src/HOL/simpdata.ML
author oheimb
Fri Nov 07 18:05:25 1997 +0100 (1997-11-07 ago)
changeset 4189 b8c7a6bc6c16
parent 4188 1025a27b08f9
child 4205 96632970d203
permissions -rw-r--r--
added split_prem_tac
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Instantiation of the generic simplifier
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
clasohm@923
    11
open Simplifier;
clasohm@923
    12
paulson@1984
    13
(*** Addition of rules to simpsets and clasets simultaneously ***)
paulson@1984
    14
paulson@1984
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to 
paulson@2031
    16
        the Safe Intr     rule B==>A and 
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
paulson@1984
    23
  fun addIff th = 
paulson@1984
    24
      (case HOLogic.dest_Trueprop (#prop(rep_thm th)) of
paulson@2718
    25
                (Const("Not",_) $ A) =>
paulson@2031
    26
                    AddSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
paulson@2031
    28
                    if con=iff_const
paulson@2031
    29
                    then (AddSIs [zero_var_indexes (th RS iffD2)];  
paulson@2031
    30
                          AddSDs [zero_var_indexes (th RS iffD1)])
paulson@2031
    31
                    else  AddSIs [th]
paulson@2031
    32
              | _ => AddSIs [th];
paulson@1984
    33
       Addsimps [th])
paulson@1984
    34
      handle _ => error ("AddIffs: theorem must be unconditional\n" ^ 
paulson@2031
    35
                         string_of_thm th)
paulson@1984
    36
paulson@1984
    37
  fun delIff th = 
paulson@1984
    38
      (case HOLogic.dest_Trueprop (#prop(rep_thm th)) of
paulson@2718
    39
                (Const("Not",_) $ A) =>
paulson@2031
    40
                    Delrules [zero_var_indexes (th RS notE)]
paulson@2031
    41
              | (con $ _ $ _) =>
paulson@2031
    42
                    if con=iff_const
paulson@2031
    43
                    then Delrules [zero_var_indexes (th RS iffD2),
paulson@3518
    44
                                   make_elim (zero_var_indexes (th RS iffD1))]
paulson@2031
    45
                    else Delrules [th]
paulson@2031
    46
              | _ => Delrules [th];
paulson@1984
    47
       Delsimps [th])
paulson@1984
    48
      handle _ => warning("DelIffs: ignoring conditional theorem\n" ^ 
paulson@2031
    49
                          string_of_thm th)
paulson@1984
    50
in
paulson@1984
    51
val AddIffs = seq addIff
paulson@1984
    52
val DelIffs = seq delIff
paulson@1984
    53
end;
paulson@1984
    54
paulson@1984
    55
clasohm@923
    56
local
clasohm@923
    57
paulson@2935
    58
  fun prover s = prove_goal HOL.thy s (fn _ => [blast_tac HOL_cs 1]);
clasohm@923
    59
paulson@1922
    60
  val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
paulson@1922
    61
  val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
clasohm@923
    62
paulson@1922
    63
  val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
paulson@1922
    64
  val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;
clasohm@923
    65
paulson@1922
    66
  fun atomize pairs =
paulson@1922
    67
    let fun atoms th =
paulson@2031
    68
          (case concl_of th of
paulson@2031
    69
             Const("Trueprop",_) $ p =>
paulson@2031
    70
               (case head_of p of
paulson@2031
    71
                  Const(a,_) =>
paulson@2031
    72
                    (case assoc(pairs,a) of
paulson@2031
    73
                       Some(rls) => flat (map atoms ([th] RL rls))
paulson@2031
    74
                     | None => [th])
paulson@2031
    75
                | _ => [th])
paulson@2031
    76
           | _ => [th])
paulson@1922
    77
    in atoms end;
clasohm@923
    78
nipkow@2134
    79
  fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
nipkow@2134
    80
nipkow@2134
    81
in
nipkow@2134
    82
nipkow@3896
    83
  fun mk_meta_eq r = r RS eq_reflection;
nipkow@3896
    84
nipkow@3896
    85
  fun mk_meta_eq_simp r = case concl_of r of
paulson@2031
    86
          Const("==",_)$_$_ => r
nipkow@3896
    87
      |   _$(Const("op =",_)$lhs$rhs) =>
nipkow@4117
    88
             (case fst(Logic.rewrite_rule_ok (#sign(rep_thm r)) (prems_of r) lhs rhs) of
nipkow@3896
    89
                None => mk_meta_eq r
nipkow@3896
    90
              | Some _ => r RS P_imp_P_eq_True)
paulson@2718
    91
      |   _$(Const("Not",_)$_) => r RS not_P_imp_P_eq_False
paulson@1922
    92
      |   _ => r RS P_imp_P_eq_True;
paulson@1922
    93
  (* last 2 lines requires all formulae to be of the from Trueprop(.) *)
clasohm@923
    94
paulson@2082
    95
val simp_thms = map prover
paulson@2082
    96
 [ "(x=x) = True",
paulson@2082
    97
   "(~True) = False", "(~False) = True", "(~ ~ P) = P",
paulson@2082
    98
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
paulson@2082
    99
   "(True=P) = P", "(P=True) = P",
paulson@2082
   100
   "(True --> P) = P", "(False --> P) = True", 
paulson@2082
   101
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
   102
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
paulson@2082
   103
   "(P & True) = P", "(True & P) = P", 
nipkow@2800
   104
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   105
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@3913
   106
   "(P & ~P) = False",    "(~P & P) = False",
paulson@2082
   107
   "(P | True) = True", "(True | P) = True", 
nipkow@2800
   108
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   109
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@3913
   110
   "(P | ~P) = True",    "(~P | P) = True",
paulson@2082
   111
   "((~P) = (~Q)) = (P=Q)",
wenzelm@3842
   112
   "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x", 
nipkow@3573
   113
   "(? x. x=t & P(x)) = P(t)",
nipkow@3568
   114
   "(! x. t=x --> P(x)) = P(t)" ];
clasohm@923
   115
lcp@988
   116
(*Add congruence rules for = (instead of ==) *)
oheimb@2636
   117
infix 4 addcongs delcongs;
wenzelm@3559
   118
fun ss addcongs congs = ss addeqcongs (map standard (congs RL [eq_reflection]));
wenzelm@3559
   119
fun ss delcongs congs = ss deleqcongs (map standard (congs RL [eq_reflection]));
clasohm@923
   120
wenzelm@4086
   121
fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
wenzelm@4086
   122
fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);
clasohm@1264
   123
nipkow@3896
   124
fun mksimps pairs = map mk_meta_eq_simp o atomize pairs o gen_all;
clasohm@923
   125
paulson@1922
   126
val imp_cong = impI RSN
paulson@1922
   127
    (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@2935
   128
        (fn _=> [blast_tac HOL_cs 1]) RS mp RS mp);
paulson@1922
   129
paulson@1948
   130
(*Miniscoping: pushing in existential quantifiers*)
paulson@1948
   131
val ex_simps = map prover 
wenzelm@3842
   132
                ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
wenzelm@3842
   133
                 "(EX x. P & Q x)   = (P & (EX x. Q x))",
wenzelm@3842
   134
                 "(EX x. P x | Q)   = ((EX x. P x) | Q)",
wenzelm@3842
   135
                 "(EX x. P | Q x)   = (P | (EX x. Q x))",
wenzelm@3842
   136
                 "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
wenzelm@3842
   137
                 "(EX x. P --> Q x) = (P --> (EX x. Q x))"];
paulson@1948
   138
paulson@1948
   139
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   140
val all_simps = map prover
wenzelm@3842
   141
                ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
wenzelm@3842
   142
                 "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
wenzelm@3842
   143
                 "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
wenzelm@3842
   144
                 "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
wenzelm@3842
   145
                 "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
wenzelm@3842
   146
                 "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];
paulson@1948
   147
nipkow@4032
   148
(*** Simplification procedures for turning
nipkow@4032
   149
nipkow@4032
   150
            ? x. ... & x = t & ...
nipkow@4032
   151
     into   ? x. x = t & ... & ...
nipkow@4032
   152
     where the `? x. x = t &' in the latter formula is eliminated
nipkow@4032
   153
           by ordinary simplification. 
nipkow@4032
   154
nipkow@4032
   155
     and   ! x. (... & x = t & ...) --> P x
nipkow@4032
   156
     into  ! x. x = t --> (... & ...) --> P x
nipkow@4032
   157
     where the `!x. x=t -->' in the latter formula is eliminated
nipkow@4032
   158
           by ordinary simplification.
nipkow@4032
   159
nipkow@4032
   160
NB Simproc is only triggered by "!x. P(x) & P'(x) --> Q(x)"
nipkow@4032
   161
   "!x. x=t --> P(x)" and "!x. t=x --> P(x)"
nipkow@4032
   162
   must be taken care of by ordinary rewrite rules.
nipkow@4032
   163
***)
nipkow@3568
   164
nipkow@3568
   165
local
nipkow@3568
   166
nipkow@3568
   167
fun def(eq as (c as Const("op =",_)) $ s $ t) =
nipkow@3568
   168
      if s = Bound 0 andalso not(loose_bvar1(t,0)) then Some eq else
nipkow@3568
   169
      if t = Bound 0 andalso not(loose_bvar1(s,0)) then Some(c$t$s)
nipkow@3568
   170
      else None
nipkow@3568
   171
  | def _ = None;
nipkow@3568
   172
nipkow@3568
   173
fun extract(Const("op &",_) $ P $ Q) =
nipkow@3568
   174
      (case def P of
nipkow@3568
   175
         Some eq => Some(eq,Q)
nipkow@3568
   176
       | None => (case def Q of
nipkow@3568
   177
                   Some eq => Some(eq,P)
nipkow@3568
   178
                 | None =>
nipkow@3568
   179
       (case extract P of
nipkow@3568
   180
         Some(eq,P') => Some(eq, HOLogic.conj $ P' $ Q)
nipkow@3568
   181
       | None => (case extract Q of
nipkow@3568
   182
                   Some(eq,Q') => Some(eq,HOLogic.conj $ P $ Q')
nipkow@3568
   183
                 | None => None))))
nipkow@3568
   184
  | extract _ = None;
nipkow@3568
   185
nipkow@4032
   186
fun prove_ex_eq(ceqt) =
nipkow@3568
   187
  let val tac = rtac eq_reflection 1 THEN rtac iffI 1 THEN
nipkow@3568
   188
                ALLGOALS(EVERY'[etac exE, REPEAT o (etac conjE),
nipkow@3568
   189
                 rtac exI, REPEAT o (ares_tac [conjI] ORELSE' etac sym)])
nipkow@3568
   190
  in rule_by_tactic tac (trivial ceqt) end;
nipkow@3568
   191
nipkow@4032
   192
fun rearrange_ex sg _ (F as ex $ Abs(x,T,P)) =
nipkow@3568
   193
     (case extract P of
nipkow@3568
   194
        None => None
nipkow@3568
   195
      | Some(eq,Q) =>
nipkow@3568
   196
          let val ceqt = cterm_of sg
nipkow@3568
   197
                       (Logic.mk_equals(F,ex $ Abs(x,T,HOLogic.conj$eq$Q)))
nipkow@4032
   198
          in Some(prove_ex_eq ceqt) end)
nipkow@4032
   199
  | rearrange_ex _ _ _ = None;
nipkow@4032
   200
nipkow@4032
   201
val ex_pattern =
nipkow@4032
   202
  read_cterm (sign_of HOL.thy) ("? x. P(x) & Q(x)",HOLogic.boolT)
nipkow@3568
   203
nipkow@4032
   204
fun prove_all_eq(ceqt) =
nipkow@4032
   205
  let fun tac _ = [EVERY1[rtac eq_reflection, rtac iffI,
nipkow@4032
   206
                       rtac allI, etac allE, rtac impI, rtac impI, etac mp,
nipkow@4032
   207
                          REPEAT o (etac conjE),
nipkow@4032
   208
                          REPEAT o (ares_tac [conjI] ORELSE' etac sym),
nipkow@4032
   209
                       rtac allI, etac allE, rtac impI, REPEAT o (etac conjE),
nipkow@4032
   210
                          etac impE, atac ORELSE' etac sym, etac mp,
nipkow@4032
   211
                          REPEAT o (ares_tac [conjI])]]
nipkow@4032
   212
  in prove_goalw_cterm [] ceqt tac end;
nipkow@4032
   213
nipkow@4032
   214
fun rearrange_all sg _ (F as all $ Abs(x,T,Const("op -->",_)$P$Q)) =
nipkow@4032
   215
     (case extract P of
nipkow@4032
   216
        None => None
nipkow@4032
   217
      | Some(eq,P') =>
nipkow@4032
   218
          let val R = HOLogic.imp $ eq $ (HOLogic.imp $ P' $ Q)
nipkow@4032
   219
              val ceqt = cterm_of sg (Logic.mk_equals(F,all$Abs(x,T,R)))
nipkow@4032
   220
          in Some(prove_all_eq ceqt) end)
nipkow@4032
   221
  | rearrange_all _ _ _ = None;
nipkow@4032
   222
nipkow@4032
   223
val all_pattern =
nipkow@4032
   224
  read_cterm (sign_of HOL.thy) ("! x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)
nipkow@3568
   225
nipkow@3568
   226
in
nipkow@4032
   227
val defEX_regroup = mk_simproc "defined EX" [ex_pattern] rearrange_ex;
nipkow@4032
   228
val defALL_regroup = mk_simproc "defined ALL" [all_pattern] rearrange_all;
nipkow@3568
   229
end;
berghofe@1722
   230
clasohm@923
   231
paulson@2022
   232
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   233
clasohm@923
   234
val ex_all_equiv =
clasohm@923
   235
  let val lemma1 = prove_goal HOL.thy
clasohm@923
   236
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   237
        (fn prems => [resolve_tac prems 1, etac exI 1]);
clasohm@923
   238
      val lemma2 = prove_goalw HOL.thy [Ex_def]
clasohm@923
   239
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
clasohm@923
   240
        (fn prems => [REPEAT(resolve_tac prems 1)])
clasohm@923
   241
  in equal_intr lemma1 lemma2 end;
clasohm@923
   242
clasohm@923
   243
end;
clasohm@923
   244
nipkow@3654
   245
(* Elimination of True from asumptions: *)
nipkow@3654
   246
nipkow@3654
   247
val True_implies_equals = prove_goal HOL.thy
nipkow@3654
   248
 "(True ==> PROP P) == PROP P"
nipkow@3654
   249
(fn _ => [rtac equal_intr_rule 1, atac 2,
nipkow@3654
   250
          METAHYPS (fn prems => resolve_tac prems 1) 1,
nipkow@3654
   251
          rtac TrueI 1]);
nipkow@3654
   252
paulson@2935
   253
fun prove nm thm  = qed_goal nm HOL.thy thm (fn _ => [blast_tac HOL_cs 1]);
clasohm@923
   254
clasohm@923
   255
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   256
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   257
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   258
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   259
paulson@1922
   260
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   261
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   262
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   263
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   264
clasohm@923
   265
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   266
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   267
paulson@1892
   268
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   269
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   270
nipkow@2134
   271
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   272
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   273
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   274
paulson@3448
   275
(*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
paulson@3448
   276
prove "imp_disj_not1" "((P --> Q | R)) = (~Q --> P --> R)";
paulson@3448
   277
prove "imp_disj_not2" "((P --> Q | R)) = (~R --> P --> Q)";
paulson@3448
   278
paulson@3904
   279
prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
paulson@3904
   280
prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";
paulson@3904
   281
nipkow@1485
   282
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   283
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@3446
   284
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
paulson@1922
   285
prove "not_iff" "(P~=Q) = (P = (~Q))";
nipkow@1485
   286
nipkow@2134
   287
(*Avoids duplication of subgoals after expand_if, when the true and false 
nipkow@2134
   288
  cases boil down to the same thing.*) 
nipkow@2134
   289
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   290
wenzelm@3842
   291
prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
paulson@1922
   292
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
wenzelm@3842
   293
prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
paulson@1922
   294
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   295
nipkow@1655
   296
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   297
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   298
nipkow@2134
   299
(* '&' congruence rule: not included by default!
nipkow@2134
   300
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   301
nipkow@2134
   302
let val th = prove_goal HOL.thy 
nipkow@2134
   303
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
paulson@2935
   304
                (fn _=> [blast_tac HOL_cs 1])
nipkow@2134
   305
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   306
nipkow@2134
   307
let val th = prove_goal HOL.thy 
nipkow@2134
   308
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
paulson@2935
   309
                (fn _=> [blast_tac HOL_cs 1])
nipkow@2134
   310
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   311
nipkow@2134
   312
(* '|' congruence rule: not included by default! *)
nipkow@2134
   313
nipkow@2134
   314
let val th = prove_goal HOL.thy 
nipkow@2134
   315
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
paulson@2935
   316
                (fn _=> [blast_tac HOL_cs 1])
nipkow@2134
   317
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   318
nipkow@2134
   319
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   320
nipkow@2134
   321
qed_goalw "o_apply" HOL.thy [o_def] "(f o g) x = f (g x)"
nipkow@2134
   322
 (fn _ => [rtac refl 1]);
nipkow@2134
   323
nipkow@2134
   324
qed_goal "meta_eq_to_obj_eq" HOL.thy "x==y ==> x=y"
nipkow@2134
   325
  (fn [prem] => [rewtac prem, rtac refl 1]);
nipkow@2134
   326
nipkow@2134
   327
qed_goalw "if_True" HOL.thy [if_def] "(if True then x else y) = x"
paulson@2935
   328
 (fn _=>[blast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   329
nipkow@2134
   330
qed_goalw "if_False" HOL.thy [if_def] "(if False then x else y) = y"
paulson@2935
   331
 (fn _=>[blast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   332
nipkow@2134
   333
qed_goal "if_P" HOL.thy "P ==> (if P then x else y) = x"
nipkow@2134
   334
 (fn [prem] => [ stac (prem RS eqTrueI) 1, rtac if_True 1 ]);
nipkow@2134
   335
(*
nipkow@2134
   336
qed_goal "if_not_P" HOL.thy "~P ==> (if P then x else y) = y"
nipkow@2134
   337
 (fn [prem] => [ stac (prem RS not_P_imp_P_iff_F) 1, rtac if_False 1 ]);
nipkow@2134
   338
*)
nipkow@2134
   339
qed_goalw "if_not_P" HOL.thy [if_def] "!!P. ~P ==> (if P then x else y) = y"
paulson@2935
   340
 (fn _ => [blast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   341
nipkow@2134
   342
qed_goal "expand_if" HOL.thy
nipkow@2134
   343
    "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
nipkow@2134
   344
 (fn _=> [ (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1),
nipkow@2134
   345
         stac if_P 2,
nipkow@2134
   346
         stac if_not_P 1,
paulson@2935
   347
         REPEAT(blast_tac HOL_cs 1) ]);
nipkow@2134
   348
nipkow@2134
   349
qed_goal "if_bool_eq" HOL.thy
nipkow@2134
   350
                   "(if P then Q else R) = ((P-->Q) & (~P-->R))"
nipkow@2134
   351
                   (fn _ => [rtac expand_if 1]);
nipkow@2134
   352
paulson@3913
   353
paulson@3913
   354
paulson@3913
   355
(** Case splitting **)
paulson@3913
   356
oheimb@2263
   357
local val mktac = mk_case_split_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   358
in
oheimb@2263
   359
fun split_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   360
end;
oheimb@2263
   361
oheimb@2263
   362
local val mktac = mk_case_split_inside_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   363
in
oheimb@2263
   364
fun split_inside_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   365
end;
oheimb@2263
   366
oheimb@4189
   367
val split_prem_tac = mk_case_split_prem_tac split_tac disjE conjE exE contrapos
oheimb@4189
   368
					    contrapos2 notnotD;
oheimb@4189
   369
nipkow@3919
   370
infix 4 addsplits;
nipkow@3919
   371
fun ss addsplits splits = ss addloop (split_tac splits);
nipkow@3919
   372
oheimb@2263
   373
oheimb@2251
   374
qed_goal "if_cancel" HOL.thy "(if c then x else x) = x"
paulson@2935
   375
  (fn _ => [split_tac [expand_if] 1, blast_tac HOL_cs 1]);
oheimb@2251
   376
nipkow@2134
   377
(** 'if' congruence rules: neither included by default! *)
nipkow@2134
   378
nipkow@2134
   379
(*Simplifies x assuming c and y assuming ~c*)
nipkow@2134
   380
qed_goal "if_cong" HOL.thy
nipkow@2134
   381
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
nipkow@2134
   382
\  (if b then x else y) = (if c then u else v)"
nipkow@2134
   383
  (fn rew::prems =>
nipkow@2134
   384
   [stac rew 1, stac expand_if 1, stac expand_if 1,
paulson@2935
   385
    blast_tac (HOL_cs addDs prems) 1]);
nipkow@2134
   386
nipkow@2134
   387
(*Prevents simplification of x and y: much faster*)
nipkow@2134
   388
qed_goal "if_weak_cong" HOL.thy
nipkow@2134
   389
  "b=c ==> (if b then x else y) = (if c then x else y)"
nipkow@2134
   390
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   391
nipkow@2134
   392
(*Prevents simplification of t: much faster*)
nipkow@2134
   393
qed_goal "let_weak_cong" HOL.thy
nipkow@2134
   394
  "a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
nipkow@2134
   395
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   396
nipkow@2134
   397
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   398
  might cause exponential blow-up.  But imp_disjL has been in for a while
nipkow@2134
   399
  and cannot be removed without affecting existing proofs.  Moreover, 
nipkow@2134
   400
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   401
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   402
nipkow@2134
   403
val mksimps_pairs =
nipkow@2134
   404
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   405
   ("All", [spec]), ("True", []), ("False", []),
nipkow@2134
   406
   ("If", [if_bool_eq RS iffD1])];
nipkow@1758
   407
oheimb@2636
   408
fun unsafe_solver prems = FIRST'[resolve_tac (TrueI::refl::prems),
oheimb@2636
   409
				 atac, etac FalseE];
oheimb@2636
   410
(*No premature instantiation of variables during simplification*)
oheimb@2636
   411
fun   safe_solver prems = FIRST'[match_tac (TrueI::refl::prems),
oheimb@2636
   412
				 eq_assume_tac, ematch_tac [FalseE]];
oheimb@2443
   413
oheimb@2636
   414
val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
oheimb@2636
   415
			    setSSolver   safe_solver
oheimb@2636
   416
			    setSolver  unsafe_solver
oheimb@2636
   417
			    setmksimps (mksimps mksimps_pairs);
oheimb@2443
   418
paulson@3446
   419
val HOL_ss = 
paulson@3446
   420
    HOL_basic_ss addsimps 
paulson@3446
   421
     ([triv_forall_equality, (* prunes params *)
nipkow@3654
   422
       True_implies_equals, (* prune asms `True' *)
paulson@3446
   423
       if_True, if_False, if_cancel,
paulson@3446
   424
       o_apply, imp_disjL, conj_assoc, disj_assoc,
paulson@3904
   425
       de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
paulson@3446
   426
       not_all, not_ex, cases_simp]
paulson@3446
   427
     @ ex_simps @ all_simps @ simp_thms)
nipkow@4032
   428
     addsimprocs [defALL_regroup,defEX_regroup]
paulson@3446
   429
     addcongs [imp_cong];
paulson@2082
   430
nipkow@1655
   431
qed_goal "if_distrib" HOL.thy
nipkow@1655
   432
  "f(if c then x else y) = (if c then f x else f y)" 
nipkow@1655
   433
  (fn _ => [simp_tac (HOL_ss setloop (split_tac [expand_if])) 1]);
nipkow@1655
   434
oheimb@2097
   435
qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = f o g o h"
oheimb@2098
   436
  (fn _ => [rtac ext 1, rtac refl 1]);
paulson@1984
   437
paulson@1984
   438
paulson@2948
   439
val prems = goal HOL.thy "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
paulson@2948
   440
by (case_tac "P" 1);
paulson@2948
   441
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
paulson@2948
   442
val expand_case = result();
paulson@2948
   443
paulson@2948
   444
fun expand_case_tac P i =
paulson@2948
   445
    res_inst_tac [("P",P)] expand_case i THEN
paulson@2948
   446
    Simp_tac (i+1) THEN 
paulson@2948
   447
    Simp_tac i;
paulson@2948
   448
paulson@2948
   449
wenzelm@4119
   450
(* install implicit simpset *)
paulson@1984
   451
wenzelm@4086
   452
simpset_ref() := HOL_ss;
paulson@1984
   453
berghofe@3615
   454
oheimb@2636
   455
(*** Integration of simplifier with classical reasoner ***)
oheimb@2636
   456
oheimb@2636
   457
(* rot_eq_tac rotates the first equality premise of subgoal i to the front,
oheimb@2636
   458
   fails if there is no equaliy or if an equality is already at the front *)
paulson@3538
   459
local
paulson@3538
   460
  fun is_eq (Const ("Trueprop", _) $ (Const("op ="  ,_) $ _ $ _)) = true
paulson@3538
   461
    | is_eq _ = false;
oheimb@4188
   462
  val find_eq = find_index is_eq;
paulson@3538
   463
in
paulson@3538
   464
val rot_eq_tac = 
oheimb@4188
   465
     SUBGOAL (fn (Bi,i) => let val n = find_eq (Logic.strip_assums_hyp Bi) in
oheimb@4188
   466
		if n>0 then rotate_tac n i else no_tac end)
paulson@3538
   467
end;
oheimb@2636
   468
oheimb@2636
   469
(*an unsatisfactory fix for the incomplete asm_full_simp_tac!
oheimb@2636
   470
  better: asm_really_full_simp_tac, a yet to be implemented version of
oheimb@2636
   471
			asm_full_simp_tac that applies all equalities in the
oheimb@2636
   472
			premises to all the premises *)
oheimb@2636
   473
fun safe_asm_more_full_simp_tac ss = TRY o rot_eq_tac THEN' 
oheimb@2636
   474
				     safe_asm_full_simp_tac ss;
oheimb@2636
   475
oheimb@2636
   476
(*Add a simpset to a classical set!*)
oheimb@3206
   477
infix 4 addSss addss;
oheimb@3206
   478
fun cs addSss ss = cs addSaltern (CHANGED o (safe_asm_more_full_simp_tac ss));
oheimb@3206
   479
fun cs addss  ss = cs addbefore                        asm_full_simp_tac ss;
oheimb@2636
   480
wenzelm@4086
   481
fun Addss ss = (claset_ref() := claset() addss ss);
oheimb@2636
   482
oheimb@2636
   483
(*Designed to be idempotent, except if best_tac instantiates variables
oheimb@2636
   484
  in some of the subgoals*)
oheimb@2636
   485
oheimb@2636
   486
type clasimpset = (claset * simpset);
oheimb@2636
   487
oheimb@2636
   488
val HOL_css = (HOL_cs, HOL_ss);
oheimb@2636
   489
oheimb@2636
   490
fun pair_upd1 f ((a,b),x) = (f(a,x), b);
oheimb@2636
   491
fun pair_upd2 f ((a,b),x) = (a, f(b,x));
oheimb@2636
   492
oheimb@2636
   493
infix 4 addSIs2 addSEs2 addSDs2 addIs2 addEs2 addDs2
oheimb@2636
   494
	addsimps2 delsimps2 addcongs2 delcongs2;
paulson@2748
   495
fun op addSIs2   arg = pair_upd1 (op addSIs) arg;
paulson@2748
   496
fun op addSEs2   arg = pair_upd1 (op addSEs) arg;
paulson@2748
   497
fun op addSDs2   arg = pair_upd1 (op addSDs) arg;
paulson@2748
   498
fun op addIs2    arg = pair_upd1 (op addIs ) arg;
paulson@2748
   499
fun op addEs2    arg = pair_upd1 (op addEs ) arg;
paulson@2748
   500
fun op addDs2    arg = pair_upd1 (op addDs ) arg;
paulson@2748
   501
fun op addsimps2 arg = pair_upd2 (op addsimps) arg;
paulson@2748
   502
fun op delsimps2 arg = pair_upd2 (op delsimps) arg;
paulson@2748
   503
fun op addcongs2 arg = pair_upd2 (op addcongs) arg;
paulson@2748
   504
fun op delcongs2 arg = pair_upd2 (op delcongs) arg;
oheimb@2636
   505
paulson@2805
   506
fun auto_tac (cs,ss) = 
paulson@2805
   507
    let val cs' = cs addss ss 
paulson@2805
   508
    in  EVERY [TRY (safe_tac cs'),
paulson@2805
   509
	       REPEAT (FIRSTGOAL (fast_tac cs')),
oheimb@3206
   510
               TRY (safe_tac (cs addSss ss)),
paulson@2805
   511
	       prune_params_tac] 
paulson@2805
   512
    end;
oheimb@2636
   513
wenzelm@4086
   514
fun Auto_tac () = auto_tac (claset(), simpset());
oheimb@2636
   515
oheimb@2636
   516
fun auto () = by (Auto_tac ());