src/Provers/splitter.ML
author berghofe
Fri Oct 01 10:23:13 1999 +0200 (1999-10-01 ago)
changeset 7672 c092e67d12f8
parent 6130 30b84ad2131d
child 8468 d99902232df8
permissions -rw-r--r--
- Fixed bug in mk_split_pack which caused application of expansion theorem
to fail because of typing reasons
- Rewrote inst_lift and inst_split: now cterm_instantiate is used to
instantiate theorems
nipkow@4
     1
(*  Title:      Provers/splitter
nipkow@4
     2
    ID:         $Id$
nipkow@4
     3
    Author:     Tobias Nipkow
nipkow@1030
     4
    Copyright   1995  TU Munich
nipkow@4
     5
nipkow@4
     6
Generic case-splitter, suitable for most logics.
clasohm@0
     7
*)
clasohm@0
     8
oheimb@5304
     9
infix 4 addsplits delsplits;
oheimb@5304
    10
oheimb@5304
    11
signature SPLITTER_DATA =
oheimb@5304
    12
sig
oheimb@5304
    13
  structure Simplifier: SIMPLIFIER
oheimb@5553
    14
  val mk_eq         : thm -> thm
oheimb@5304
    15
  val meta_eq_to_iff: thm (* "x == y ==> x = y"                    *)
oheimb@5304
    16
  val iffD          : thm (* "[| P = Q; Q |] ==> P"                *)
oheimb@5304
    17
  val disjE         : thm (* "[| P | Q; P ==> R; Q ==> R |] ==> R" *)
oheimb@5304
    18
  val conjE         : thm (* "[| P & Q; [| P; Q |] ==> R |] ==> R" *)
oheimb@5304
    19
  val exE           : thm (* "[|  x. P x; !!x. P x ==> Q |] ==> Q" *)
oheimb@5304
    20
  val contrapos     : thm (* "[| ~ Q; P ==> Q |] ==> ~ P"          *)
oheimb@5304
    21
  val contrapos2    : thm (* "[| Q; ~ P ==> ~ Q |] ==> P"          *)
oheimb@5304
    22
  val notnotD       : thm (* "~ ~ P ==> P"                         *)
oheimb@5304
    23
end
oheimb@5304
    24
oheimb@5304
    25
signature SPLITTER =
oheimb@5304
    26
sig
oheimb@5304
    27
  type simpset
oheimb@5304
    28
  val split_tac       : thm list -> int -> tactic
oheimb@5304
    29
  val split_inside_tac: thm list -> int -> tactic
oheimb@5304
    30
  val split_asm_tac   : thm list -> int -> tactic
oheimb@5304
    31
  val addsplits       : simpset * thm list -> simpset
oheimb@5304
    32
  val delsplits       : simpset * thm list -> simpset
oheimb@5304
    33
  val Addsplits       : thm list -> unit
oheimb@5304
    34
  val Delsplits       : thm list -> unit
oheimb@5304
    35
end;
oheimb@5304
    36
oheimb@5304
    37
functor SplitterFun(Data: SPLITTER_DATA): SPLITTER =
oheimb@5304
    38
struct 
oheimb@5304
    39
oheimb@5304
    40
type simpset = Data.Simplifier.simpset;
oheimb@5304
    41
oheimb@5304
    42
val Const ("==>", _) $ (Const ("Trueprop", _) $
oheimb@5304
    43
         (Const (const_not, _) $ _    )) $ _ = #prop (rep_thm(Data.notnotD));
oheimb@5304
    44
oheimb@5304
    45
val Const ("==>", _) $ (Const ("Trueprop", _) $
oheimb@5304
    46
         (Const (const_or , _) $ _ $ _)) $ _ = #prop (rep_thm(Data.disjE));
berghofe@1721
    47
nipkow@4668
    48
fun split_format_err() = error("Wrong format for split rule");
nipkow@4668
    49
oheimb@5553
    50
fun split_thm_info thm = case concl_of (Data.mk_eq thm) of
oheimb@5304
    51
     Const("==", _)$(Var _$t)$c =>
oheimb@5304
    52
        (case strip_comb t of
oheimb@5304
    53
           (Const(a,_),_) => (a,case c of (Const(s,_)$_)=>s=const_not|_=> false)
oheimb@5304
    54
         | _              => split_format_err())
oheimb@5304
    55
   | _ => split_format_err();
oheimb@5304
    56
oheimb@5304
    57
fun mk_case_split_tac order =
clasohm@0
    58
let
clasohm@0
    59
berghofe@1686
    60
berghofe@1686
    61
(************************************************************
berghofe@1686
    62
   Create lift-theorem "trlift" :
berghofe@1686
    63
berghofe@7672
    64
   [| !!x. Q x == R x; P(%x. R x) == C |] ==> P (%x. Q x) == C
berghofe@1686
    65
berghofe@1686
    66
*************************************************************)
oheimb@5304
    67
oheimb@5304
    68
val meta_iffD = Data.meta_eq_to_iff RS Data.iffD;
nipkow@943
    69
val lift =
oheimb@5304
    70
  let val ct = read_cterm (#sign(rep_thm Data.iffD))
nipkow@943
    71
           ("[| !!x::'b::logic. Q(x) == R(x) |] ==> \
wenzelm@3835
    72
            \P(%x. Q(x)) == P(%x. R(x))::'a::logic",propT)
nipkow@943
    73
  in prove_goalw_cterm [] ct
nipkow@943
    74
     (fn [prem] => [rewtac prem, rtac reflexive_thm 1])
nipkow@943
    75
  end;
nipkow@4
    76
clasohm@0
    77
val trlift = lift RS transitive_thm;
berghofe@7672
    78
val _ $ (P $ _) $ _ = concl_of trlift;
clasohm@0
    79
clasohm@0
    80
berghofe@1686
    81
(************************************************************************ 
berghofe@1686
    82
   Set up term for instantiation of P in the lift-theorem
berghofe@1686
    83
   
berghofe@1686
    84
   Ts    : types of parameters (i.e. variables bound by meta-quantifiers)
berghofe@1686
    85
   t     : lefthand side of meta-equality in subgoal
berghofe@1686
    86
           the lift theorem is applied to (see select)
berghofe@1686
    87
   pos   : "path" leading to abstraction, coded as a list
berghofe@1686
    88
   T     : type of body of P(...)
berghofe@1686
    89
   maxi  : maximum index of Vars
berghofe@1686
    90
*************************************************************************)
berghofe@1686
    91
nipkow@1030
    92
fun mk_cntxt Ts t pos T maxi =
nipkow@1030
    93
  let fun var (t,i) = Var(("X",i),type_of1(Ts,t));
nipkow@1030
    94
      fun down [] t i = Bound 0
nipkow@1030
    95
        | down (p::ps) t i =
nipkow@1030
    96
            let val (h,ts) = strip_comb t
paulson@2266
    97
                val v1 = ListPair.map var (take(p,ts), i upto (i+p-1))
nipkow@1030
    98
                val u::us = drop(p,ts)
paulson@2266
    99
                val v2 = ListPair.map var (us, (i+p) upto (i+length(ts)-2))
nipkow@1030
   100
      in list_comb(h,v1@[down ps u (i+length ts)]@v2) end;
nipkow@1030
   101
  in Abs("", T, down (rev pos) t maxi) end;
nipkow@1030
   102
berghofe@1686
   103
berghofe@1686
   104
(************************************************************************ 
berghofe@1686
   105
   Set up term for instantiation of P in the split-theorem
berghofe@1686
   106
   P(...) == rhs
berghofe@1686
   107
berghofe@1686
   108
   t     : lefthand side of meta-equality in subgoal
berghofe@1686
   109
           the split theorem is applied to (see select)
berghofe@1686
   110
   T     : type of body of P(...)
berghofe@4232
   111
   tt    : the term  Const(key,..) $ ...
berghofe@1686
   112
*************************************************************************)
berghofe@1686
   113
berghofe@4232
   114
fun mk_cntxt_splitthm t tt T =
berghofe@4232
   115
  let fun repl lev t =
berghofe@7672
   116
    if incr_boundvars lev tt aconv t then Bound lev
berghofe@4232
   117
    else case t of
berghofe@4232
   118
        (Abs (v, T2, t)) => Abs (v, T2, repl (lev+1) t)
berghofe@4232
   119
      | (Bound i) => Bound (if i>=lev then i+1 else i)
berghofe@4232
   120
      | (t1 $ t2) => (repl lev t1) $ (repl lev t2)
berghofe@4232
   121
      | t => t
berghofe@4232
   122
  in Abs("", T, repl 0 t) end;
berghofe@1686
   123
berghofe@1686
   124
berghofe@1686
   125
(* add all loose bound variables in t to list is *)
nipkow@1030
   126
fun add_lbnos(is,t) = add_loose_bnos(t,0,is);
nipkow@1030
   127
berghofe@7672
   128
(* check if the innermost abstraction that needs to be removed
nipkow@1064
   129
   has a body of type T; otherwise the expansion thm will fail later on
nipkow@1064
   130
*)
nipkow@1064
   131
fun type_test(T,lbnos,apsns) =
paulson@2143
   132
  let val (_,U,_) = nth_elem(foldl Int.min (hd lbnos, tl lbnos), apsns)
nipkow@1064
   133
  in T=U end;
clasohm@0
   134
berghofe@1686
   135
(*************************************************************************
berghofe@1686
   136
   Create a "split_pack".
berghofe@1686
   137
berghofe@1686
   138
   thm   : the relevant split-theorem, i.e. P(...) == rhs , where P(...)
berghofe@1686
   139
           is of the form
berghofe@1686
   140
           P( Const(key,...) $ t_1 $ ... $ t_n )      (e.g. key = "if")
berghofe@1686
   141
   T     : type of P(...)
berghofe@7672
   142
   T'    : type of term to be scanned
berghofe@1686
   143
   n     : number of arguments expected by Const(key,...)
berghofe@1686
   144
   ts    : list of arguments actually found
berghofe@1686
   145
   apsns : list of tuples of the form (T,U,pos), one tuple for each
berghofe@1686
   146
           abstraction that is encountered on the way to the position where 
berghofe@1686
   147
           Const(key, ...) $ ...  occurs, where
berghofe@1686
   148
           T   : type of the variable bound by the abstraction
berghofe@1686
   149
           U   : type of the abstraction's body
berghofe@1686
   150
           pos : "path" leading to the body of the abstraction
berghofe@1686
   151
   pos   : "path" leading to the position where Const(key, ...) $ ...  occurs.
berghofe@1686
   152
   TB    : type of  Const(key,...) $ t_1 $ ... $ t_n
berghofe@1721
   153
   t     : the term Const(key,...) $ t_1 $ ... $ t_n
berghofe@1686
   154
berghofe@1686
   155
   A split pack is a tuple of the form
berghofe@7672
   156
   (thm, apsns, pos, TB, tt)
berghofe@1686
   157
   Note : apsns is reversed, so that the outermost quantifier's position
berghofe@1686
   158
          comes first ! If the terms in ts don't contain variables bound
berghofe@1686
   159
          by other than meta-quantifiers, apsns is empty, because no further
berghofe@1686
   160
          lifting is required before applying the split-theorem.
berghofe@1686
   161
******************************************************************************) 
berghofe@1686
   162
berghofe@7672
   163
fun mk_split_pack(thm, T, T', n, ts, apsns, pos, TB, t) =
nipkow@1064
   164
  if n > length ts then []
nipkow@1064
   165
  else let val lev = length apsns
nipkow@1030
   166
           val lbnos = foldl add_lbnos ([],take(n,ts))
nipkow@1030
   167
           val flbnos = filter (fn i => i < lev) lbnos
berghofe@4232
   168
           val tt = incr_boundvars (~lev) t
berghofe@7672
   169
       in if null flbnos then
berghofe@7672
   170
            if T = T' then [(thm,[],pos,TB,tt)] else []
berghofe@7672
   171
          else if type_test(T,flbnos,apsns) then [(thm, rev apsns,pos,TB,tt)]
paulson@2143
   172
               else []
nipkow@1064
   173
       end;
clasohm@0
   174
berghofe@1686
   175
berghofe@1686
   176
(****************************************************************************
berghofe@1686
   177
   Recursively scans term for occurences of Const(key,...) $ ...
berghofe@1686
   178
   Returns a list of "split-packs" (one for each occurence of Const(key,...) )
berghofe@1686
   179
berghofe@1686
   180
   cmap : association list of split-theorems that should be tried.
berghofe@1686
   181
          The elements have the format (key,(thm,T,n)) , where
berghofe@1686
   182
          key : the theorem's key constant ( Const(key,...) $ ... )
berghofe@1686
   183
          thm : the theorem itself
berghofe@1686
   184
          T   : type of P( Const(key,...) $ ... )
berghofe@1686
   185
          n   : number of arguments expected by Const(key,...)
berghofe@1686
   186
   Ts   : types of parameters
berghofe@1686
   187
   t    : the term to be scanned
berghofe@1686
   188
******************************************************************************)
berghofe@1686
   189
nipkow@6130
   190
fun split_posns cmap sg Ts t =
nipkow@6130
   191
  let
berghofe@7672
   192
    val T' = fastype_of1 (Ts, t);
berghofe@7672
   193
    fun posns Ts pos apsns (Abs (_, T, t)) =
berghofe@7672
   194
          let val U = fastype_of1 (T::Ts,t)
berghofe@7672
   195
          in posns (T::Ts) (0::pos) ((T, U, pos)::apsns) t end
nipkow@6130
   196
      | posns Ts pos apsns t =
nipkow@6130
   197
          let
berghofe@7672
   198
            val (h, ts) = strip_comb t
berghofe@7672
   199
            fun iter((i, a), t) = (i+1, (posns Ts (i::pos) apsns t) @ a);
nipkow@6130
   200
            val a = case h of
berghofe@7672
   201
              Const(c, cT) =>
berghofe@7672
   202
                (case assoc(cmap, c) of
nipkow@6130
   203
                   Some(gcT, thm, T, n) =>
nipkow@6130
   204
                     if Type.typ_instance(Sign.tsig_of sg, cT, gcT)
nipkow@6130
   205
                     then
nipkow@6130
   206
                       let val t2 = list_comb (h, take (n, ts))
berghofe@7672
   207
                       in mk_split_pack (thm, T, T', n, ts, apsns, pos, type_of1 (Ts, t2), t2)
nipkow@6130
   208
                       end
nipkow@6130
   209
                     else []
nipkow@6130
   210
                 | None => [])
nipkow@6130
   211
            | _ => []
berghofe@7672
   212
          in snd(foldl iter ((0, a), ts)) end
nipkow@1030
   213
  in posns Ts [] [] t end;
clasohm@0
   214
berghofe@1686
   215
clasohm@0
   216
fun nth_subgoal i thm = nth_elem(i-1,prems_of thm);
clasohm@0
   217
berghofe@1721
   218
fun shorter((_,ps,pos,_,_),(_,qs,qos,_,_)) =
wenzelm@4519
   219
  prod_ord (int_ord o pairself length) (order o pairself length)
wenzelm@4519
   220
    ((ps, pos), (qs, qos));
wenzelm@4519
   221
berghofe@1686
   222
berghofe@1686
   223
berghofe@1686
   224
(************************************************************
berghofe@1686
   225
   call split_posns with appropriate parameters
berghofe@1686
   226
*************************************************************)
clasohm@0
   227
nipkow@1030
   228
fun select cmap state i =
nipkow@6130
   229
  let val sg = #sign(rep_thm state)
nipkow@6130
   230
      val goali = nth_subgoal i state
nipkow@1030
   231
      val Ts = rev(map #2 (Logic.strip_params goali))
nipkow@1030
   232
      val _ $ t $ _ = Logic.strip_assums_concl goali;
nipkow@6130
   233
  in (Ts,t, sort shorter (split_posns cmap sg Ts t)) end;
nipkow@1030
   234
berghofe@1686
   235
berghofe@1686
   236
(*************************************************************
berghofe@1686
   237
   instantiate lift theorem
berghofe@1686
   238
berghofe@1686
   239
   if t is of the form
berghofe@1686
   240
   ... ( Const(...,...) $ Abs( .... ) ) ...
berghofe@1686
   241
   then
berghofe@1686
   242
   P = %a.  ... ( Const(...,...) $ a ) ...
berghofe@1686
   243
   where a has type T --> U
berghofe@1686
   244
berghofe@1686
   245
   Ts      : types of parameters
berghofe@1686
   246
   t       : lefthand side of meta-equality in subgoal
berghofe@1686
   247
             the split theorem is applied to (see cmap)
berghofe@1686
   248
   T,U,pos : see mk_split_pack
berghofe@1686
   249
   state   : current proof state
berghofe@1686
   250
   lift    : the lift theorem
berghofe@1686
   251
   i       : no. of subgoal
berghofe@1686
   252
**************************************************************)
berghofe@1686
   253
berghofe@7672
   254
fun inst_lift Ts t (T, U, pos) state i =
berghofe@7672
   255
  let
berghofe@7672
   256
    val cert = cterm_of (sign_of_thm state);
berghofe@7672
   257
    val cntxt = mk_cntxt Ts t pos (T --> U) (#maxidx(rep_thm trlift));    
berghofe@7672
   258
  in cterm_instantiate [(cert P, cert cntxt)] trlift
berghofe@7672
   259
  end;
clasohm@0
   260
clasohm@0
   261
berghofe@1686
   262
(*************************************************************
berghofe@1686
   263
   instantiate split theorem
berghofe@1686
   264
berghofe@1686
   265
   Ts    : types of parameters
berghofe@1686
   266
   t     : lefthand side of meta-equality in subgoal
berghofe@1686
   267
           the split theorem is applied to (see cmap)
berghofe@4232
   268
   tt    : the term  Const(key,..) $ ...
berghofe@1686
   269
   thm   : the split theorem
berghofe@1686
   270
   TB    : type of body of P(...)
berghofe@1686
   271
   state : current proof state
berghofe@4232
   272
   i     : number of subgoal
berghofe@1686
   273
**************************************************************)
berghofe@1686
   274
berghofe@4232
   275
fun inst_split Ts t tt thm TB state i =
berghofe@7672
   276
  let 
berghofe@7672
   277
    val thm' = Thm.lift_rule (state, i) thm;
berghofe@7672
   278
    val (P, _) = strip_comb (fst (Logic.dest_equals
berghofe@7672
   279
      (Logic.strip_assums_concl (#prop (rep_thm thm')))));
berghofe@7672
   280
    val cert = cterm_of (sign_of_thm state);
berghofe@7672
   281
    val cntxt = mk_cntxt_splitthm t tt TB;
berghofe@7672
   282
    val abss = foldl (fn (t, T) => Abs ("", T, t));
berghofe@7672
   283
  in cterm_instantiate [(cert P, cert (abss (cntxt, Ts)))] thm'
berghofe@4232
   284
  end;
berghofe@1686
   285
berghofe@7672
   286
berghofe@1686
   287
(*****************************************************************************
berghofe@1686
   288
   The split-tactic
berghofe@1686
   289
   
berghofe@1686
   290
   splits : list of split-theorems to be tried
berghofe@1686
   291
   i      : number of subgoal the tactic should be applied to
berghofe@1686
   292
*****************************************************************************)
berghofe@1686
   293
clasohm@0
   294
fun split_tac [] i = no_tac
clasohm@0
   295
  | split_tac splits i =
oheimb@5553
   296
  let val splits = map Data.mk_eq splits;
oheimb@5304
   297
      fun const(thm) =
nipkow@3918
   298
            (case concl_of thm of _$(t as _$lhs)$_ =>
nipkow@6130
   299
               (case strip_comb lhs of (Const(a,aT),args) =>
nipkow@6130
   300
                  (a,(aT,thm,fastype_of t,length args))
nipkow@4668
   301
                | _ => split_format_err())
nipkow@4668
   302
             | _ => split_format_err())
clasohm@0
   303
      val cmap = map const splits;
berghofe@7672
   304
      fun lift_tac Ts t p st = rtac (inst_lift Ts t p st i) i st
berghofe@7672
   305
      fun lift_split_tac state =
berghofe@7672
   306
            let val (Ts, t, splits) = select cmap state i
nipkow@1030
   307
            in case splits of
berghofe@7672
   308
                 [] => no_tac state
berghofe@7672
   309
               | (thm, apsns, pos, TB, tt)::_ =>
nipkow@1030
   310
                   (case apsns of
berghofe@7672
   311
                      [] => compose_tac (false, inst_split Ts t tt thm TB state i, 0) i state
berghofe@7672
   312
                    | p::_ => EVERY [lift_tac Ts t p,
berghofe@7672
   313
                                     rtac reflexive_thm (i+1),
berghofe@7672
   314
                                     lift_split_tac] state)
nipkow@1030
   315
            end
paulson@3537
   316
  in COND (has_fewer_prems i) no_tac 
oheimb@5304
   317
          (rtac meta_iffD i THEN lift_split_tac)
clasohm@0
   318
  end;
clasohm@0
   319
clasohm@0
   320
in split_tac end;
berghofe@1721
   321
oheimb@5304
   322
oheimb@5304
   323
val split_tac        = mk_case_split_tac              int_ord;
oheimb@4189
   324
oheimb@5304
   325
val split_inside_tac = mk_case_split_tac (rev_order o int_ord);
oheimb@5304
   326
oheimb@4189
   327
oheimb@4189
   328
(*****************************************************************************
oheimb@4189
   329
   The split-tactic for premises
oheimb@4189
   330
   
oheimb@4189
   331
   splits : list of split-theorems to be tried
oheimb@5304
   332
****************************************************************************)
oheimb@4202
   333
fun split_asm_tac []     = K no_tac
oheimb@4202
   334
  | split_asm_tac splits = 
oheimb@5304
   335
oheimb@4930
   336
  let val cname_list = map (fst o split_thm_info) splits;
oheimb@4189
   337
      fun is_case (a,_) = a mem cname_list;
oheimb@4189
   338
      fun tac (t,i) = 
oheimb@4189
   339
	  let val n = find_index (exists_Const is_case) 
oheimb@4189
   340
				 (Logic.strip_assums_hyp t);
oheimb@4189
   341
	      fun first_prem_is_disj (Const ("==>", _) $ (Const ("Trueprop", _)
oheimb@5304
   342
				 $ (Const (s, _) $ _ $ _ )) $ _ ) = (s=const_or)
oheimb@4202
   343
	      |   first_prem_is_disj (Const("all",_)$Abs(_,_,t)) = 
oheimb@4202
   344
					first_prem_is_disj t
oheimb@4189
   345
	      |   first_prem_is_disj _ = false;
oheimb@5437
   346
      (* does not work properly if the split variable is bound by a quantfier *)
oheimb@4202
   347
	      fun flat_prems_tac i = SUBGOAL (fn (t,i) => 
oheimb@5304
   348
			   (if first_prem_is_disj t
oheimb@5304
   349
			    then EVERY[etac Data.disjE i,rotate_tac ~1 i,
oheimb@5304
   350
				       rotate_tac ~1  (i+1),
oheimb@5304
   351
				       flat_prems_tac (i+1)]
oheimb@5304
   352
			    else all_tac) 
oheimb@5304
   353
			   THEN REPEAT (eresolve_tac [Data.conjE,Data.exE] i)
oheimb@5304
   354
			   THEN REPEAT (dresolve_tac [Data.notnotD]   i)) i;
oheimb@4189
   355
	  in if n<0 then no_tac else DETERM (EVERY'
oheimb@5304
   356
		[rotate_tac n, etac Data.contrapos2,
oheimb@4189
   357
		 split_tac splits, 
oheimb@5304
   358
		 rotate_tac ~1, etac Data.contrapos, rotate_tac ~1, 
oheimb@4202
   359
		 flat_prems_tac] i)
oheimb@4189
   360
	  end;
oheimb@4189
   361
  in SUBGOAL tac
oheimb@4189
   362
  end;
oheimb@4189
   363
oheimb@5304
   364
fun split_name name asm = "split " ^ name ^ (if asm then " asm" else "");
oheimb@4189
   365
oheimb@5304
   366
fun ss addsplits splits =
oheimb@5304
   367
  let fun addsplit (ss,split) =
oheimb@5304
   368
        let val (name,asm) = split_thm_info split
oheimb@5304
   369
        in Data.Simplifier.addloop(ss,(split_name name asm,
oheimb@5304
   370
		       (if asm then split_asm_tac else split_tac) [split])) end
oheimb@5304
   371
  in foldl addsplit (ss,splits) end;
berghofe@1721
   372
oheimb@5304
   373
fun ss delsplits splits =
oheimb@5304
   374
  let fun delsplit(ss,split) =
oheimb@5304
   375
        let val (name,asm) = split_thm_info split
oheimb@5304
   376
        in Data.Simplifier.delloop(ss,split_name name asm)
oheimb@5304
   377
  end in foldl delsplit (ss,splits) end;
berghofe@1721
   378
oheimb@5304
   379
fun Addsplits splits = (Data.Simplifier.simpset_ref() := 
oheimb@5304
   380
			Data.Simplifier.simpset() addsplits splits);
oheimb@5304
   381
fun Delsplits splits = (Data.Simplifier.simpset_ref() := 
oheimb@5304
   382
			Data.Simplifier.simpset() delsplits splits);
oheimb@4189
   383
berghofe@1721
   384
end;