src/HOL/Finite.ML
author paulson
Wed Dec 24 10:02:30 1997 +0100 (1997-12-24 ago)
changeset 4477 b3e5857d8d99
parent 4423 a129b817b58a
child 4686 74a12e86b20b
permissions -rw-r--r--
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
clasohm@1465
     1
(*  Title:      HOL/Finite.thy
clasohm@923
     2
    ID:         $Id$
nipkow@1531
     3
    Author:     Lawrence C Paulson & Tobias Nipkow
nipkow@1531
     4
    Copyright   1995  University of Cambridge & TU Muenchen
clasohm@923
     5
nipkow@1531
     6
Finite sets and their cardinality
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Finite;
clasohm@923
    10
nipkow@3413
    11
section "finite";
nipkow@1531
    12
nipkow@3413
    13
(*
clasohm@923
    14
goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
clasohm@1465
    15
by (rtac lfp_mono 1);
clasohm@923
    16
by (REPEAT (ares_tac basic_monos 1));
clasohm@923
    17
qed "Fin_mono";
clasohm@923
    18
clasohm@923
    19
goalw Finite.thy Fin.defs "Fin(A) <= Pow(A)";
wenzelm@4089
    20
by (blast_tac (claset() addSIs [lfp_lowerbound]) 1);
clasohm@923
    21
qed "Fin_subset_Pow";
clasohm@923
    22
clasohm@923
    23
(* A : Fin(B) ==> A <= B *)
clasohm@923
    24
val FinD = Fin_subset_Pow RS subsetD RS PowD;
nipkow@3413
    25
*)
clasohm@923
    26
clasohm@923
    27
(*Discharging ~ x:y entails extra work*)
clasohm@923
    28
val major::prems = goal Finite.thy 
nipkow@3413
    29
    "[| finite F;  P({}); \
nipkow@3413
    30
\       !!F x. [| finite F;  x ~: F;  P(F) |] ==> P(insert x F) \
clasohm@923
    31
\    |] ==> P(F)";
nipkow@3413
    32
by (rtac (major RS Finites.induct) 1);
nipkow@3413
    33
by (excluded_middle_tac "a:A" 2);
clasohm@923
    34
by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3);   (*backtracking!*)
clasohm@923
    35
by (REPEAT (ares_tac prems 1));
nipkow@3413
    36
qed "finite_induct";
nipkow@3413
    37
paulson@4386
    38
val major::subs::prems = goal Finite.thy 
nipkow@3413
    39
    "[| finite F;  F <= A; \
nipkow@3413
    40
\       P({}); \
nipkow@3413
    41
\       !!F a. [| finite F; a:A; a ~: F;  P(F) |] ==> P(insert a F) \
nipkow@3413
    42
\    |] ==> P(F)";
paulson@4386
    43
by (rtac (subs RS rev_mp) 1);
paulson@4386
    44
by (rtac (major RS finite_induct) 1);
paulson@4386
    45
by (ALLGOALS (blast_tac (claset() addIs prems)));
nipkow@3413
    46
qed "finite_subset_induct";
nipkow@3413
    47
nipkow@3413
    48
Addsimps Finites.intrs;
nipkow@3413
    49
AddSIs Finites.intrs;
clasohm@923
    50
clasohm@923
    51
(*The union of two finite sets is finite*)
clasohm@923
    52
val major::prems = goal Finite.thy
nipkow@3413
    53
    "[| finite F;  finite G |] ==> finite(F Un G)";
nipkow@3413
    54
by (rtac (major RS finite_induct) 1);
wenzelm@4089
    55
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
nipkow@3413
    56
qed "finite_UnI";
clasohm@923
    57
clasohm@923
    58
(*Every subset of a finite set is finite*)
paulson@4304
    59
goal Finite.thy "!!B. finite B ==> ALL A. A<=B --> finite A";
paulson@4304
    60
by (etac finite_induct 1);
paulson@4304
    61
by (Simp_tac 1);
wenzelm@4089
    62
by (safe_tac (claset() addSDs [subset_insert_iff RS iffD1]));
paulson@4304
    63
by (eres_inst_tac [("t","A")] (insert_Diff RS subst) 2);
clasohm@1264
    64
by (ALLGOALS Asm_simp_tac);
paulson@4304
    65
val lemma = result();
paulson@4304
    66
paulson@4304
    67
goal Finite.thy "!!A. [| A<=B;  finite B |] ==> finite A";
wenzelm@4423
    68
by (dtac lemma 1);
paulson@4304
    69
by (Blast_tac 1);
nipkow@3413
    70
qed "finite_subset";
clasohm@923
    71
nipkow@3413
    72
goal Finite.thy "finite(F Un G) = (finite F & finite G)";
paulson@4304
    73
by (blast_tac (claset() 
paulson@4304
    74
	         addIs [read_instantiate [("B", "?AA Un ?BB")] finite_subset, 
paulson@4304
    75
			finite_UnI]) 1);
nipkow@3413
    76
qed "finite_Un";
nipkow@3413
    77
AddIffs[finite_Un];
nipkow@1531
    78
nipkow@3413
    79
goal Finite.thy "finite(insert a A) = finite A";
paulson@1553
    80
by (stac insert_is_Un 1);
nipkow@3413
    81
by (simp_tac (HOL_ss addsimps [finite_Un]) 1);
paulson@3427
    82
by (Blast_tac 1);
nipkow@3413
    83
qed "finite_insert";
nipkow@3413
    84
Addsimps[finite_insert];
nipkow@1531
    85
nipkow@3413
    86
(*The image of a finite set is finite *)
nipkow@3413
    87
goal Finite.thy  "!!F. finite F ==> finite(h``F)";
nipkow@3413
    88
by (etac finite_induct 1);
clasohm@1264
    89
by (Simp_tac 1);
nipkow@3413
    90
by (Asm_simp_tac 1);
nipkow@3413
    91
qed "finite_imageI";
clasohm@923
    92
clasohm@923
    93
val major::prems = goal Finite.thy 
nipkow@3413
    94
    "[| finite c;  finite b;                                  \
clasohm@1465
    95
\       P(b);                                                   \
nipkow@3413
    96
\       !!x y. [| finite y;  x:y;  P(y) |] ==> P(y-{x}) \
clasohm@923
    97
\    |] ==> c<=b --> P(b-c)";
nipkow@3413
    98
by (rtac (major RS finite_induct) 1);
paulson@2031
    99
by (stac Diff_insert 2);
clasohm@923
   100
by (ALLGOALS (asm_simp_tac
wenzelm@4089
   101
                (simpset() addsimps (prems@[Diff_subset RS finite_subset]))));
nipkow@1531
   102
val lemma = result();
clasohm@923
   103
clasohm@923
   104
val prems = goal Finite.thy 
nipkow@3413
   105
    "[| finite A;                                       \
nipkow@3413
   106
\       P(A);                                           \
nipkow@3413
   107
\       !!a A. [| finite A;  a:A;  P(A) |] ==> P(A-{a}) \
clasohm@923
   108
\    |] ==> P({})";
clasohm@923
   109
by (rtac (Diff_cancel RS subst) 1);
nipkow@1531
   110
by (rtac (lemma RS mp) 1);
clasohm@923
   111
by (REPEAT (ares_tac (subset_refl::prems) 1));
nipkow@3413
   112
qed "finite_empty_induct";
nipkow@1531
   113
nipkow@1531
   114
paulson@1618
   115
(* finite B ==> finite (B - Ba) *)
paulson@1618
   116
bind_thm ("finite_Diff", Diff_subset RS finite_subset);
nipkow@1531
   117
Addsimps [finite_Diff];
nipkow@1531
   118
paulson@3368
   119
goal Finite.thy "finite(A-{a}) = finite(A)";
paulson@3368
   120
by (case_tac "a:A" 1);
paulson@3457
   121
by (rtac (finite_insert RS sym RS trans) 1);
paulson@3368
   122
by (stac insert_Diff 1);
paulson@3368
   123
by (ALLGOALS Asm_simp_tac);
paulson@3368
   124
qed "finite_Diff_singleton";
paulson@3368
   125
AddIffs [finite_Diff_singleton];
paulson@3368
   126
paulson@4059
   127
(*Lemma for proving finite_imageD*)
nipkow@3413
   128
goal Finite.thy "!!A. finite B ==> !A. f``A = B --> inj_onto f A --> finite A";
paulson@1553
   129
by (etac finite_induct 1);
nipkow@3413
   130
 by (ALLGOALS Asm_simp_tac);
paulson@3708
   131
by (Clarify_tac 1);
nipkow@3413
   132
by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
paulson@3708
   133
 by (Clarify_tac 1);
wenzelm@4089
   134
 by (full_simp_tac (simpset() addsimps [inj_onto_def]) 1);
nipkow@3413
   135
 by (Blast_tac 1);
paulson@3368
   136
by (thin_tac "ALL A. ?PP(A)" 1);
nipkow@3413
   137
by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1);
paulson@3708
   138
by (Clarify_tac 1);
paulson@3368
   139
by (res_inst_tac [("x","xa")] bexI 1);
paulson@4059
   140
by (ALLGOALS 
wenzelm@4089
   141
    (asm_full_simp_tac (simpset() addsimps [inj_onto_image_set_diff])));
paulson@3368
   142
val lemma = result();
paulson@3368
   143
paulson@3368
   144
goal Finite.thy "!!A. [| finite(f``A);  inj_onto f A |] ==> finite A";
paulson@3457
   145
by (dtac lemma 1);
paulson@3368
   146
by (Blast_tac 1);
paulson@3368
   147
qed "finite_imageD";
paulson@3368
   148
nipkow@4014
   149
(** The finite UNION of finite sets **)
nipkow@4014
   150
nipkow@4014
   151
val [prem] = goal Finite.thy
nipkow@4014
   152
 "finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)";
paulson@4153
   153
by (rtac (prem RS finite_induct) 1);
paulson@4153
   154
by (ALLGOALS Asm_simp_tac);
nipkow@4014
   155
bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));
nipkow@4014
   156
Addsimps [finite_UnionI];
nipkow@4014
   157
nipkow@4014
   158
(** Sigma of finite sets **)
nipkow@4014
   159
nipkow@4014
   160
goalw Finite.thy [Sigma_def]
nipkow@4014
   161
 "!!A. [| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)";
paulson@4153
   162
by (blast_tac (claset() addSIs [finite_UnionI]) 1);
nipkow@4014
   163
bind_thm("finite_SigmaI", ballI RSN (2,result()));
nipkow@4014
   164
Addsimps [finite_SigmaI];
paulson@3368
   165
paulson@3368
   166
(** The powerset of a finite set **)
paulson@3368
   167
paulson@3368
   168
goal Finite.thy "!!A. finite(Pow A) ==> finite A";
paulson@3368
   169
by (subgoal_tac "finite ((%x.{x})``A)" 1);
paulson@3457
   170
by (rtac finite_subset 2);
paulson@3457
   171
by (assume_tac 3);
paulson@3368
   172
by (ALLGOALS
wenzelm@4089
   173
    (fast_tac (claset() addSDs [rewrite_rule [inj_onto_def] finite_imageD])));
paulson@3368
   174
val lemma = result();
paulson@3368
   175
paulson@3368
   176
goal Finite.thy "finite(Pow A) = finite A";
paulson@3457
   177
by (rtac iffI 1);
paulson@3457
   178
by (etac lemma 1);
paulson@3368
   179
(*Opposite inclusion: finite A ==> finite (Pow A) *)
paulson@3340
   180
by (etac finite_induct 1);
paulson@3340
   181
by (ALLGOALS 
paulson@3340
   182
    (asm_simp_tac
wenzelm@4089
   183
     (simpset() addsimps [finite_UnI, finite_imageI, Pow_insert])));
paulson@3368
   184
qed "finite_Pow_iff";
paulson@3368
   185
AddIffs [finite_Pow_iff];
paulson@3340
   186
nipkow@3439
   187
goal Finite.thy "finite(r^-1) = finite r";
paulson@3457
   188
by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1);
paulson@3457
   189
 by (Asm_simp_tac 1);
paulson@3457
   190
 by (rtac iffI 1);
paulson@3457
   191
  by (etac (rewrite_rule [inj_onto_def] finite_imageD) 1);
wenzelm@4089
   192
  by (simp_tac (simpset() addsplits [expand_split]) 1);
paulson@3457
   193
 by (etac finite_imageI 1);
wenzelm@4089
   194
by (simp_tac (simpset() addsimps [inverse_def,image_def]) 1);
paulson@4477
   195
by Auto_tac;
paulson@3457
   196
 by (rtac bexI 1);
paulson@3457
   197
 by (assume_tac 2);
paulson@3457
   198
 by (Simp_tac 1);
paulson@3457
   199
by (split_all_tac 1);
paulson@3457
   200
by (Asm_full_simp_tac 1);
nipkow@3439
   201
qed "finite_inverse";
nipkow@3439
   202
AddIffs [finite_inverse];
nipkow@1531
   203
nipkow@1548
   204
section "Finite cardinality -- 'card'";
nipkow@1531
   205
paulson@4304
   206
goal Set.thy "{f i |i. (P i | i=n)} = insert (f n) {f i|i. P i}";
paulson@2922
   207
by (Blast_tac 1);
nipkow@1531
   208
val Collect_conv_insert = result();
nipkow@1531
   209
nipkow@1531
   210
goalw Finite.thy [card_def] "card {} = 0";
paulson@1553
   211
by (rtac Least_equality 1);
paulson@1553
   212
by (ALLGOALS Asm_full_simp_tac);
nipkow@1531
   213
qed "card_empty";
nipkow@1531
   214
Addsimps [card_empty];
nipkow@1531
   215
nipkow@1531
   216
val [major] = goal Finite.thy
nipkow@1531
   217
  "finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
paulson@1553
   218
by (rtac (major RS finite_induct) 1);
paulson@1553
   219
 by (res_inst_tac [("x","0")] exI 1);
paulson@1553
   220
 by (Simp_tac 1);
paulson@1553
   221
by (etac exE 1);
paulson@1553
   222
by (etac exE 1);
paulson@1553
   223
by (hyp_subst_tac 1);
paulson@1553
   224
by (res_inst_tac [("x","Suc n")] exI 1);
paulson@1553
   225
by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
wenzelm@4089
   226
by (asm_simp_tac (simpset() addsimps [Collect_conv_insert, less_Suc_eq]
nipkow@1548
   227
                          addcongs [rev_conj_cong]) 1);
nipkow@1531
   228
qed "finite_has_card";
nipkow@1531
   229
nipkow@1531
   230
goal Finite.thy
wenzelm@3842
   231
  "!!A.[| x ~: A; insert x A = {f i|i. i<n} |] ==> \
wenzelm@3842
   232
\  ? m::nat. m<n & (? g. A = {g i|i. i<m})";
paulson@1553
   233
by (res_inst_tac [("n","n")] natE 1);
paulson@1553
   234
 by (hyp_subst_tac 1);
paulson@1553
   235
 by (Asm_full_simp_tac 1);
paulson@1553
   236
by (rename_tac "m" 1);
paulson@1553
   237
by (hyp_subst_tac 1);
paulson@1553
   238
by (case_tac "? a. a:A" 1);
paulson@1553
   239
 by (res_inst_tac [("x","0")] exI 2);
paulson@1553
   240
 by (Simp_tac 2);
paulson@2922
   241
 by (Blast_tac 2);
paulson@1553
   242
by (etac exE 1);
wenzelm@4089
   243
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1);
paulson@1553
   244
by (rtac exI 1);
paulson@1782
   245
by (rtac (refl RS disjI2 RS conjI) 1);
paulson@1553
   246
by (etac equalityE 1);
paulson@1553
   247
by (asm_full_simp_tac
wenzelm@4089
   248
     (simpset() addsimps [subset_insert,Collect_conv_insert, less_Suc_eq]) 1);
paulson@4153
   249
by Safe_tac;
paulson@1553
   250
  by (Asm_full_simp_tac 1);
paulson@1553
   251
  by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
paulson@4153
   252
  by (SELECT_GOAL Safe_tac 1);
paulson@1553
   253
   by (subgoal_tac "x ~= f m" 1);
paulson@2922
   254
    by (Blast_tac 2);
paulson@1553
   255
   by (subgoal_tac "? k. f k = x & k<m" 1);
paulson@2922
   256
    by (Blast_tac 2);
paulson@4153
   257
   by (SELECT_GOAL Safe_tac 1);
paulson@1553
   258
   by (res_inst_tac [("x","k")] exI 1);
paulson@1553
   259
   by (Asm_simp_tac 1);
wenzelm@4089
   260
  by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@2922
   261
  by (Blast_tac 1);
paulson@3457
   262
 by (dtac sym 1);
paulson@1553
   263
 by (rotate_tac ~1 1);
paulson@1553
   264
 by (Asm_full_simp_tac 1);
paulson@1553
   265
 by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
paulson@4153
   266
 by (SELECT_GOAL Safe_tac 1);
paulson@1553
   267
  by (subgoal_tac "x ~= f m" 1);
paulson@2922
   268
   by (Blast_tac 2);
paulson@1553
   269
  by (subgoal_tac "? k. f k = x & k<m" 1);
paulson@2922
   270
   by (Blast_tac 2);
paulson@4153
   271
  by (SELECT_GOAL Safe_tac 1);
paulson@1553
   272
  by (res_inst_tac [("x","k")] exI 1);
paulson@1553
   273
  by (Asm_simp_tac 1);
wenzelm@4089
   274
 by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@2922
   275
 by (Blast_tac 1);
paulson@1553
   276
by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
paulson@4153
   277
by (SELECT_GOAL Safe_tac 1);
paulson@1553
   278
 by (subgoal_tac "x ~= f i" 1);
paulson@2922
   279
  by (Blast_tac 2);
paulson@1553
   280
 by (case_tac "x = f m" 1);
paulson@1553
   281
  by (res_inst_tac [("x","i")] exI 1);
paulson@1553
   282
  by (Asm_simp_tac 1);
paulson@1553
   283
 by (subgoal_tac "? k. f k = x & k<m" 1);
paulson@2922
   284
  by (Blast_tac 2);
paulson@4153
   285
 by (SELECT_GOAL Safe_tac 1);
paulson@1553
   286
 by (res_inst_tac [("x","k")] exI 1);
paulson@1553
   287
 by (Asm_simp_tac 1);
wenzelm@4089
   288
by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@2922
   289
by (Blast_tac 1);
nipkow@1531
   290
val lemma = result();
nipkow@1531
   291
nipkow@1531
   292
goal Finite.thy "!!A. [| finite A; x ~: A |] ==> \
wenzelm@3842
   293
\ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
paulson@1553
   294
by (rtac Least_equality 1);
paulson@3457
   295
 by (dtac finite_has_card 1);
paulson@3457
   296
 by (etac exE 1);
wenzelm@3842
   297
 by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
paulson@3457
   298
 by (etac exE 1);
paulson@1553
   299
 by (res_inst_tac
nipkow@1531
   300
   [("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
paulson@1553
   301
 by (simp_tac
wenzelm@4089
   302
    (simpset() addsimps [Collect_conv_insert, less_Suc_eq] 
paulson@2031
   303
              addcongs [rev_conj_cong]) 1);
paulson@3457
   304
 by (etac subst 1);
paulson@3457
   305
 by (rtac refl 1);
paulson@1553
   306
by (rtac notI 1);
paulson@1553
   307
by (etac exE 1);
paulson@1553
   308
by (dtac lemma 1);
paulson@3457
   309
 by (assume_tac 1);
paulson@1553
   310
by (etac exE 1);
paulson@1553
   311
by (etac conjE 1);
paulson@1553
   312
by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
paulson@1553
   313
by (dtac le_less_trans 1 THEN atac 1);
wenzelm@4089
   314
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1);
paulson@1553
   315
by (etac disjE 1);
paulson@1553
   316
by (etac less_asym 1 THEN atac 1);
paulson@1553
   317
by (hyp_subst_tac 1);
paulson@1553
   318
by (Asm_full_simp_tac 1);
nipkow@1531
   319
val lemma = result();
nipkow@1531
   320
nipkow@1531
   321
goalw Finite.thy [card_def]
nipkow@1531
   322
  "!!A. [| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)";
paulson@1553
   323
by (etac lemma 1);
paulson@1553
   324
by (assume_tac 1);
nipkow@1531
   325
qed "card_insert_disjoint";
paulson@3352
   326
Addsimps [card_insert_disjoint];
paulson@3352
   327
paulson@3352
   328
goal Finite.thy  "!!A. finite A ==> !B. B <= A --> card(B) <= card(A)";
paulson@3352
   329
by (etac finite_induct 1);
paulson@3352
   330
by (Simp_tac 1);
paulson@3708
   331
by (Clarify_tac 1);
paulson@3352
   332
by (case_tac "x:B" 1);
nipkow@3413
   333
 by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
paulson@4153
   334
 by (SELECT_GOAL Safe_tac 1);
paulson@3352
   335
 by (rotate_tac ~1 1);
wenzelm@4089
   336
 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
paulson@3352
   337
by (rotate_tac ~1 1);
wenzelm@4089
   338
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
paulson@3352
   339
qed_spec_mp "card_mono";
paulson@3352
   340
paulson@3352
   341
goal Finite.thy "!!A B. [| finite A; finite B |]\
paulson@3352
   342
\                       ==> A Int B = {} --> card(A Un B) = card A + card B";
paulson@3352
   343
by (etac finite_induct 1);
paulson@3352
   344
by (ALLGOALS 
wenzelm@4089
   345
    (asm_simp_tac (simpset() addsimps [Int_insert_left]
nipkow@3919
   346
	                    addsplits [expand_if])));
paulson@3352
   347
qed_spec_mp "card_Un_disjoint";
paulson@3352
   348
paulson@3352
   349
goal Finite.thy "!!A. [| finite A; B<=A |] ==> card A - card B = card (A - B)";
paulson@3352
   350
by (subgoal_tac "(A-B) Un B = A" 1);
paulson@3352
   351
by (Blast_tac 2);
paulson@3457
   352
by (rtac (add_right_cancel RS iffD1) 1);
paulson@3457
   353
by (rtac (card_Un_disjoint RS subst) 1);
paulson@3457
   354
by (etac ssubst 4);
paulson@3352
   355
by (Blast_tac 3);
paulson@3352
   356
by (ALLGOALS 
paulson@3352
   357
    (asm_simp_tac
wenzelm@4089
   358
     (simpset() addsimps [add_commute, not_less_iff_le, 
paulson@3352
   359
			 add_diff_inverse, card_mono, finite_subset])));
paulson@3352
   360
qed "card_Diff_subset";
nipkow@1531
   361
paulson@1618
   362
goal Finite.thy "!!A. [| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
paulson@1618
   363
by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
paulson@1618
   364
by (assume_tac 1);
paulson@3352
   365
by (Asm_simp_tac 1);
paulson@1618
   366
qed "card_Suc_Diff";
paulson@1618
   367
paulson@1618
   368
goal Finite.thy "!!A. [| finite A; x: A |] ==> card(A-{x}) < card A";
paulson@2031
   369
by (rtac Suc_less_SucD 1);
wenzelm@4089
   370
by (asm_simp_tac (simpset() addsimps [card_Suc_Diff]) 1);
paulson@1618
   371
qed "card_Diff";
paulson@1618
   372
paulson@3389
   373
paulson@3389
   374
(*** Cardinality of the Powerset ***)
paulson@3389
   375
nipkow@1531
   376
val [major] = goal Finite.thy
nipkow@1531
   377
  "finite A ==> card(insert x A) = Suc(card(A-{x}))";
paulson@1553
   378
by (case_tac "x:A" 1);
wenzelm@4089
   379
by (asm_simp_tac (simpset() addsimps [insert_absorb]) 1);
paulson@1553
   380
by (dtac mk_disjoint_insert 1);
paulson@1553
   381
by (etac exE 1);
paulson@1553
   382
by (Asm_simp_tac 1);
paulson@1553
   383
by (rtac card_insert_disjoint 1);
paulson@1553
   384
by (rtac (major RSN (2,finite_subset)) 1);
paulson@2922
   385
by (Blast_tac 1);
paulson@2922
   386
by (Blast_tac 1);
wenzelm@4089
   387
by (asm_simp_tac (simpset() addsimps [major RS card_insert_disjoint]) 1);
nipkow@1531
   388
qed "card_insert";
nipkow@1531
   389
Addsimps [card_insert];
nipkow@1531
   390
paulson@3340
   391
goal Finite.thy "!!A. finite(A) ==> inj_onto f A --> card (f `` A) = card A";
paulson@3340
   392
by (etac finite_induct 1);
paulson@3340
   393
by (ALLGOALS Asm_simp_tac);
paulson@3724
   394
by Safe_tac;
paulson@3457
   395
by (rewtac inj_onto_def);
paulson@3340
   396
by (Blast_tac 1);
paulson@3340
   397
by (stac card_insert_disjoint 1);
paulson@3340
   398
by (etac finite_imageI 1);
paulson@3340
   399
by (Blast_tac 1);
paulson@3340
   400
by (Blast_tac 1);
paulson@3340
   401
qed_spec_mp "card_image";
paulson@3340
   402
paulson@3389
   403
goal thy "!!A. finite A ==> card (Pow A) = 2 ^ card A";
paulson@3389
   404
by (etac finite_induct 1);
wenzelm@4089
   405
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert])));
paulson@3389
   406
by (stac card_Un_disjoint 1);
wenzelm@4089
   407
by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1]));
paulson@3389
   408
by (subgoal_tac "inj_onto (insert x) (Pow F)" 1);
wenzelm@4089
   409
by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1);
paulson@3457
   410
by (rewtac inj_onto_def);
wenzelm@4089
   411
by (blast_tac (claset() addSEs [equalityE]) 1);
paulson@3389
   412
qed "card_Pow";
paulson@3389
   413
Addsimps [card_Pow];
paulson@3340
   414
paulson@3389
   415
paulson@3389
   416
(*Proper subsets*)
nipkow@3222
   417
goalw Finite.thy [psubset_def]
nipkow@3222
   418
"!!B. finite B ==> !A. A < B --> card(A) < card(B)";
nipkow@3222
   419
by (etac finite_induct 1);
nipkow@3222
   420
by (Simp_tac 1);
paulson@3708
   421
by (Clarify_tac 1);
nipkow@3222
   422
by (case_tac "x:A" 1);
nipkow@3222
   423
(*1*)
nipkow@3413
   424
by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
nipkow@3222
   425
by (etac exE 1);
nipkow@3222
   426
by (etac conjE 1);
nipkow@3222
   427
by (hyp_subst_tac 1);
nipkow@3222
   428
by (rotate_tac ~1 1);
wenzelm@4089
   429
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
paulson@3708
   430
by (Blast_tac 1);
nipkow@3222
   431
(*2*)
nipkow@3222
   432
by (rotate_tac ~1 1);
paulson@3708
   433
by (eres_inst_tac [("P","?a<?b")] notE 1);
wenzelm@4089
   434
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
nipkow@3222
   435
by (case_tac "A=F" 1);
paulson@3708
   436
by (ALLGOALS Asm_simp_tac);
nipkow@3222
   437
qed_spec_mp "psubset_card" ;
paulson@3368
   438
paulson@3368
   439
wenzelm@3430
   440
(*Relates to equivalence classes.   Based on a theorem of F. Kammueller's.
paulson@3368
   441
  The "finite C" premise is redundant*)
paulson@3368
   442
goal thy "!!C. finite C ==> finite (Union C) --> \
paulson@3368
   443
\          (! c : C. k dvd card c) -->  \
paulson@3368
   444
\          (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
paulson@3368
   445
\          --> k dvd card(Union C)";
paulson@3368
   446
by (etac finite_induct 1);
paulson@3368
   447
by (ALLGOALS Asm_simp_tac);
paulson@3708
   448
by (Clarify_tac 1);
paulson@3368
   449
by (stac card_Un_disjoint 1);
paulson@3368
   450
by (ALLGOALS
wenzelm@4089
   451
    (asm_full_simp_tac (simpset()
paulson@3368
   452
			 addsimps [dvd_add, disjoint_eq_subset_Compl])));
paulson@3368
   453
by (thin_tac "!c:F. ?PP(c)" 1);
paulson@3368
   454
by (thin_tac "!c:F. ?PP(c) & ?QQ(c)" 1);
paulson@3708
   455
by (Clarify_tac 1);
paulson@3368
   456
by (ball_tac 1);
paulson@3368
   457
by (Blast_tac 1);
paulson@3368
   458
qed_spec_mp "dvd_partition";
paulson@3368
   459