src/HOL/Imperative_HOL/Array.thy
author krauss
Tue Jul 13 12:00:11 2010 +0200 (2010-07-13 ago)
changeset 37792 ba0bc31b90d7
parent 37787 30dc3abf4a58
child 37797 96551d6b1414
permissions -rw-r--r--
Heap_Monad uses Monad_Syntax
haftmann@31870
     1
(*  Title:      HOL/Imperative_HOL/Array.thy
haftmann@26170
     2
    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
haftmann@26170
     3
*)
haftmann@26170
     4
haftmann@26170
     5
header {* Monadic arrays *}
haftmann@26170
     6
haftmann@26170
     7
theory Array
haftmann@31203
     8
imports Heap_Monad
haftmann@26170
     9
begin
haftmann@26170
    10
haftmann@37752
    11
subsection {* Primitives *}
haftmann@37719
    12
haftmann@37752
    13
definition (*FIXME present :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> bool" where*)
haftmann@37719
    14
  array_present :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> bool" where
haftmann@37719
    15
  "array_present a h \<longleftrightarrow> addr_of_array a < lim h"
haftmann@37719
    16
haftmann@37752
    17
definition (*FIXME get :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a list" where*)
haftmann@37719
    18
  get_array :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> 'a list" where
haftmann@37719
    19
  "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))"
haftmann@37719
    20
haftmann@37752
    21
definition (*FIXME set*)
haftmann@37719
    22
  set_array :: "'a\<Colon>heap array \<Rightarrow> 'a list \<Rightarrow> heap \<Rightarrow> heap" where
haftmann@37719
    23
  "set_array a x = 
haftmann@37719
    24
  arrays_update (\<lambda>h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))"
haftmann@37719
    25
haftmann@37752
    26
definition (*FIXME alloc*)
haftmann@37752
    27
  array :: "'a list \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
haftmann@37719
    28
  "array xs h = (let
haftmann@37719
    29
     l = lim h;
haftmann@37719
    30
     r = Array l;
haftmann@37719
    31
     h'' = set_array r xs (h\<lparr>lim := l + 1\<rparr>)
haftmann@37719
    32
   in (r, h''))"
haftmann@37719
    33
haftmann@37752
    34
definition (*FIXME length :: "heap \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> nat" where*)
haftmann@37752
    35
  length :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> nat" where
haftmann@37719
    36
  "length a h = List.length (get_array a h)"
haftmann@37719
    37
  
haftmann@37752
    38
definition (*FIXME update*)
haftmann@37752
    39
  change :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
haftmann@37719
    40
  "change a i x h = set_array a ((get_array a h)[i:=x]) h"
haftmann@37719
    41
haftmann@37752
    42
definition (*FIXME noteq*)
haftmann@37752
    43
  noteq_arrs :: "'a\<Colon>heap array \<Rightarrow> 'b\<Colon>heap array \<Rightarrow> bool" (infix "=!!=" 70) where
haftmann@37752
    44
  "r =!!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_array r \<noteq> addr_of_array s"
haftmann@37752
    45
haftmann@37752
    46
haftmann@37752
    47
subsection {* Monad operations *}
haftmann@37752
    48
haftmann@37752
    49
definition new :: "nat \<Rightarrow> 'a\<Colon>heap \<Rightarrow> 'a array Heap" where
haftmann@37752
    50
  [code del]: "new n x = Heap_Monad.heap (array (replicate n x))"
haftmann@37752
    51
haftmann@37752
    52
definition of_list :: "'a\<Colon>heap list \<Rightarrow> 'a array Heap" where
haftmann@37752
    53
  [code del]: "of_list xs = Heap_Monad.heap (array xs)"
haftmann@37752
    54
haftmann@37752
    55
definition make :: "nat \<Rightarrow> (nat \<Rightarrow> 'a\<Colon>heap) \<Rightarrow> 'a array Heap" where
haftmann@37752
    56
  [code del]: "make n f = Heap_Monad.heap (array (map f [0 ..< n]))"
haftmann@37752
    57
haftmann@37752
    58
definition len :: "'a\<Colon>heap array \<Rightarrow> nat Heap" where
haftmann@37758
    59
  [code del]: "len a = Heap_Monad.tap (\<lambda>h. length a h)"
haftmann@37752
    60
haftmann@37752
    61
definition nth :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a Heap" where
haftmann@37752
    62
  [code del]: "nth a i = Heap_Monad.guard (\<lambda>h. i < length a h)
haftmann@37752
    63
    (\<lambda>h. (get_array a h ! i, h))"
haftmann@37752
    64
haftmann@37752
    65
definition upd :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a\<Colon>heap array Heap" where
haftmann@37752
    66
  [code del]: "upd i x a = Heap_Monad.guard (\<lambda>h. i < length a h)
haftmann@37752
    67
    (\<lambda>h. (a, change a i x h))"
haftmann@37752
    68
haftmann@37752
    69
definition map_entry :: "nat \<Rightarrow> ('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap" where
haftmann@37752
    70
  [code del]: "map_entry i f a = Heap_Monad.guard (\<lambda>h. i < length a h)
haftmann@37752
    71
    (\<lambda>h. (a, change a i (f (get_array a h ! i)) h))"
haftmann@37752
    72
haftmann@37752
    73
definition swap :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a Heap" where
haftmann@37752
    74
  [code del]: "swap i x a = Heap_Monad.guard (\<lambda>h. i < length a h)
haftmann@37752
    75
    (\<lambda>h. (get_array a h ! i, change a i x h))"
haftmann@37752
    76
haftmann@37752
    77
definition freeze :: "'a\<Colon>heap array \<Rightarrow> 'a list Heap" where
haftmann@37758
    78
  [code del]: "freeze a = Heap_Monad.tap (\<lambda>h. get_array a h)"
haftmann@37752
    79
haftmann@37752
    80
haftmann@37752
    81
subsection {* Properties *}
haftmann@37719
    82
haftmann@37719
    83
text {* FIXME: Does there exist a "canonical" array axiomatisation in
haftmann@37719
    84
the literature?  *}
haftmann@37719
    85
haftmann@37758
    86
text {* Primitives *}
haftmann@37758
    87
haftmann@37719
    88
lemma noteq_arrs_sym: "a =!!= b \<Longrightarrow> b =!!= a"
haftmann@37719
    89
  and unequal_arrs [simp]: "a \<noteq> a' \<longleftrightarrow> a =!!= a'"
haftmann@37719
    90
  unfolding noteq_arrs_def by auto
haftmann@37719
    91
haftmann@37719
    92
lemma noteq_arrs_irrefl: "r =!!= r \<Longrightarrow> False"
haftmann@37719
    93
  unfolding noteq_arrs_def by auto
haftmann@37719
    94
haftmann@37719
    95
lemma present_new_arr: "array_present a h \<Longrightarrow> a =!!= fst (array xs h)"
haftmann@37719
    96
  by (simp add: array_present_def noteq_arrs_def array_def Let_def)
haftmann@37719
    97
haftmann@37719
    98
lemma array_get_set_eq [simp]: "get_array r (set_array r x h) = x"
haftmann@37719
    99
  by (simp add: get_array_def set_array_def o_def)
haftmann@37719
   100
haftmann@37719
   101
lemma array_get_set_neq [simp]: "r =!!= s \<Longrightarrow> get_array r (set_array s x h) = get_array r h"
haftmann@37719
   102
  by (simp add: noteq_arrs_def get_array_def set_array_def)
haftmann@37719
   103
haftmann@37719
   104
lemma set_array_same [simp]:
haftmann@37719
   105
  "set_array r x (set_array r y h) = set_array r x h"
haftmann@37719
   106
  by (simp add: set_array_def)
haftmann@37719
   107
haftmann@37719
   108
lemma array_set_set_swap:
haftmann@37719
   109
  "r =!!= r' \<Longrightarrow> set_array r x (set_array r' x' h) = set_array r' x' (set_array r x h)"
haftmann@37719
   110
  by (simp add: Let_def expand_fun_eq noteq_arrs_def set_array_def)
haftmann@37719
   111
haftmann@37719
   112
lemma get_array_change_eq [simp]:
haftmann@37719
   113
  "get_array a (change a i v h) = (get_array a h) [i := v]"
haftmann@37719
   114
  by (simp add: change_def)
haftmann@37719
   115
haftmann@37719
   116
lemma nth_change_array_neq_array [simp]:
haftmann@37719
   117
  "a =!!= b \<Longrightarrow> get_array a (change b j v h) ! i = get_array a h ! i"
haftmann@37719
   118
  by (simp add: change_def noteq_arrs_def)
haftmann@37719
   119
haftmann@37719
   120
lemma get_arry_array_change_elem_neqIndex [simp]:
haftmann@37719
   121
  "i \<noteq> j \<Longrightarrow> get_array a (change a j v h) ! i = get_array a h ! i"
haftmann@37719
   122
  by simp
haftmann@37719
   123
haftmann@37719
   124
lemma length_change [simp]: 
haftmann@37719
   125
  "length a (change b i v h) = length a h"
haftmann@37719
   126
  by (simp add: change_def length_def set_array_def get_array_def)
haftmann@37719
   127
haftmann@37719
   128
lemma change_swap_neqArray:
haftmann@37719
   129
  "a =!!= a' \<Longrightarrow> 
haftmann@37719
   130
  change a i v (change a' i' v' h) 
haftmann@37719
   131
  = change a' i' v' (change a i v h)"
haftmann@37719
   132
apply (unfold change_def)
haftmann@37719
   133
apply simp
haftmann@37719
   134
apply (subst array_set_set_swap, assumption)
haftmann@37719
   135
apply (subst array_get_set_neq)
haftmann@37719
   136
apply (erule noteq_arrs_sym)
haftmann@37719
   137
apply (simp)
haftmann@37719
   138
done
haftmann@37719
   139
haftmann@37719
   140
lemma change_swap_neqIndex:
haftmann@37719
   141
  "\<lbrakk> i \<noteq> i' \<rbrakk> \<Longrightarrow> change a i v (change a i' v' h) = change a i' v' (change a i v h)"
haftmann@37719
   142
  by (auto simp add: change_def array_set_set_swap list_update_swap)
haftmann@37719
   143
haftmann@37719
   144
lemma get_array_init_array_list:
haftmann@37719
   145
  "get_array (fst (array ls h)) (snd (array ls' h)) = ls'"
haftmann@37719
   146
  by (simp add: Let_def split_def array_def)
haftmann@37719
   147
haftmann@37719
   148
lemma set_array:
haftmann@37719
   149
  "set_array (fst (array ls h))
haftmann@37719
   150
     new_ls (snd (array ls h))
haftmann@37719
   151
       = snd (array new_ls h)"
haftmann@37719
   152
  by (simp add: Let_def split_def array_def)
haftmann@37719
   153
haftmann@37719
   154
lemma array_present_change [simp]: 
haftmann@37719
   155
  "array_present a (change b i v h) = array_present a h"
haftmann@37719
   156
  by (simp add: change_def array_present_def set_array_def get_array_def)
haftmann@37719
   157
haftmann@37771
   158
lemma array_present_array [simp]:
haftmann@37771
   159
  "array_present (fst (array xs h)) (snd (array xs h))"
haftmann@37771
   160
  by (simp add: array_present_def array_def set_array_def Let_def)
haftmann@37771
   161
haftmann@37771
   162
lemma not_array_present_array [simp]:
haftmann@37771
   163
  "\<not> array_present (fst (array xs h)) h"
haftmann@37771
   164
  by (simp add: array_present_def array_def Let_def)
haftmann@37771
   165
haftmann@37758
   166
haftmann@37758
   167
text {* Monad operations *}
haftmann@37758
   168
haftmann@37787
   169
lemma execute_new [execute_simps]:
haftmann@37758
   170
  "execute (new n x) h = Some (array (replicate n x) h)"
haftmann@37787
   171
  by (simp add: new_def execute_simps)
haftmann@37758
   172
haftmann@37787
   173
lemma success_newI [success_intros]:
haftmann@37758
   174
  "success (new n x) h"
haftmann@37787
   175
  by (auto intro: success_intros simp add: new_def)
haftmann@26170
   176
haftmann@37771
   177
lemma crel_newI [crel_intros]:
haftmann@37771
   178
  assumes "(a, h') = array (replicate n x) h"
haftmann@37771
   179
  shows "crel (new n x) h h' a"
haftmann@37787
   180
  by (rule crelI) (simp add: assms execute_simps)
haftmann@37771
   181
haftmann@37771
   182
lemma crel_newE [crel_elims]:
haftmann@37771
   183
  assumes "crel (new n x) h h' r"
haftmann@37771
   184
  obtains "r = fst (array (replicate n x) h)" "h' = snd (array (replicate n x) h)" 
haftmann@37771
   185
    "get_array r h' = replicate n x" "array_present r h'" "\<not> array_present r h"
haftmann@37787
   186
  using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
haftmann@37771
   187
haftmann@37787
   188
lemma execute_of_list [execute_simps]:
haftmann@37758
   189
  "execute (of_list xs) h = Some (array xs h)"
haftmann@37787
   190
  by (simp add: of_list_def execute_simps)
haftmann@37758
   191
haftmann@37787
   192
lemma success_of_listI [success_intros]:
haftmann@37758
   193
  "success (of_list xs) h"
haftmann@37787
   194
  by (auto intro: success_intros simp add: of_list_def)
haftmann@26170
   195
haftmann@37771
   196
lemma crel_of_listI [crel_intros]:
haftmann@37771
   197
  assumes "(a, h') = array xs h"
haftmann@37771
   198
  shows "crel (of_list xs) h h' a"
haftmann@37787
   199
  by (rule crelI) (simp add: assms execute_simps)
haftmann@37771
   200
haftmann@37771
   201
lemma crel_of_listE [crel_elims]:
haftmann@37771
   202
  assumes "crel (of_list xs) h h' r"
haftmann@37771
   203
  obtains "r = fst (array xs h)" "h' = snd (array xs h)" 
haftmann@37771
   204
    "get_array r h' = xs" "array_present r h'" "\<not> array_present r h"
haftmann@37787
   205
  using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
haftmann@37771
   206
haftmann@37787
   207
lemma execute_make [execute_simps]:
haftmann@37758
   208
  "execute (make n f) h = Some (array (map f [0 ..< n]) h)"
haftmann@37787
   209
  by (simp add: make_def execute_simps)
haftmann@26170
   210
haftmann@37787
   211
lemma success_makeI [success_intros]:
haftmann@37758
   212
  "success (make n f) h"
haftmann@37787
   213
  by (auto intro: success_intros simp add: make_def)
haftmann@37758
   214
haftmann@37771
   215
lemma crel_makeI [crel_intros]:
haftmann@37771
   216
  assumes "(a, h') = array (map f [0 ..< n]) h"
haftmann@37771
   217
  shows "crel (make n f) h h' a"
haftmann@37787
   218
  by (rule crelI) (simp add: assms execute_simps)
haftmann@37771
   219
haftmann@37771
   220
lemma crel_makeE [crel_elims]:
haftmann@37771
   221
  assumes "crel (make n f) h h' r"
haftmann@37771
   222
  obtains "r = fst (array (map f [0 ..< n]) h)" "h' = snd (array (map f [0 ..< n]) h)" 
haftmann@37771
   223
    "get_array r h' = map f [0 ..< n]" "array_present r h'" "\<not> array_present r h"
haftmann@37787
   224
  using assms by (rule crelE) (simp add: get_array_init_array_list execute_simps)
haftmann@37771
   225
haftmann@37787
   226
lemma execute_len [execute_simps]:
haftmann@37758
   227
  "execute (len a) h = Some (length a h, h)"
haftmann@37787
   228
  by (simp add: len_def execute_simps)
haftmann@37758
   229
haftmann@37787
   230
lemma success_lenI [success_intros]:
haftmann@37758
   231
  "success (len a) h"
haftmann@37787
   232
  by (auto intro: success_intros simp add: len_def)
haftmann@37752
   233
haftmann@37771
   234
lemma crel_lengthI [crel_intros]:
haftmann@37771
   235
  assumes "h' = h" "r = length a h"
haftmann@37771
   236
  shows "crel (len a) h h' r"
haftmann@37787
   237
  by (rule crelI) (simp add: assms execute_simps)
haftmann@37771
   238
haftmann@37771
   239
lemma crel_lengthE [crel_elims]:
haftmann@37771
   240
  assumes "crel (len a) h h' r"
haftmann@37771
   241
  obtains "r = length a h'" "h' = h" 
haftmann@37787
   242
  using assms by (rule crelE) (simp add: execute_simps)
haftmann@37771
   243
haftmann@37758
   244
lemma execute_nth [execute_simps]:
haftmann@37752
   245
  "i < length a h \<Longrightarrow>
haftmann@37758
   246
    execute (nth a i) h = Some (get_array a h ! i, h)"
haftmann@37758
   247
  "i \<ge> length a h \<Longrightarrow> execute (nth a i) h = None"
haftmann@37758
   248
  by (simp_all add: nth_def execute_simps)
haftmann@37758
   249
haftmann@37758
   250
lemma success_nthI [success_intros]:
haftmann@37758
   251
  "i < length a h \<Longrightarrow> success (nth a i) h"
haftmann@37758
   252
  by (auto intro: success_intros simp add: nth_def)
haftmann@26170
   253
haftmann@37771
   254
lemma crel_nthI [crel_intros]:
haftmann@37771
   255
  assumes "i < length a h" "h' = h" "r = get_array a h ! i"
haftmann@37771
   256
  shows "crel (nth a i) h h' r"
haftmann@37771
   257
  by (rule crelI) (insert assms, simp add: execute_simps)
haftmann@37771
   258
haftmann@37771
   259
lemma crel_nthE [crel_elims]:
haftmann@37771
   260
  assumes "crel (nth a i) h h' r"
haftmann@37771
   261
  obtains "i < length a h" "r = get_array a h ! i" "h' = h"
haftmann@37771
   262
  using assms by (rule crelE)
haftmann@37771
   263
    (erule successE, cases "i < length a h", simp_all add: execute_simps)
haftmann@37771
   264
haftmann@37758
   265
lemma execute_upd [execute_simps]:
haftmann@37752
   266
  "i < length a h \<Longrightarrow>
haftmann@37758
   267
    execute (upd i x a) h = Some (a, change a i x h)"
haftmann@37771
   268
  "i \<ge> length a h \<Longrightarrow> execute (upd i x a) h = None"
haftmann@37758
   269
  by (simp_all add: upd_def execute_simps)
haftmann@26170
   270
haftmann@37758
   271
lemma success_updI [success_intros]:
haftmann@37758
   272
  "i < length a h \<Longrightarrow> success (upd i x a) h"
haftmann@37758
   273
  by (auto intro: success_intros simp add: upd_def)
haftmann@37758
   274
haftmann@37771
   275
lemma crel_updI [crel_intros]:
haftmann@37771
   276
  assumes "i < length a h" "h' = change a i v h"
haftmann@37771
   277
  shows "crel (upd i v a) h h' a"
haftmann@37771
   278
  by (rule crelI) (insert assms, simp add: execute_simps)
haftmann@37771
   279
haftmann@37771
   280
lemma crel_updE [crel_elims]:
haftmann@37771
   281
  assumes "crel (upd i v a) h h' r"
haftmann@37771
   282
  obtains "r = a" "h' = change a i v h" "i < length a h"
haftmann@37771
   283
  using assms by (rule crelE)
haftmann@37771
   284
    (erule successE, cases "i < length a h", simp_all add: execute_simps)
haftmann@37771
   285
haftmann@37758
   286
lemma execute_map_entry [execute_simps]:
haftmann@37752
   287
  "i < length a h \<Longrightarrow>
haftmann@37758
   288
   execute (map_entry i f a) h =
haftmann@37752
   289
      Some (a, change a i (f (get_array a h ! i)) h)"
haftmann@37771
   290
  "i \<ge> length a h \<Longrightarrow> execute (map_entry i f a) h = None"
haftmann@37758
   291
  by (simp_all add: map_entry_def execute_simps)
haftmann@37752
   292
haftmann@37758
   293
lemma success_map_entryI [success_intros]:
haftmann@37758
   294
  "i < length a h \<Longrightarrow> success (map_entry i f a) h"
haftmann@37758
   295
  by (auto intro: success_intros simp add: map_entry_def)
haftmann@37758
   296
haftmann@37771
   297
lemma crel_map_entryI [crel_intros]:
haftmann@37771
   298
  assumes "i < length a h" "h' = change a i (f (get_array a h ! i)) h" "r = a"
haftmann@37771
   299
  shows "crel (map_entry i f a) h h' r"
haftmann@37771
   300
  by (rule crelI) (insert assms, simp add: execute_simps)
haftmann@37771
   301
haftmann@37771
   302
lemma crel_map_entryE [crel_elims]:
haftmann@37771
   303
  assumes "crel (map_entry i f a) h h' r"
haftmann@37771
   304
  obtains "r = a" "h' = change a i (f (get_array a h ! i)) h" "i < length a h"
haftmann@37771
   305
  using assms by (rule crelE)
haftmann@37771
   306
    (erule successE, cases "i < length a h", simp_all add: execute_simps)
haftmann@37771
   307
haftmann@37758
   308
lemma execute_swap [execute_simps]:
haftmann@37752
   309
  "i < length a h \<Longrightarrow>
haftmann@37758
   310
   execute (swap i x a) h =
haftmann@37752
   311
      Some (get_array a h ! i, change a i x h)"
haftmann@37771
   312
  "i \<ge> length a h \<Longrightarrow> execute (swap i x a) h = None"
haftmann@37758
   313
  by (simp_all add: swap_def execute_simps)
haftmann@37758
   314
haftmann@37758
   315
lemma success_swapI [success_intros]:
haftmann@37758
   316
  "i < length a h \<Longrightarrow> success (swap i x a) h"
haftmann@37758
   317
  by (auto intro: success_intros simp add: swap_def)
haftmann@37752
   318
haftmann@37771
   319
lemma crel_swapI [crel_intros]:
haftmann@37771
   320
  assumes "i < length a h" "h' = change a i x h" "r = get_array a h ! i"
haftmann@37771
   321
  shows "crel (swap i x a) h h' r"
haftmann@37771
   322
  by (rule crelI) (insert assms, simp add: execute_simps)
haftmann@37771
   323
haftmann@37771
   324
lemma crel_swapE [crel_elims]:
haftmann@37771
   325
  assumes "crel (swap i x a) h h' r"
haftmann@37771
   326
  obtains "r = get_array a h ! i" "h' = change a i x h" "i < length a h"
haftmann@37771
   327
  using assms by (rule crelE)
haftmann@37771
   328
    (erule successE, cases "i < length a h", simp_all add: execute_simps)
haftmann@37771
   329
haftmann@37787
   330
lemma execute_freeze [execute_simps]:
haftmann@37758
   331
  "execute (freeze a) h = Some (get_array a h, h)"
haftmann@37787
   332
  by (simp add: freeze_def execute_simps)
haftmann@37758
   333
haftmann@37787
   334
lemma success_freezeI [success_intros]:
haftmann@37758
   335
  "success (freeze a) h"
haftmann@37787
   336
  by (auto intro: success_intros simp add: freeze_def)
haftmann@26170
   337
haftmann@37771
   338
lemma crel_freezeI [crel_intros]:
haftmann@37771
   339
  assumes "h' = h" "r = get_array a h"
haftmann@37771
   340
  shows "crel (freeze a) h h' r"
haftmann@37771
   341
  by (rule crelI) (insert assms, simp add: execute_simps)
haftmann@37771
   342
haftmann@37771
   343
lemma crel_freezeE [crel_elims]:
haftmann@37771
   344
  assumes "crel (freeze a) h h' r"
haftmann@37771
   345
  obtains "h' = h" "r = get_array a h"
haftmann@37787
   346
  using assms by (rule crelE) (simp add: execute_simps)
haftmann@37771
   347
haftmann@26170
   348
lemma upd_return:
haftmann@26170
   349
  "upd i x a \<guillemotright> return a = upd i x a"
haftmann@37787
   350
  by (rule Heap_eqI) (simp add: bind_def guard_def upd_def execute_simps)
haftmann@26170
   351
haftmann@37752
   352
lemma array_make:
haftmann@37752
   353
  "new n x = make n (\<lambda>_. x)"
haftmann@37787
   354
  by (rule Heap_eqI) (simp add: map_replicate_trivial execute_simps)
haftmann@26170
   355
haftmann@37752
   356
lemma array_of_list_make:
haftmann@37752
   357
  "of_list xs = make (List.length xs) (\<lambda>n. xs ! n)"
haftmann@37787
   358
  by (rule Heap_eqI) (simp add: map_nth execute_simps)
haftmann@26170
   359
haftmann@37771
   360
hide_const (open) new
haftmann@26170
   361
haftmann@26182
   362
haftmann@26182
   363
subsection {* Code generator setup *}
haftmann@26182
   364
haftmann@26182
   365
subsubsection {* Logical intermediate layer *}
haftmann@26182
   366
haftmann@26182
   367
definition new' where
haftmann@31205
   368
  [code del]: "new' = Array.new o Code_Numeral.nat_of"
haftmann@37752
   369
haftmann@28562
   370
lemma [code]:
haftmann@37752
   371
  "Array.new = new' o Code_Numeral.of_nat"
haftmann@26182
   372
  by (simp add: new'_def o_def)
haftmann@26182
   373
haftmann@26182
   374
definition of_list' where
haftmann@31205
   375
  [code del]: "of_list' i xs = Array.of_list (take (Code_Numeral.nat_of i) xs)"
haftmann@37752
   376
haftmann@28562
   377
lemma [code]:
haftmann@37752
   378
  "Array.of_list xs = of_list' (Code_Numeral.of_nat (List.length xs)) xs"
haftmann@26182
   379
  by (simp add: of_list'_def)
haftmann@26182
   380
haftmann@26182
   381
definition make' where
haftmann@31205
   382
  [code del]: "make' i f = Array.make (Code_Numeral.nat_of i) (f o Code_Numeral.of_nat)"
haftmann@37752
   383
haftmann@28562
   384
lemma [code]:
haftmann@37752
   385
  "Array.make n f = make' (Code_Numeral.of_nat n) (f o Code_Numeral.nat_of)"
haftmann@26182
   386
  by (simp add: make'_def o_def)
haftmann@26182
   387
haftmann@37719
   388
definition len' where
haftmann@37719
   389
  [code del]: "len' a = Array.len a \<guillemotright>= (\<lambda>n. return (Code_Numeral.of_nat n))"
haftmann@37752
   390
haftmann@28562
   391
lemma [code]:
haftmann@37752
   392
  "Array.len a = len' a \<guillemotright>= (\<lambda>i. return (Code_Numeral.nat_of i))"
haftmann@37719
   393
  by (simp add: len'_def)
haftmann@26182
   394
haftmann@26182
   395
definition nth' where
haftmann@31205
   396
  [code del]: "nth' a = Array.nth a o Code_Numeral.nat_of"
haftmann@37752
   397
haftmann@28562
   398
lemma [code]:
haftmann@37752
   399
  "Array.nth a n = nth' a (Code_Numeral.of_nat n)"
haftmann@26182
   400
  by (simp add: nth'_def)
haftmann@26182
   401
haftmann@26182
   402
definition upd' where
haftmann@31205
   403
  [code del]: "upd' a i x = Array.upd (Code_Numeral.nat_of i) x a \<guillemotright> return ()"
haftmann@37752
   404
haftmann@28562
   405
lemma [code]:
haftmann@37752
   406
  "Array.upd i x a = upd' a (Code_Numeral.of_nat i) x \<guillemotright> return a"
haftmann@37709
   407
  by (simp add: upd'_def upd_return)
haftmann@26182
   408
haftmann@37752
   409
lemma [code]:
krauss@37792
   410
  "map_entry i f a = do {
haftmann@37752
   411
     x \<leftarrow> nth a i;
haftmann@37752
   412
     upd i (f x) a
krauss@37792
   413
   }"
haftmann@37758
   414
  by (rule Heap_eqI) (simp add: bind_def guard_def map_entry_def execute_simps)
haftmann@26182
   415
haftmann@37752
   416
lemma [code]:
krauss@37792
   417
  "swap i x a = do {
haftmann@37752
   418
     y \<leftarrow> nth a i;
haftmann@37752
   419
     upd i x a;
haftmann@37752
   420
     return y
krauss@37792
   421
   }"
haftmann@37758
   422
  by (rule Heap_eqI) (simp add: bind_def guard_def swap_def execute_simps)
haftmann@37752
   423
haftmann@37752
   424
lemma [code]:
krauss@37792
   425
  "freeze a = do {
haftmann@37752
   426
     n \<leftarrow> len a;
haftmann@37756
   427
     Heap_Monad.fold_map (\<lambda>i. nth a i) [0..<n]
krauss@37792
   428
   }"
haftmann@37752
   429
proof (rule Heap_eqI)
haftmann@37752
   430
  fix h
haftmann@37752
   431
  have *: "List.map
haftmann@37752
   432
     (\<lambda>x. fst (the (if x < length a h
haftmann@37752
   433
                    then Some (get_array a h ! x, h) else None)))
haftmann@37752
   434
     [0..<length a h] =
haftmann@37752
   435
       List.map (List.nth (get_array a h)) [0..<length a h]"
haftmann@37752
   436
    by simp
haftmann@37758
   437
  have "execute (Heap_Monad.fold_map (Array.nth a) [0..<length a h]) h =
haftmann@37752
   438
    Some (get_array a h, h)"
haftmann@37756
   439
    apply (subst execute_fold_map_unchanged_heap)
haftmann@37752
   440
    apply (simp_all add: nth_def guard_def *)
haftmann@37752
   441
    apply (simp add: length_def map_nth)
haftmann@37752
   442
    done
krauss@37792
   443
  then have "execute (do {
haftmann@37752
   444
      n \<leftarrow> len a;
haftmann@37756
   445
      Heap_Monad.fold_map (Array.nth a) [0..<n]
krauss@37792
   446
    }) h = Some (get_array a h, h)"
haftmann@37787
   447
    by (auto intro: execute_bind_eq_SomeI simp add: execute_simps)
krauss@37792
   448
  then show "execute (freeze a) h = execute (do {
haftmann@37752
   449
      n \<leftarrow> len a;
haftmann@37756
   450
      Heap_Monad.fold_map (Array.nth a) [0..<n]
krauss@37792
   451
    }) h" by (simp add: execute_simps)
haftmann@37752
   452
qed
haftmann@37752
   453
haftmann@37752
   454
hide_const (open) new' of_list' make' len' nth' upd'
haftmann@37752
   455
haftmann@37752
   456
haftmann@37752
   457
text {* SML *}
haftmann@26182
   458
haftmann@26182
   459
code_type array (SML "_/ array")
haftmann@26182
   460
code_const Array (SML "raise/ (Fail/ \"bare Array\")")
haftmann@26752
   461
code_const Array.new' (SML "(fn/ ()/ =>/ Array.array/ ((_),/ (_)))")
haftmann@35846
   462
code_const Array.of_list' (SML "(fn/ ()/ =>/ Array.fromList/ _)")
haftmann@26752
   463
code_const Array.make' (SML "(fn/ ()/ =>/ Array.tabulate/ ((_),/ (_)))")
haftmann@37719
   464
code_const Array.len' (SML "(fn/ ()/ =>/ Array.length/ _)")
haftmann@26752
   465
code_const Array.nth' (SML "(fn/ ()/ =>/ Array.sub/ ((_),/ (_)))")
haftmann@26752
   466
code_const Array.upd' (SML "(fn/ ()/ =>/ Array.update/ ((_),/ (_),/ (_)))")
haftmann@26182
   467
haftmann@26182
   468
code_reserved SML Array
haftmann@26182
   469
haftmann@26182
   470
haftmann@37752
   471
text {* OCaml *}
haftmann@26182
   472
haftmann@26182
   473
code_type array (OCaml "_/ array")
haftmann@26182
   474
code_const Array (OCaml "failwith/ \"bare Array\"")
haftmann@32580
   475
code_const Array.new' (OCaml "(fun/ ()/ ->/ Array.make/ (Big'_int.int'_of'_big'_int/ _)/ _)")
haftmann@35846
   476
code_const Array.of_list' (OCaml "(fun/ ()/ ->/ Array.of'_list/ _)")
haftmann@37719
   477
code_const Array.len' (OCaml "(fun/ ()/ ->/ Big'_int.big'_int'_of'_int/ (Array.length/ _))")
haftmann@32580
   478
code_const Array.nth' (OCaml "(fun/ ()/ ->/ Array.get/ _/ (Big'_int.int'_of'_big'_int/ _))")
haftmann@32580
   479
code_const Array.upd' (OCaml "(fun/ ()/ ->/ Array.set/ _/ (Big'_int.int'_of'_big'_int/ _)/ _)")
haftmann@26182
   480
haftmann@26182
   481
code_reserved OCaml Array
haftmann@26182
   482
haftmann@26182
   483
haftmann@37752
   484
text {* Haskell *}
haftmann@26182
   485
haftmann@29793
   486
code_type array (Haskell "Heap.STArray/ Heap.RealWorld/ _")
haftmann@26182
   487
code_const Array (Haskell "error/ \"bare Array\"")
haftmann@29793
   488
code_const Array.new' (Haskell "Heap.newArray/ (0,/ _)")
haftmann@29793
   489
code_const Array.of_list' (Haskell "Heap.newListArray/ (0,/ _)")
haftmann@37719
   490
code_const Array.len' (Haskell "Heap.lengthArray")
haftmann@29793
   491
code_const Array.nth' (Haskell "Heap.readArray")
haftmann@29793
   492
code_const Array.upd' (Haskell "Heap.writeArray")
haftmann@26182
   493
haftmann@26170
   494
end