
wenzelm@19051
|
598 |
let
|
wenzelm@33277
|
599 |
val AAB = read_prop "Phi ==> Phi ==> Psi";
|
wenzelm@24241
|
600 |
val A = read_prop "Phi";
|
wenzelm@19051
|
601 |
in
|
wenzelm@33277
|
602 |
store_standard_thm_open (Binding.name "distinct_prems_rl")
|
wenzelm@36944
|
603 |
(implies_intr_list [AAB, A] (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A]))
|
wenzelm@19051
|
604 |
end;
|
wenzelm@19051
|
605 |
|
nipkow@1756
|
606 |
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
|
nipkow@1756
|
607 |
(PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
|
nipkow@1756
|
608 |
`thm COMP swap_prems_rl' swaps the first two premises of `thm'
|
nipkow@1756
|
609 |
*)
|
nipkow@1756
|
610 |
val swap_prems_rl =
|
wenzelm@33277
|
611 |
let
|
wenzelm@33277
|
612 |
val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
|
wenzelm@36944
|
613 |
val major = Thm.assume cmajor;
|
wenzelm@33277
|
614 |
val cminor1 = read_prop "PhiA";
|
wenzelm@36944
|
615 |
val minor1 = Thm.assume cminor1;
|
wenzelm@33277
|
616 |
val cminor2 = read_prop "PhiB";
|
wenzelm@36944
|
617 |
val minor2 = Thm.assume cminor2;
|
wenzelm@33277
|
618 |
in
|
wenzelm@33277
|
619 |
store_standard_thm_open (Binding.name "swap_prems_rl")
|
wenzelm@36944
|
620 |
(Thm.implies_intr cmajor (Thm.implies_intr cminor2 (Thm.implies_intr cminor1
|
wenzelm@36944
|
621 |
(Thm.implies_elim (Thm.implies_elim major minor1) minor2))))
|
nipkow@1756
|
622 |
end;
|
nipkow@1756
|
623 |
|
nipkow@3653
|
624 |
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
|
nipkow@3653
|
625 |
==> PROP ?phi == PROP ?psi
|
wenzelm@8328
|
626 |
Introduction rule for == as a meta-theorem.
|
nipkow@3653
|
627 |
*)
|
nipkow@3653
|
628 |
val equal_intr_rule =
|
wenzelm@33277
|
629 |
let
|
wenzelm@33277
|
630 |
val PQ = read_prop "phi ==> psi";
|
wenzelm@33277
|
631 |
val QP = read_prop "psi ==> phi";
|
wenzelm@4016
|
632 |
in
|
wenzelm@33277
|
633 |
store_standard_thm_open (Binding.name "equal_intr_rule")
|
wenzelm@36944
|
634 |
(Thm.implies_intr PQ (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP))))
|
nipkow@3653
|
635 |
end;
|
nipkow@3653
|
636 |
|
wenzelm@19421
|
637 |
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
|
wenzelm@13368
|
638 |
val equal_elim_rule1 =
|
wenzelm@33277
|
639 |
let
|
wenzelm@33277
|
640 |
val eq = read_prop "phi::prop == psi::prop";
|
wenzelm@33277
|
641 |
val P = read_prop "phi";
|
wenzelm@33277
|
642 |
in
|
wenzelm@33277
|
643 |
store_standard_thm_open (Binding.name "equal_elim_rule1")
|
wenzelm@36944
|
644 |
(Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P])
|
wenzelm@13368
|
645 |
end;
|
wenzelm@4285
|
646 |
|
wenzelm@19421
|
647 |
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
|
wenzelm@19421
|
648 |
val equal_elim_rule2 =
|
wenzelm@33277
|
649 |
store_standard_thm_open (Binding.name "equal_elim_rule2")
|
wenzelm@33277
|
650 |
(symmetric_thm RS equal_elim_rule1);
|
wenzelm@19421
|
651 |
|
wenzelm@28618
|
652 |
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
|
wenzelm@12297
|
653 |
val remdups_rl =
|
wenzelm@33277
|
654 |
let
|
wenzelm@33277
|
655 |
val P = read_prop "phi";
|
wenzelm@33277
|
656 |
val Q = read_prop "psi";
|
wenzelm@33277
|
657 |
val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
|
wenzelm@33277
|
658 |
in store_standard_thm_open (Binding.name "remdups_rl") thm end;
|
wenzelm@12297
|
659 |
|
wenzelm@12297
|
660 |
|
wenzelm@28618
|
661 |
|
wenzelm@28618
|
662 |
(** embedded terms and types **)
|
wenzelm@28618
|
663 |
|
wenzelm@28618
|
664 |
local
|
wenzelm@28618
|
665 |
val A = certify (Free ("A", propT));
|
wenzelm@35845
|
666 |
val axiom = Thm.unvarify_global o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
|
wenzelm@28674
|
667 |
val prop_def = axiom "Pure.prop_def";
|
wenzelm@28674
|
668 |
val term_def = axiom "Pure.term_def";
|
wenzelm@28674
|
669 |
val sort_constraint_def = axiom "Pure.sort_constraint_def";
|
wenzelm@28618
|
670 |
val C = Thm.lhs_of sort_constraint_def;
|
wenzelm@28618
|
671 |
val T = Thm.dest_arg C;
|
wenzelm@28618
|
672 |
val CA = mk_implies (C, A);
|
wenzelm@28618
|
673 |
in
|
wenzelm@28618
|
674 |
|
wenzelm@28618
|
675 |
(* protect *)
|
wenzelm@28618
|
676 |
|
wenzelm@28618
|
677 |
val protect = Thm.capply (certify Logic.protectC);
|
wenzelm@28618
|
678 |
|
wenzelm@33277
|
679 |
val protectI =
|
wenzelm@35021
|
680 |
store_standard_thm (Binding.conceal (Binding.name "protectI"))
|
wenzelm@35021
|
681 |
(Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A));
|
wenzelm@28618
|
682 |
|
wenzelm@33277
|
683 |
val protectD =
|
wenzelm@35021
|
684 |
store_standard_thm (Binding.conceal (Binding.name "protectD"))
|
wenzelm@35021
|
685 |
(Thm.equal_elim prop_def (Thm.assume (protect A)));
|
wenzelm@28618
|
686 |
|
wenzelm@33277
|
687 |
val protect_cong =
|
wenzelm@33277
|
688 |
store_standard_thm_open (Binding.name "protect_cong") (Thm.reflexive (protect A));
|
wenzelm@28618
|
689 |
|
wenzelm@28618
|
690 |
fun implies_intr_protected asms th =
|
wenzelm@28618
|
691 |
let val asms' = map protect asms in
|
wenzelm@28618
|
692 |
implies_elim_list
|
wenzelm@28618
|
693 |
(implies_intr_list asms th)
|
wenzelm@28618
|
694 |
(map (fn asm' => Thm.assume asm' RS protectD) asms')
|
wenzelm@28618
|
695 |
|> implies_intr_list asms'
|
wenzelm@28618
|
696 |
end;
|
wenzelm@28618
|
697 |
|
wenzelm@28618
|
698 |
|
wenzelm@28618
|
699 |
(* term *)
|
wenzelm@28618
|
700 |
|
wenzelm@33277
|
701 |
val termI =
|
wenzelm@35021
|
702 |
store_standard_thm (Binding.conceal (Binding.name "termI"))
|
wenzelm@35021
|
703 |
(Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)));
|
wenzelm@9554
|
704 |
|
wenzelm@28618
|
705 |
fun mk_term ct =
|
wenzelm@28618
|
706 |
let
|
wenzelm@28618
|
707 |
val thy = Thm.theory_of_cterm ct;
|
wenzelm@28618
|
708 |
val cert = Thm.cterm_of thy;
|
wenzelm@28618
|
709 |
val certT = Thm.ctyp_of thy;
|
wenzelm@28618
|
710 |
val T = Thm.typ_of (Thm.ctyp_of_term ct);
|
wenzelm@28618
|
711 |
val a = certT (TVar (("'a", 0), []));
|
wenzelm@28618
|
712 |
val x = cert (Var (("x", 0), T));
|
wenzelm@28618
|
713 |
in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
|
wenzelm@28618
|
714 |
|
wenzelm@28618
|
715 |
fun dest_term th =
|
wenzelm@28618
|
716 |
let val cprop = strip_imp_concl (Thm.cprop_of th) in
|
wenzelm@28618
|
717 |
if can Logic.dest_term (Thm.term_of cprop) then
|
wenzelm@28618
|
718 |
Thm.dest_arg cprop
|
wenzelm@28618
|
719 |
else raise THM ("dest_term", 0, [th])
|
wenzelm@28618
|
720 |
end;
|
wenzelm@28618
|
721 |
|
wenzelm@28618
|
722 |
fun cterm_rule f = dest_term o f o mk_term;
|
wenzelm@28618
|
723 |
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
|
wenzelm@28618
|
724 |
|
wenzelm@45156
|
725 |
val dummy_thm = mk_term (certify Term.dummy_prop);
|
wenzelm@28618
|
726 |
|
wenzelm@28618
|
727 |
|
wenzelm@28618
|
728 |
(* sort_constraint *)
|
wenzelm@28618
|
729 |
|
wenzelm@33277
|
730 |
val sort_constraintI =
|
wenzelm@35021
|
731 |
store_standard_thm (Binding.conceal (Binding.name "sort_constraintI"))
|
wenzelm@35021
|
732 |
(Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T));
|
wenzelm@28618
|
733 |
|
wenzelm@33277
|
734 |
val sort_constraint_eq =
|
wenzelm@35021
|
735 |
store_standard_thm (Binding.conceal (Binding.name "sort_constraint_eq"))
|
wenzelm@35021
|
736 |
(Thm.equal_intr
|
wenzelm@35845
|
737 |
(Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA)
|
wenzelm@35845
|
738 |
(Thm.unvarify_global sort_constraintI)))
|
wenzelm@35021
|
739 |
(implies_intr_list [A, C] (Thm.assume A)));
|
wenzelm@28618
|
740 |
|
wenzelm@28618
|
741 |
end;
|
wenzelm@28618
|
742 |
|
wenzelm@28618
|
743 |
|
wenzelm@28618
|
744 |
(* HHF normalization *)
|
wenzelm@28618
|
745 |
|
wenzelm@46214
|
746 |
(* (PROP ?phi ==> (!!x. PROP ?psi x)) == (!!x. PROP ?phi ==> PROP ?psi x) *)
|
wenzelm@9554
|
747 |
val norm_hhf_eq =
|
wenzelm@9554
|
748 |
let
|
wenzelm@14854
|
749 |
val aT = TFree ("'a", []);
|
wenzelm@9554
|
750 |
val x = Free ("x", aT);
|
wenzelm@9554
|
751 |
val phi = Free ("phi", propT);
|
wenzelm@9554
|
752 |
val psi = Free ("psi", aT --> propT);
|
wenzelm@9554
|
753 |
|
wenzelm@26487
|
754 |
val cx = certify x;
|
wenzelm@26487
|
755 |
val cphi = certify phi;
|
wenzelm@46214
|
756 |
val lhs = certify (Logic.mk_implies (phi, Logic.all x (psi $ x)));
|
wenzelm@46214
|
757 |
val rhs = certify (Logic.all x (Logic.mk_implies (phi, psi $ x)));
|
wenzelm@9554
|
758 |
in
|
wenzelm@9554
|
759 |
Thm.equal_intr
|
wenzelm@9554
|
760 |
(Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
|
wenzelm@9554
|
761 |
|> Thm.forall_elim cx
|
wenzelm@9554
|
762 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
763 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
764 |
|> Thm.implies_intr lhs)
|
wenzelm@9554
|
765 |
(Thm.implies_elim
|
wenzelm@9554
|
766 |
(Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
|
wenzelm@9554
|
767 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
768 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
769 |
|> Thm.implies_intr rhs)
|
wenzelm@33277
|
770 |
|> store_standard_thm_open (Binding.name "norm_hhf_eq")
|
wenzelm@9554
|
771 |
end;
|
wenzelm@9554
|
772 |
|
wenzelm@18179
|
773 |
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
|
wenzelm@28618
|
774 |
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
|
wenzelm@18179
|
775 |
|
wenzelm@30553
|
776 |
fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false
|
wenzelm@30553
|
777 |
| is_norm_hhf (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
|
wenzelm@30553
|
778 |
| is_norm_hhf (Abs _ $ _) = false
|
wenzelm@30553
|
779 |
| is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u
|
wenzelm@30553
|
780 |
| is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t
|
wenzelm@30553
|
781 |
| is_norm_hhf _ = true;
|
wenzelm@12800
|
782 |
|
wenzelm@16425
|
783 |
fun norm_hhf thy t =
|
wenzelm@12800
|
784 |
if is_norm_hhf t then t
|
wenzelm@18179
|
785 |
else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
|
wenzelm@18179
|
786 |
|
wenzelm@20298
|
787 |
fun norm_hhf_cterm ct =
|
wenzelm@20298
|
788 |
if is_norm_hhf (Thm.term_of ct) then ct
|
wenzelm@20298
|
789 |
else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
|
wenzelm@20298
|
790 |
|
wenzelm@12800
|
791 |
|
wenzelm@21603
|
792 |
(* var indexes *)
|
wenzelm@21603
|
793 |
|
wenzelm@21603
|
794 |
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
|
wenzelm@21603
|
795 |
|
wenzelm@21603
|
796 |
fun incr_indexes2 th1 th2 =
|
wenzelm@21603
|
797 |
Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
|
wenzelm@21603
|
798 |
|
wenzelm@21603
|
799 |
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
|
wenzelm@21603
|
800 |
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
|
wenzelm@21603
|
801 |
|
wenzelm@29344
|
802 |
fun comp_no_flatten (th, n) i rule =
|
wenzelm@29344
|
803 |
(case distinct Thm.eq_thm (Seq.list_of
|
wenzelm@29344
|
804 |
(Thm.compose_no_flatten false (th, n) i (incr_indexes th rule))) of
|
wenzelm@29344
|
805 |
[th'] => th'
|
wenzelm@29344
|
806 |
| [] => raise THM ("comp_no_flatten", i, [th, rule])
|
wenzelm@29344
|
807 |
| _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule]));
|
wenzelm@29344
|
808 |
|
wenzelm@29344
|
809 |
|
wenzelm@9554
|
810 |
|
wenzelm@45348
|
811 |
(** variations on Thm.instantiate **)
|
paulson@8129
|
812 |
|
wenzelm@43333
|
813 |
fun instantiate_normalize instpair th =
|
wenzelm@21603
|
814 |
Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
|
paulson@8129
|
815 |
|
wenzelm@45347
|
816 |
(*Left-to-right replacements: tpairs = [..., (vi, ti), ...].
|
wenzelm@45347
|
817 |
Instantiates distinct Vars by terms, inferring type instantiations.*)
|
paulson@8129
|
818 |
local
|
wenzelm@45347
|
819 |
fun add_types (ct, cu) (thy, tye, maxidx) =
|
wenzelm@26627
|
820 |
let
|
wenzelm@45347
|
821 |
val {t, T, maxidx = maxt, ...} = Thm.rep_cterm ct;
|
wenzelm@45347
|
822 |
val {t = u, T = U, maxidx = maxu, ...} = Thm.rep_cterm cu;
|
wenzelm@45347
|
823 |
val maxi = Int.max (maxidx, Int.max (maxt, maxu));
|
wenzelm@45347
|
824 |
val thy' = Theory.merge (thy, Theory.merge (Thm.theory_of_cterm ct, Thm.theory_of_cterm cu));
|
wenzelm@45347
|
825 |
val (tye', maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
|
wenzelm@45347
|
826 |
handle Type.TUNIFY => raise TYPE ("Ill-typed instantiation:\nType\n" ^
|
wenzelm@45347
|
827 |
Syntax.string_of_typ_global thy' (Envir.norm_type tye T) ^
|
wenzelm@45347
|
828 |
"\nof variable " ^
|
wenzelm@45347
|
829 |
Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) t) ^
|
wenzelm@45347
|
830 |
"\ncannot be unified with type\n" ^
|
wenzelm@45347
|
831 |
Syntax.string_of_typ_global thy' (Envir.norm_type tye U) ^ "\nof term " ^
|
wenzelm@45347
|
832 |
Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) u),
|
wenzelm@45347
|
833 |
[T, U], [t, u])
|
wenzelm@45347
|
834 |
in (thy', tye', maxi') end;
|
paulson@8129
|
835 |
in
|
wenzelm@45347
|
836 |
|
paulson@22561
|
837 |
fun cterm_instantiate [] th = th
|
wenzelm@45348
|
838 |
| cterm_instantiate ctpairs th =
|
wenzelm@45347
|
839 |
let
|
wenzelm@45348
|
840 |
val (thy, tye, _) = fold_rev add_types ctpairs (Thm.theory_of_thm th, Vartab.empty, 0);
|
wenzelm@45347
|
841 |
val certT = ctyp_of thy;
|
wenzelm@45348
|
842 |
val instT =
|
wenzelm@45348
|
843 |
Vartab.fold (fn (xi, (S, T)) =>
|
wenzelm@45348
|
844 |
cons (certT (TVar (xi, S)), certT (Envir.norm_type tye T))) tye [];
|
wenzelm@45348
|
845 |
val inst = map (pairself (Thm.instantiate_cterm (instT, []))) ctpairs;
|
wenzelm@45348
|
846 |
in instantiate_normalize (instT, inst) th end
|
wenzelm@45348
|
847 |
handle TERM (msg, _) => raise THM (msg, 0, [th])
|
wenzelm@45347
|
848 |
| TYPE (msg, _, _) => raise THM (msg, 0, [th]);
|
paulson@8129
|
849 |
end;
|
paulson@8129
|
850 |
|
paulson@8129
|
851 |
|
wenzelm@4285
|
852 |
(* instantiate by left-to-right occurrence of variables *)
|
wenzelm@4285
|
853 |
|
wenzelm@4285
|
854 |
fun instantiate' cTs cts thm =
|
wenzelm@4285
|
855 |
let
|
wenzelm@4285
|
856 |
fun err msg =
|
wenzelm@4285
|
857 |
raise TYPE ("instantiate': " ^ msg,
|
wenzelm@19482
|
858 |
map_filter (Option.map Thm.typ_of) cTs,
|
wenzelm@19482
|
859 |
map_filter (Option.map Thm.term_of) cts);
|
wenzelm@4285
|
860 |
|
wenzelm@4285
|
861 |
fun inst_of (v, ct) =
|
wenzelm@16425
|
862 |
(Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
|
wenzelm@4285
|
863 |
handle TYPE (msg, _, _) => err msg;
|
wenzelm@4285
|
864 |
|
berghofe@15797
|
865 |
fun tyinst_of (v, cT) =
|
wenzelm@16425
|
866 |
(Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
|
berghofe@15797
|
867 |
handle TYPE (msg, _, _) => err msg;
|
berghofe@15797
|
868 |
|
wenzelm@20298
|
869 |
fun zip_vars xs ys =
|
wenzelm@40722
|
870 |
zip_options xs ys handle ListPair.UnequalLengths =>
|
wenzelm@20298
|
871 |
err "more instantiations than variables in thm";
|
wenzelm@4285
|
872 |
|
wenzelm@4285
|
873 |
(*instantiate types first!*)
|
wenzelm@4285
|
874 |
val thm' =
|
wenzelm@4285
|
875 |
if forall is_none cTs then thm
|
wenzelm@20298
|
876 |
else Thm.instantiate
|
wenzelm@22695
|
877 |
(map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
|
wenzelm@20579
|
878 |
val thm'' =
|
wenzelm@4285
|
879 |
if forall is_none cts then thm'
|
wenzelm@20298
|
880 |
else Thm.instantiate
|
wenzelm@22695
|
881 |
([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
|
wenzelm@20298
|
882 |
in thm'' end;
|
wenzelm@4285
|
883 |
|
wenzelm@4285
|
884 |
|
berghofe@14081
|
885 |
|
berghofe@14081
|
886 |
(** renaming of bound variables **)
|
berghofe@14081
|
887 |
|
berghofe@14081
|
888 |
(* replace bound variables x_i in thm by y_i *)
|
berghofe@14081
|
889 |
(* where vs = [(x_1, y_1), ..., (x_n, y_n)] *)
|
berghofe@14081
|
890 |
|
berghofe@14081
|
891 |
fun rename_bvars [] thm = thm
|
berghofe@14081
|
892 |
| rename_bvars vs thm =
|
wenzelm@26627
|
893 |
let
|
wenzelm@26627
|
894 |
val cert = Thm.cterm_of (Thm.theory_of_thm thm);
|
wenzelm@26627
|
895 |
fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
|
wenzelm@26627
|
896 |
| ren (t $ u) = ren t $ ren u
|
wenzelm@26627
|
897 |
| ren t = t;
|
wenzelm@36944
|
898 |
in Thm.equal_elim (Thm.reflexive (cert (ren (Thm.prop_of thm)))) thm end;
|
berghofe@14081
|
899 |
|
berghofe@14081
|
900 |
|
berghofe@14081
|
901 |
(* renaming in left-to-right order *)
|
berghofe@14081
|
902 |
|
berghofe@14081
|
903 |
fun rename_bvars' xs thm =
|
berghofe@14081
|
904 |
let
|
wenzelm@26627
|
905 |
val cert = Thm.cterm_of (Thm.theory_of_thm thm);
|
wenzelm@26627
|
906 |
val prop = Thm.prop_of thm;
|
berghofe@14081
|
907 |
fun rename [] t = ([], t)
|
berghofe@14081
|
908 |
| rename (x' :: xs) (Abs (x, T, t)) =
|
berghofe@14081
|
909 |
let val (xs', t') = rename xs t
|
wenzelm@18929
|
910 |
in (xs', Abs (the_default x x', T, t')) end
|
berghofe@14081
|
911 |
| rename xs (t $ u) =
|
berghofe@14081
|
912 |
let
|
berghofe@14081
|
913 |
val (xs', t') = rename xs t;
|
berghofe@14081
|
914 |
val (xs'', u') = rename xs' u
|
berghofe@14081
|
915 |
in (xs'', t' $ u') end
|
berghofe@14081
|
916 |
| rename xs t = (xs, t);
|
berghofe@14081
|
917 |
in case rename xs prop of
|
wenzelm@36944
|
918 |
([], prop') => Thm.equal_elim (Thm.reflexive (cert prop')) thm
|
berghofe@14081
|
919 |
| _ => error "More names than abstractions in theorem"
|
berghofe@14081
|
920 |
end;
|
berghofe@14081
|
921 |
|
berghofe@14081
|
922 |
|
wenzelm@11975
|
923 |
|
wenzelm@18225
|
924 |
(** multi_resolve **)
|
wenzelm@18225
|
925 |
|
wenzelm@18225
|
926 |
local
|
wenzelm@18225
|
927 |
|
wenzelm@18225
|
928 |
fun res th i rule =
|
wenzelm@18225
|
929 |
Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
|
wenzelm@18225
|
930 |
|
wenzelm@18225
|
931 |
fun multi_res _ [] rule = Seq.single rule
|
wenzelm@18225
|
932 |
| multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
|
wenzelm@18225
|
933 |
|
wenzelm@18225
|
934 |
in
|
wenzelm@18225
|
935 |
|
wenzelm@18225
|
936 |
val multi_resolve = multi_res 1;
|
wenzelm@18225
|
937 |
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
|
wenzelm@18225
|
938 |
|
wenzelm@18225
|
939 |
end;
|
wenzelm@18225
|
940 |
|
wenzelm@11975
|
941 |
end;
|
wenzelm@5903
|
942 |
|
wenzelm@35021
|
943 |
structure Basic_Drule: BASIC_DRULE = Drule;
|
wenzelm@35021
|
944 |
open Basic_Drule;
|