src/Pure/proofterm.ML
author wenzelm
Sat May 08 16:03:09 2010 +0200 (2010-05-08 ago)
changeset 36741 d65ed9d7275e
parent 36740 6248aa22c694
child 36742 6f8bbe9ca8a2
permissions -rw-r--r--
added of_sort_proof according to krauss/schropp, with slightly more direct canonical_instance;
berghofe@11519
     1
(*  Title:      Pure/proofterm.ML
wenzelm@11540
     2
    Author:     Stefan Berghofer, TU Muenchen
berghofe@11519
     3
wenzelm@11540
     4
LF style proof terms.
berghofe@11519
     5
*)
berghofe@11519
     6
berghofe@11615
     7
infix 8 % %% %>;
berghofe@11519
     8
berghofe@11519
     9
signature BASIC_PROOFTERM =
berghofe@11519
    10
sig
wenzelm@32738
    11
  val proofs: int Unsynchronized.ref
berghofe@11519
    12
berghofe@11519
    13
  datatype proof =
wenzelm@28803
    14
     MinProof
wenzelm@28803
    15
   | PBound of int
berghofe@11519
    16
   | Abst of string * typ option * proof
berghofe@11519
    17
   | AbsP of string * term option * proof
wenzelm@28803
    18
   | op % of proof * term option
wenzelm@28803
    19
   | op %% of proof * proof
berghofe@11519
    20
   | Hyp of term
berghofe@11519
    21
   | PAxm of string * term * typ list option
wenzelm@31943
    22
   | OfClass of typ * class
berghofe@11519
    23
   | Oracle of string * term * typ list option
wenzelm@28828
    24
   | Promise of serial * term * typ list
wenzelm@29635
    25
   | PThm of serial * ((string * term * typ list option) * proof_body future)
wenzelm@28803
    26
  and proof_body = PBody of
wenzelm@28803
    27
    {oracles: (string * term) OrdList.T,
wenzelm@29635
    28
     thms: (serial * (string * term * proof_body future)) OrdList.T,
wenzelm@28803
    29
     proof: proof}
berghofe@11519
    30
berghofe@11615
    31
  val %> : proof * term -> proof
berghofe@11519
    32
end;
berghofe@11519
    33
berghofe@11519
    34
signature PROOFTERM =
berghofe@11519
    35
sig
berghofe@11519
    36
  include BASIC_PROOFTERM
berghofe@11519
    37
wenzelm@28815
    38
  type oracle = string * term
wenzelm@29635
    39
  type pthm = serial * (string * term * proof_body future)
wenzelm@32094
    40
  val proof_of: proof_body -> proof
wenzelm@29635
    41
  val join_proof: proof_body future -> proof
wenzelm@30711
    42
  val fold_proof_atoms: bool -> (proof -> 'a -> 'a) -> proof list -> 'a -> 'a
wenzelm@32810
    43
  val fold_body_thms: (string * term * proof_body -> 'a -> 'a) -> proof_body list -> 'a -> 'a
wenzelm@32054
    44
  val join_bodies: proof_body list -> unit
wenzelm@30712
    45
  val status_of: proof_body list -> {failed: bool, oracle: bool, unfinished: bool}
wenzelm@28803
    46
wenzelm@28803
    47
  val oracle_ord: oracle * oracle -> order
wenzelm@28803
    48
  val thm_ord: pthm * pthm -> order
wenzelm@28803
    49
  val merge_oracles: oracle OrdList.T -> oracle OrdList.T -> oracle OrdList.T
wenzelm@28803
    50
  val merge_thms: pthm OrdList.T -> pthm OrdList.T -> pthm OrdList.T
wenzelm@30716
    51
  val all_oracles_of: proof_body -> oracle OrdList.T
wenzelm@30716
    52
  val approximate_proof_body: proof -> proof_body
wenzelm@28803
    53
berghofe@11519
    54
  (** primitive operations **)
wenzelm@28803
    55
  val proof_combt: proof * term list -> proof
wenzelm@28803
    56
  val proof_combt': proof * term option list -> proof
wenzelm@28803
    57
  val proof_combP: proof * proof list -> proof
wenzelm@28803
    58
  val strip_combt: proof -> proof * term option list
wenzelm@28803
    59
  val strip_combP: proof -> proof * proof list
wenzelm@28803
    60
  val strip_thm: proof_body -> proof_body
wenzelm@36620
    61
  val map_proof_terms_same: term Same.operation -> typ Same.operation -> proof Same.operation
wenzelm@36620
    62
  val map_proof_types_same: typ Same.operation -> proof Same.operation
wenzelm@28803
    63
  val map_proof_terms: (term -> term) -> (typ -> typ) -> proof -> proof
wenzelm@36620
    64
  val map_proof_types: (typ -> typ) -> proof -> proof
wenzelm@28803
    65
  val fold_proof_terms: (term -> 'a -> 'a) -> (typ -> 'a -> 'a) -> proof -> 'a -> 'a
wenzelm@28803
    66
  val maxidx_proof: proof -> int -> int
wenzelm@28803
    67
  val size_of_proof: proof -> int
wenzelm@28803
    68
  val change_type: typ list option -> proof -> proof
wenzelm@28803
    69
  val prf_abstract_over: term -> proof -> proof
wenzelm@28803
    70
  val prf_incr_bv: int -> int -> int -> int -> proof -> proof
wenzelm@28803
    71
  val incr_pboundvars: int -> int -> proof -> proof
wenzelm@28803
    72
  val prf_loose_bvar1: proof -> int -> bool
wenzelm@28803
    73
  val prf_loose_Pbvar1: proof -> int -> bool
wenzelm@28803
    74
  val prf_add_loose_bnos: int -> int -> proof -> int list * int list -> int list * int list
wenzelm@28803
    75
  val norm_proof: Envir.env -> proof -> proof
wenzelm@28803
    76
  val norm_proof': Envir.env -> proof -> proof
wenzelm@28803
    77
  val prf_subst_bounds: term list -> proof -> proof
wenzelm@28803
    78
  val prf_subst_pbounds: proof list -> proof -> proof
wenzelm@28803
    79
  val freeze_thaw_prf: proof -> proof * (proof -> proof)
berghofe@11519
    80
berghofe@11519
    81
  (** proof terms for specific inference rules **)
wenzelm@28803
    82
  val implies_intr_proof: term -> proof -> proof
wenzelm@28803
    83
  val forall_intr_proof: term -> string -> proof -> proof
wenzelm@28803
    84
  val varify_proof: term -> (string * sort) list -> proof -> proof
wenzelm@36619
    85
  val legacy_freezeT: term -> proof -> proof
wenzelm@28803
    86
  val rotate_proof: term list -> term -> int -> proof -> proof
wenzelm@28803
    87
  val permute_prems_prf: term list -> int -> int -> proof -> proof
wenzelm@19908
    88
  val generalize: string list * string list -> int -> proof -> proof
wenzelm@28803
    89
  val instantiate: ((indexname * sort) * typ) list * ((indexname * typ) * term) list
wenzelm@16880
    90
    -> proof -> proof
wenzelm@28803
    91
  val lift_proof: term -> int -> term -> proof -> proof
wenzelm@32027
    92
  val incr_indexes: int -> proof -> proof
wenzelm@28803
    93
  val assumption_proof: term list -> term -> int -> proof -> proof
wenzelm@28803
    94
  val bicompose_proof: bool -> term list -> term list -> term list -> term option ->
berghofe@23296
    95
    int -> int -> proof -> proof -> proof
wenzelm@28803
    96
  val equality_axms: (string * term) list
wenzelm@28803
    97
  val reflexive_axm: proof
wenzelm@28803
    98
  val symmetric_axm: proof
wenzelm@28803
    99
  val transitive_axm: proof
wenzelm@28803
   100
  val equal_intr_axm: proof
wenzelm@28803
   101
  val equal_elim_axm: proof
wenzelm@28803
   102
  val abstract_rule_axm: proof
wenzelm@28803
   103
  val combination_axm: proof
wenzelm@28803
   104
  val reflexive: proof
wenzelm@28803
   105
  val symmetric: proof -> proof
wenzelm@28803
   106
  val transitive: term -> typ -> proof -> proof -> proof
wenzelm@28803
   107
  val abstract_rule: term -> string -> proof -> proof
wenzelm@28803
   108
  val combination: term -> term -> term -> term -> typ -> proof -> proof -> proof
wenzelm@28803
   109
  val equal_intr: term -> term -> proof -> proof -> proof
wenzelm@28803
   110
  val equal_elim: term -> term -> proof -> proof -> proof
wenzelm@36621
   111
  val strip_shyps_proof: Sorts.algebra -> (typ * sort) list -> (typ * sort) list ->
wenzelm@36621
   112
    sort list -> proof -> proof
wenzelm@36740
   113
  val classrel_proof: theory -> class * class -> proof
wenzelm@36740
   114
  val arity_proof: theory -> string * sort list * class -> proof
wenzelm@36741
   115
  val of_sort_proof: theory -> (typ * class -> proof) -> typ * sort -> proof list
wenzelm@36740
   116
  val install_axclass_proofs:
wenzelm@36740
   117
   {classrel_proof: theory -> class * class -> proof,
wenzelm@36740
   118
    arity_proof: theory -> string * sort list * class -> proof} -> unit
wenzelm@28803
   119
  val axm_proof: string -> term -> proof
wenzelm@30716
   120
  val oracle_proof: string -> term -> oracle * proof
wenzelm@28828
   121
  val promise_proof: theory -> serial -> term -> proof
wenzelm@33722
   122
  val fulfill_norm_proof: theory -> (serial * proof_body) list -> proof_body -> proof_body
wenzelm@28803
   123
  val thm_proof: theory -> string -> term list -> term ->
wenzelm@30716
   124
    (serial * proof_body future) list -> proof_body -> pthm * proof
wenzelm@28803
   125
  val get_name: term list -> term -> proof -> string
berghofe@11519
   126
berghofe@11519
   127
  (** rewriting on proof terms **)
wenzelm@28803
   128
  val add_prf_rrule: proof * proof -> theory -> theory
wenzelm@33722
   129
  val add_prf_rproc: (typ list -> proof -> (proof * proof) option) -> theory -> theory
wenzelm@33722
   130
  val no_skel: proof
wenzelm@33722
   131
  val normal_skel: proof
wenzelm@28803
   132
  val rewrite_proof: theory -> (proof * proof) list *
wenzelm@33722
   133
    (typ list -> proof -> (proof * proof) option) list -> proof -> proof
wenzelm@28803
   134
  val rewrite_proof_notypes: (proof * proof) list *
wenzelm@33722
   135
    (typ list -> proof -> (proof * proof) option) list -> proof -> proof
wenzelm@28803
   136
  val rew_proof: theory -> proof -> proof
berghofe@11519
   137
end
berghofe@11519
   138
berghofe@11519
   139
structure Proofterm : PROOFTERM =
berghofe@11519
   140
struct
berghofe@11519
   141
wenzelm@28803
   142
(***** datatype proof *****)
wenzelm@28803
   143
berghofe@11519
   144
datatype proof =
wenzelm@28803
   145
   MinProof
wenzelm@28803
   146
 | PBound of int
berghofe@11519
   147
 | Abst of string * typ option * proof
berghofe@11519
   148
 | AbsP of string * term option * proof
wenzelm@12497
   149
 | op % of proof * term option
wenzelm@12497
   150
 | op %% of proof * proof
berghofe@11519
   151
 | Hyp of term
berghofe@11519
   152
 | PAxm of string * term * typ list option
wenzelm@31943
   153
 | OfClass of typ * class
berghofe@11519
   154
 | Oracle of string * term * typ list option
wenzelm@28828
   155
 | Promise of serial * term * typ list
wenzelm@29635
   156
 | PThm of serial * ((string * term * typ list option) * proof_body future)
wenzelm@28803
   157
and proof_body = PBody of
wenzelm@28803
   158
  {oracles: (string * term) OrdList.T,
wenzelm@29635
   159
   thms: (serial * (string * term * proof_body future)) OrdList.T,
wenzelm@28803
   160
   proof: proof};
berghofe@11519
   161
wenzelm@28815
   162
type oracle = string * term;
wenzelm@29635
   163
type pthm = serial * (string * term * proof_body future);
wenzelm@28815
   164
wenzelm@28803
   165
fun proof_of (PBody {proof, ...}) = proof;
wenzelm@32094
   166
val join_proof = Future.join #> proof_of;
berghofe@17017
   167
berghofe@17017
   168
wenzelm@28803
   169
(***** proof atoms *****)
wenzelm@28803
   170
wenzelm@28803
   171
fun fold_proof_atoms all f =
wenzelm@28803
   172
  let
wenzelm@28803
   173
    fun app (Abst (_, _, prf)) = app prf
wenzelm@28803
   174
      | app (AbsP (_, _, prf)) = app prf
wenzelm@28803
   175
      | app (prf % _) = app prf
wenzelm@28803
   176
      | app (prf1 %% prf2) = app prf1 #> app prf2
wenzelm@28803
   177
      | app (prf as PThm (i, (_, body))) = (fn (x, seen) =>
wenzelm@28803
   178
          if Inttab.defined seen i then (x, seen)
wenzelm@28803
   179
          else
wenzelm@28815
   180
            let val (x', seen') =
wenzelm@29635
   181
              (if all then app (join_proof body) else I) (x, Inttab.update (i, ()) seen)
wenzelm@28815
   182
            in (f prf x', seen') end)
wenzelm@28803
   183
      | app prf = (fn (x, seen) => (f prf x, seen));
wenzelm@28803
   184
  in fn prfs => fn x => #1 (fold app prfs (x, Inttab.empty)) end;
berghofe@19357
   185
wenzelm@30711
   186
fun fold_body_thms f =
wenzelm@30711
   187
  let
wenzelm@32726
   188
    fun app (PBody {thms, ...}) =
wenzelm@32094
   189
     (Future.join_results (map (#3 o #2) thms);
wenzelm@32094
   190
      thms |> fold (fn (i, (name, prop, body)) => fn (x, seen) =>
wenzelm@32726
   191
        if Inttab.defined seen i then (x, seen)
wenzelm@32094
   192
        else
wenzelm@32094
   193
          let
wenzelm@32094
   194
            val body' = Future.join body;
wenzelm@32726
   195
            val (x', seen') = app body' (x, Inttab.update (i, ()) seen);
wenzelm@32810
   196
          in (f (name, prop, body') x', seen') end));
wenzelm@32726
   197
  in fn bodies => fn x => #1 (fold app bodies (x, Inttab.empty)) end;
wenzelm@30711
   198
wenzelm@32054
   199
fun join_bodies bodies = fold_body_thms (fn _ => fn () => ()) bodies ();
wenzelm@32054
   200
wenzelm@30712
   201
fun status_of bodies =
wenzelm@30711
   202
  let
wenzelm@30711
   203
    fun status (PBody {oracles, thms, ...}) x =
wenzelm@30711
   204
      let
wenzelm@30711
   205
        val ((oracle, unfinished, failed), seen) =
wenzelm@30711
   206
          (thms, x) |-> fold (fn (i, (_, _, body)) => fn (st, seen) =>
wenzelm@30711
   207
            if Inttab.defined seen i then (st, seen)
wenzelm@30711
   208
            else
wenzelm@30711
   209
              let val seen' = Inttab.update (i, ()) seen in
wenzelm@30711
   210
                (case Future.peek body of
wenzelm@30711
   211
                  SOME (Exn.Result body') => status body' (st, seen')
wenzelm@30711
   212
                | SOME (Exn.Exn _) =>
wenzelm@30711
   213
                    let val (oracle, unfinished, _) = st
wenzelm@30711
   214
                    in ((oracle, unfinished, true), seen') end
wenzelm@30711
   215
                | NONE =>
wenzelm@30711
   216
                    let val (oracle, _, failed) = st
wenzelm@30711
   217
                    in ((oracle, true, failed), seen') end)
wenzelm@30711
   218
              end);
wenzelm@30711
   219
      in ((oracle orelse not (null oracles), unfinished, failed), seen) end;
wenzelm@32057
   220
    val (oracle, unfinished, failed) =
wenzelm@32057
   221
      #1 (fold status bodies ((false, false, false), Inttab.empty));
wenzelm@30711
   222
  in {oracle = oracle, unfinished = unfinished, failed = failed} end;
wenzelm@30711
   223
wenzelm@28803
   224
wenzelm@28815
   225
(* proof body *)
wenzelm@28803
   226
wenzelm@35408
   227
val oracle_ord = prod_ord fast_string_ord Term_Ord.fast_term_ord;
wenzelm@28803
   228
fun thm_ord ((i, _): pthm, (j, _)) = int_ord (j, i);
wenzelm@28803
   229
wenzelm@30716
   230
val merge_oracles = OrdList.union oracle_ord;
wenzelm@30716
   231
val merge_thms = OrdList.union thm_ord;
wenzelm@30716
   232
wenzelm@30716
   233
val all_oracles_of =
wenzelm@30716
   234
  let
wenzelm@32057
   235
    fun collect (PBody {oracles, thms, ...}) =
wenzelm@32094
   236
     (Future.join_results (map (#3 o #2) thms);
wenzelm@32057
   237
      thms |> fold (fn (i, (_, _, body)) => fn (x, seen) =>
wenzelm@32057
   238
        if Inttab.defined seen i then (x, seen)
wenzelm@32057
   239
        else
wenzelm@32057
   240
          let
wenzelm@32057
   241
            val body' = Future.join body;
wenzelm@32057
   242
            val (x', seen') = collect body' (x, Inttab.update (i, ()) seen);
wenzelm@32094
   243
          in (merge_oracles oracles x', seen') end));
wenzelm@30716
   244
  in fn body => #1 (collect body ([], Inttab.empty)) end;
wenzelm@30716
   245
wenzelm@30716
   246
fun approximate_proof_body prf =
wenzelm@28803
   247
  let
wenzelm@28803
   248
    val (oracles, thms) = fold_proof_atoms false
wenzelm@28803
   249
      (fn Oracle (s, prop, _) => apfst (cons (s, prop))
wenzelm@28815
   250
        | PThm (i, ((name, prop, _), body)) => apsnd (cons (i, (name, prop, body)))
wenzelm@28803
   251
        | _ => I) [prf] ([], []);
wenzelm@30716
   252
  in
wenzelm@30716
   253
    PBody
wenzelm@30716
   254
     {oracles = OrdList.make oracle_ord oracles,
wenzelm@30716
   255
      thms = OrdList.make thm_ord thms,
wenzelm@30716
   256
      proof = prf}
wenzelm@30716
   257
  end;
berghofe@11519
   258
wenzelm@28803
   259
wenzelm@28803
   260
(***** proof objects with different levels of detail *****)
berghofe@11519
   261
skalberg@15531
   262
fun (prf %> t) = prf % SOME t;
berghofe@11519
   263
skalberg@15570
   264
val proof_combt = Library.foldl (op %>);
skalberg@15570
   265
val proof_combt' = Library.foldl (op %);
skalberg@15570
   266
val proof_combP = Library.foldl (op %%);
berghofe@11519
   267
wenzelm@21646
   268
fun strip_combt prf =
berghofe@11615
   269
    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
wenzelm@21646
   270
          | stripc  x =  x
berghofe@11519
   271
    in  stripc (prf, [])  end;
berghofe@11519
   272
wenzelm@21646
   273
fun strip_combP prf =
berghofe@11615
   274
    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
berghofe@11519
   275
          | stripc  x =  x
berghofe@11519
   276
    in  stripc (prf, [])  end;
berghofe@11519
   277
wenzelm@28803
   278
fun strip_thm (body as PBody {proof, ...}) =
wenzelm@28803
   279
  (case strip_combt (fst (strip_combP proof)) of
wenzelm@29635
   280
    (PThm (_, (_, body')), _) => Future.join body'
wenzelm@28803
   281
  | _ => body);
berghofe@11519
   282
wenzelm@23178
   283
val mk_Abst = fold_rev (fn (s, T:typ) => fn prf => Abst (s, NONE, prf));
skalberg@15531
   284
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", NONE, prf)) prf;
berghofe@11519
   285
wenzelm@36620
   286
fun map_proof_same term typ ofclass =
wenzelm@20000
   287
  let
wenzelm@32024
   288
    val typs = Same.map typ;
wenzelm@20000
   289
wenzelm@32024
   290
    fun proof (Abst (s, T, prf)) =
wenzelm@32024
   291
          (Abst (s, Same.map_option typ T, Same.commit proof prf)
wenzelm@32024
   292
            handle Same.SAME => Abst (s, T, proof prf))
wenzelm@32024
   293
      | proof (AbsP (s, t, prf)) =
wenzelm@32024
   294
          (AbsP (s, Same.map_option term t, Same.commit proof prf)
wenzelm@32024
   295
            handle Same.SAME => AbsP (s, t, proof prf))
wenzelm@32024
   296
      | proof (prf % t) =
wenzelm@32024
   297
          (proof prf % Same.commit (Same.map_option term) t
wenzelm@32024
   298
            handle Same.SAME => prf % Same.map_option term t)
wenzelm@32024
   299
      | proof (prf1 %% prf2) =
wenzelm@32024
   300
          (proof prf1 %% Same.commit proof prf2
wenzelm@32024
   301
            handle Same.SAME => prf1 %% proof prf2)
wenzelm@32024
   302
      | proof (PAxm (a, prop, SOME Ts)) = PAxm (a, prop, SOME (typs Ts))
wenzelm@36620
   303
      | proof (OfClass T_c) = ofclass T_c
wenzelm@32024
   304
      | proof (Oracle (a, prop, SOME Ts)) = Oracle (a, prop, SOME (typs Ts))
wenzelm@32024
   305
      | proof (Promise (i, prop, Ts)) = Promise (i, prop, typs Ts)
wenzelm@32057
   306
      | proof (PThm (i, ((a, prop, SOME Ts), body))) =
wenzelm@32057
   307
          PThm (i, ((a, prop, SOME (typs Ts)), body))
wenzelm@32024
   308
      | proof _ = raise Same.SAME;
wenzelm@36620
   309
  in proof end;
wenzelm@36620
   310
wenzelm@36620
   311
fun map_proof_terms_same term typ = map_proof_same term typ (fn (T, c) => OfClass (typ T, c));
wenzelm@36620
   312
fun map_proof_types_same typ = map_proof_terms_same (Term_Subst.map_types_same typ) typ;
wenzelm@20000
   313
haftmann@22662
   314
fun same eq f x =
berghofe@11715
   315
  let val x' = f x
wenzelm@32019
   316
  in if eq (x, x') then raise Same.SAME else x' end;
berghofe@11715
   317
wenzelm@36620
   318
fun map_proof_terms f g = Same.commit (map_proof_terms_same (same (op =) f) (same (op =) g));
wenzelm@36620
   319
fun map_proof_types f = Same.commit (map_proof_types_same (same (op =) f));
berghofe@11519
   320
wenzelm@20147
   321
fun fold_proof_terms f g (Abst (_, SOME T, prf)) = g T #> fold_proof_terms f g prf
wenzelm@20147
   322
  | fold_proof_terms f g (Abst (_, NONE, prf)) = fold_proof_terms f g prf
wenzelm@20147
   323
  | fold_proof_terms f g (AbsP (_, SOME t, prf)) = f t #> fold_proof_terms f g prf
wenzelm@20147
   324
  | fold_proof_terms f g (AbsP (_, NONE, prf)) = fold_proof_terms f g prf
wenzelm@20147
   325
  | fold_proof_terms f g (prf % SOME t) = fold_proof_terms f g prf #> f t
wenzelm@20147
   326
  | fold_proof_terms f g (prf % NONE) = fold_proof_terms f g prf
wenzelm@20147
   327
  | fold_proof_terms f g (prf1 %% prf2) =
wenzelm@20147
   328
      fold_proof_terms f g prf1 #> fold_proof_terms f g prf2
wenzelm@20159
   329
  | fold_proof_terms _ g (PAxm (_, _, SOME Ts)) = fold g Ts
wenzelm@31943
   330
  | fold_proof_terms _ g (OfClass (T, _)) = g T
wenzelm@28828
   331
  | fold_proof_terms _ g (Oracle (_, _, SOME Ts)) = fold g Ts
wenzelm@28828
   332
  | fold_proof_terms _ g (Promise (_, _, Ts)) = fold g Ts
wenzelm@28803
   333
  | fold_proof_terms _ g (PThm (_, ((_, _, SOME Ts), _))) = fold g Ts
wenzelm@20147
   334
  | fold_proof_terms _ _ _ = I;
berghofe@11519
   335
wenzelm@20300
   336
fun maxidx_proof prf = fold_proof_terms Term.maxidx_term Term.maxidx_typ prf;
berghofe@12868
   337
berghofe@13744
   338
fun size_of_proof (Abst (_, _, prf)) = 1 + size_of_proof prf
berghofe@13749
   339
  | size_of_proof (AbsP (_, t, prf)) = 1 + size_of_proof prf
wenzelm@28803
   340
  | size_of_proof (prf % _) = 1 + size_of_proof prf
berghofe@13744
   341
  | size_of_proof (prf1 %% prf2) = size_of_proof prf1 + size_of_proof prf2
berghofe@13744
   342
  | size_of_proof _ = 1;
berghofe@13744
   343
wenzelm@28803
   344
fun change_type opTs (PAxm (name, prop, _)) = PAxm (name, prop, opTs)
wenzelm@31943
   345
  | change_type (SOME [T]) (OfClass (_, c)) = OfClass (T, c)
berghofe@12907
   346
  | change_type opTs (Oracle (name, prop, _)) = Oracle (name, prop, opTs)
wenzelm@28828
   347
  | change_type opTs (Promise _) = error "change_type: unexpected promise"
wenzelm@32057
   348
  | change_type opTs (PThm (i, ((name, prop, _), body))) =
wenzelm@32057
   349
      PThm (i, ((name, prop, opTs), body))
berghofe@12907
   350
  | change_type _ prf = prf;
berghofe@12907
   351
berghofe@11519
   352
berghofe@11519
   353
(***** utilities *****)
berghofe@11519
   354
berghofe@11519
   355
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
berghofe@11519
   356
  | strip_abs _ t = t;
berghofe@11519
   357
skalberg@15570
   358
fun mk_abs Ts t = Library.foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
berghofe@11519
   359
berghofe@11519
   360
wenzelm@21646
   361
(*Abstraction of a proof term over its occurrences of v,
berghofe@11519
   362
    which must contain no loose bound variables.
berghofe@11519
   363
  The resulting proof term is ready to become the body of an Abst.*)
berghofe@11519
   364
berghofe@11519
   365
fun prf_abstract_over v =
berghofe@11519
   366
  let
berghofe@11715
   367
    fun abst' lev u = if v aconv u then Bound lev else
berghofe@11715
   368
      (case u of
berghofe@11715
   369
         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
wenzelm@32019
   370
       | f $ t => (abst' lev f $ absth' lev t handle Same.SAME => f $ abst' lev t)
wenzelm@32019
   371
       | _ => raise Same.SAME)
wenzelm@32019
   372
    and absth' lev t = (abst' lev t handle Same.SAME => t);
berghofe@11519
   373
berghofe@11715
   374
    fun abst lev (AbsP (a, t, prf)) =
wenzelm@32024
   375
          (AbsP (a, Same.map_option (abst' lev) t, absth lev prf)
wenzelm@32019
   376
           handle Same.SAME => AbsP (a, t, abst lev prf))
berghofe@11715
   377
      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
berghofe@11715
   378
      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
wenzelm@32019
   379
          handle Same.SAME => prf1 %% abst lev prf2)
skalberg@15570
   380
      | abst lev (prf % t) = (abst lev prf % Option.map (absth' lev) t
wenzelm@32024
   381
          handle Same.SAME => prf % Same.map_option (abst' lev) t)
wenzelm@32019
   382
      | abst _ _ = raise Same.SAME
wenzelm@32024
   383
    and absth lev prf = (abst lev prf handle Same.SAME => prf);
berghofe@11519
   384
berghofe@11715
   385
  in absth 0 end;
berghofe@11519
   386
berghofe@11519
   387
berghofe@11519
   388
(*increments a proof term's non-local bound variables
berghofe@11519
   389
  required when moving a proof term within abstractions
berghofe@11519
   390
     inc is  increment for bound variables
berghofe@11519
   391
     lev is  level at which a bound variable is considered 'loose'*)
berghofe@11519
   392
berghofe@11519
   393
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
berghofe@11519
   394
berghofe@11715
   395
fun prf_incr_bv' incP inct Plev tlev (PBound i) =
wenzelm@32019
   396
      if i >= Plev then PBound (i+incP) else raise Same.SAME
berghofe@11715
   397
  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
wenzelm@32024
   398
      (AbsP (a, Same.map_option (same (op =) (incr_bv' inct tlev)) t,
wenzelm@32019
   399
         prf_incr_bv incP inct (Plev+1) tlev body) handle Same.SAME =>
berghofe@11715
   400
           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
berghofe@11715
   401
  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
berghofe@11715
   402
      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
wenzelm@21646
   403
  | prf_incr_bv' incP inct Plev tlev (prf %% prf') =
berghofe@11715
   404
      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
wenzelm@32019
   405
       handle Same.SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
wenzelm@21646
   406
  | prf_incr_bv' incP inct Plev tlev (prf % t) =
skalberg@15570
   407
      (prf_incr_bv' incP inct Plev tlev prf % Option.map (incr_bv' inct tlev) t
wenzelm@32024
   408
       handle Same.SAME => prf % Same.map_option (same (op =) (incr_bv' inct tlev)) t)
wenzelm@32019
   409
  | prf_incr_bv' _ _ _ _ _ = raise Same.SAME
berghofe@11715
   410
and prf_incr_bv incP inct Plev tlev prf =
wenzelm@32019
   411
      (prf_incr_bv' incP inct Plev tlev prf handle Same.SAME => prf);
berghofe@11519
   412
berghofe@11519
   413
fun incr_pboundvars  0 0 prf = prf
berghofe@11519
   414
  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
berghofe@11519
   415
berghofe@11519
   416
berghofe@11615
   417
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
skalberg@15531
   418
  | prf_loose_bvar1 (prf % SOME t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
skalberg@15531
   419
  | prf_loose_bvar1 (_ % NONE) _ = true
skalberg@15531
   420
  | prf_loose_bvar1 (AbsP (_, SOME t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
skalberg@15531
   421
  | prf_loose_bvar1 (AbsP (_, NONE, _)) k = true
berghofe@11519
   422
  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
berghofe@11519
   423
  | prf_loose_bvar1 _ _ = false;
berghofe@11519
   424
berghofe@11519
   425
fun prf_loose_Pbvar1 (PBound i) k = i = k
berghofe@11615
   426
  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
berghofe@11615
   427
  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
berghofe@11519
   428
  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
berghofe@11519
   429
  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
berghofe@11519
   430
  | prf_loose_Pbvar1 _ _ = false;
berghofe@11519
   431
berghofe@12279
   432
fun prf_add_loose_bnos plev tlev (PBound i) (is, js) =
wenzelm@17492
   433
      if i < plev then (is, js) else (insert (op =) (i-plev) is, js)
berghofe@12279
   434
  | prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
berghofe@12279
   435
      prf_add_loose_bnos plev tlev prf2
berghofe@12279
   436
        (prf_add_loose_bnos plev tlev prf1 p)
berghofe@12279
   437
  | prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
berghofe@12279
   438
      prf_add_loose_bnos plev tlev prf (case opt of
wenzelm@17492
   439
          NONE => (is, insert (op =) ~1 js)
skalberg@15531
   440
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   441
  | prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
berghofe@12279
   442
      prf_add_loose_bnos (plev+1) tlev prf (case opt of
wenzelm@17492
   443
          NONE => (is, insert (op =) ~1 js)
skalberg@15531
   444
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   445
  | prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
berghofe@12279
   446
      prf_add_loose_bnos plev (tlev+1) prf p
berghofe@12279
   447
  | prf_add_loose_bnos _ _ _ _ = ([], []);
berghofe@12279
   448
berghofe@11519
   449
berghofe@11519
   450
(**** substitutions ****)
berghofe@11519
   451
wenzelm@31977
   452
fun del_conflicting_tvars envT T = Term_Subst.instantiateT
wenzelm@19482
   453
  (map_filter (fn ixnS as (_, S) =>
haftmann@26328
   454
     (Type.lookup envT ixnS; NONE) handle TYPE _ =>
wenzelm@29270
   455
        SOME (ixnS, TFree ("'dummy", S))) (OldTerm.typ_tvars T)) T;
berghofe@18316
   456
wenzelm@31977
   457
fun del_conflicting_vars env t = Term_Subst.instantiate
wenzelm@19482
   458
  (map_filter (fn ixnS as (_, S) =>
wenzelm@32019
   459
     (Type.lookup (Envir.type_env env) ixnS; NONE) handle TYPE _ =>
wenzelm@29270
   460
        SOME (ixnS, TFree ("'dummy", S))) (OldTerm.term_tvars t),
wenzelm@19482
   461
   map_filter (fn Var (ixnT as (_, T)) =>
berghofe@18316
   462
     (Envir.lookup (env, ixnT); NONE) handle TYPE _ =>
wenzelm@29265
   463
        SOME (ixnT, Free ("dummy", T))) (OldTerm.term_vars t)) t;
berghofe@18316
   464
berghofe@11519
   465
fun norm_proof env =
berghofe@11519
   466
  let
wenzelm@32019
   467
    val envT = Envir.type_env env;
berghofe@18316
   468
    fun msg s = warning ("type conflict in norm_proof:\n" ^ s);
berghofe@18316
   469
    fun htype f t = f env t handle TYPE (s, _, _) =>
berghofe@18316
   470
      (msg s; f env (del_conflicting_vars env t));
berghofe@18316
   471
    fun htypeT f T = f envT T handle TYPE (s, _, _) =>
berghofe@18316
   472
      (msg s; f envT (del_conflicting_tvars envT T));
berghofe@18316
   473
    fun htypeTs f Ts = f envT Ts handle TYPE (s, _, _) =>
berghofe@18316
   474
      (msg s; f envT (map (del_conflicting_tvars envT) Ts));
wenzelm@32024
   475
wenzelm@32019
   476
    fun norm (Abst (s, T, prf)) =
wenzelm@32024
   477
          (Abst (s, Same.map_option (htypeT Envir.norm_type_same) T, Same.commit norm prf)
wenzelm@32019
   478
            handle Same.SAME => Abst (s, T, norm prf))
wenzelm@32019
   479
      | norm (AbsP (s, t, prf)) =
wenzelm@32024
   480
          (AbsP (s, Same.map_option (htype Envir.norm_term_same) t, Same.commit norm prf)
wenzelm@32019
   481
            handle Same.SAME => AbsP (s, t, norm prf))
wenzelm@32019
   482
      | norm (prf % t) =
wenzelm@32019
   483
          (norm prf % Option.map (htype Envir.norm_term) t
wenzelm@32024
   484
            handle Same.SAME => prf % Same.map_option (htype Envir.norm_term_same) t)
wenzelm@32019
   485
      | norm (prf1 %% prf2) =
wenzelm@32019
   486
          (norm prf1 %% Same.commit norm prf2
wenzelm@32019
   487
            handle Same.SAME => prf1 %% norm prf2)
wenzelm@32019
   488
      | norm (PAxm (s, prop, Ts)) =
wenzelm@32024
   489
          PAxm (s, prop, Same.map_option (htypeTs Envir.norm_types_same) Ts)
wenzelm@32019
   490
      | norm (OfClass (T, c)) =
wenzelm@32019
   491
          OfClass (htypeT Envir.norm_type_same T, c)
wenzelm@32019
   492
      | norm (Oracle (s, prop, Ts)) =
wenzelm@32024
   493
          Oracle (s, prop, Same.map_option (htypeTs Envir.norm_types_same) Ts)
wenzelm@32019
   494
      | norm (Promise (i, prop, Ts)) =
wenzelm@32019
   495
          Promise (i, prop, htypeTs Envir.norm_types_same Ts)
wenzelm@28803
   496
      | norm (PThm (i, ((s, t, Ts), body))) =
wenzelm@32024
   497
          PThm (i, ((s, t, Same.map_option (htypeTs Envir.norm_types_same) Ts), body))
wenzelm@32019
   498
      | norm _ = raise Same.SAME;
wenzelm@32019
   499
  in Same.commit norm end;
berghofe@11519
   500
wenzelm@28803
   501
berghofe@11519
   502
(***** Remove some types in proof term (to save space) *****)
berghofe@11519
   503
berghofe@11519
   504
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
berghofe@11519
   505
  | remove_types (t $ u) = remove_types t $ remove_types u
berghofe@11519
   506
  | remove_types (Const (s, _)) = Const (s, dummyT)
berghofe@11519
   507
  | remove_types t = t;
berghofe@11519
   508
wenzelm@32032
   509
fun remove_types_env (Envir.Envir {maxidx, tenv, tyenv}) =
wenzelm@32032
   510
  Envir.Envir {maxidx = maxidx, tenv = Vartab.map (apsnd remove_types) tenv, tyenv = tyenv};
berghofe@11519
   511
berghofe@11519
   512
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
berghofe@11519
   513
wenzelm@28803
   514
berghofe@11519
   515
(**** substitution of bound variables ****)
berghofe@11519
   516
berghofe@11519
   517
fun prf_subst_bounds args prf =
berghofe@11519
   518
  let
berghofe@11519
   519
    val n = length args;
berghofe@11519
   520
    fun subst' lev (Bound i) =
wenzelm@32019
   521
         (if i<lev then raise Same.SAME    (*var is locally bound*)
wenzelm@30146
   522
          else  incr_boundvars lev (nth args (i-lev))
wenzelm@30146
   523
                  handle Subscript => Bound (i-n))  (*loose: change it*)
berghofe@11519
   524
      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
berghofe@11519
   525
      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
wenzelm@32019
   526
          handle Same.SAME => f $ subst' lev t)
wenzelm@32019
   527
      | subst' _ _ = raise Same.SAME
wenzelm@32019
   528
    and substh' lev t = (subst' lev t handle Same.SAME => t);
berghofe@11519
   529
wenzelm@32057
   530
    fun subst lev (AbsP (a, t, body)) =
wenzelm@32057
   531
        (AbsP (a, Same.map_option (subst' lev) t, substh lev body)
wenzelm@32019
   532
          handle Same.SAME => AbsP (a, t, subst lev body))
berghofe@11519
   533
      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
berghofe@11615
   534
      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
wenzelm@32019
   535
          handle Same.SAME => prf %% subst lev prf')
skalberg@15570
   536
      | subst lev (prf % t) = (subst lev prf % Option.map (substh' lev) t
wenzelm@32024
   537
          handle Same.SAME => prf % Same.map_option (subst' lev) t)
wenzelm@32019
   538
      | subst _ _ = raise Same.SAME
wenzelm@32024
   539
    and substh lev prf = (subst lev prf handle Same.SAME => prf);
berghofe@11519
   540
  in case args of [] => prf | _ => substh 0 prf end;
berghofe@11519
   541
berghofe@11519
   542
fun prf_subst_pbounds args prf =
berghofe@11519
   543
  let
berghofe@11519
   544
    val n = length args;
berghofe@11519
   545
    fun subst (PBound i) Plev tlev =
wenzelm@32019
   546
         (if i < Plev then raise Same.SAME    (*var is locally bound*)
wenzelm@30146
   547
          else incr_pboundvars Plev tlev (nth args (i-Plev))
berghofe@11519
   548
                 handle Subscript => PBound (i-n)  (*loose: change it*))
berghofe@11519
   549
      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
berghofe@11519
   550
      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
berghofe@11615
   551
      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
wenzelm@32019
   552
          handle Same.SAME => prf %% subst prf' Plev tlev)
berghofe@11615
   553
      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
wenzelm@32019
   554
      | subst  prf _ _ = raise Same.SAME
wenzelm@32019
   555
    and substh prf Plev tlev = (subst prf Plev tlev handle Same.SAME => prf)
berghofe@11519
   556
  in case args of [] => prf | _ => substh prf 0 0 end;
berghofe@11519
   557
berghofe@11519
   558
berghofe@11519
   559
(**** Freezing and thawing of variables in proof terms ****)
berghofe@11519
   560
berghofe@11519
   561
fun frzT names =
haftmann@17325
   562
  map_type_tvar (fn (ixn, xs) => TFree ((the o AList.lookup (op =) names) ixn, xs));
berghofe@11519
   563
berghofe@11519
   564
fun thawT names =
haftmann@17325
   565
  map_type_tfree (fn (s, xs) => case AList.lookup (op =) names s of
skalberg@15531
   566
      NONE => TFree (s, xs)
skalberg@15531
   567
    | SOME ixn => TVar (ixn, xs));
berghofe@11519
   568
berghofe@11519
   569
fun freeze names names' (t $ u) =
berghofe@11519
   570
      freeze names names' t $ freeze names names' u
berghofe@11519
   571
  | freeze names names' (Abs (s, T, t)) =
berghofe@11519
   572
      Abs (s, frzT names' T, freeze names names' t)
berghofe@11519
   573
  | freeze names names' (Const (s, T)) = Const (s, frzT names' T)
berghofe@11519
   574
  | freeze names names' (Free (s, T)) = Free (s, frzT names' T)
berghofe@11519
   575
  | freeze names names' (Var (ixn, T)) =
haftmann@17325
   576
      Free ((the o AList.lookup (op =) names) ixn, frzT names' T)
berghofe@11519
   577
  | freeze names names' t = t;
berghofe@11519
   578
berghofe@11519
   579
fun thaw names names' (t $ u) =
berghofe@11519
   580
      thaw names names' t $ thaw names names' u
berghofe@11519
   581
  | thaw names names' (Abs (s, T, t)) =
berghofe@11519
   582
      Abs (s, thawT names' T, thaw names names' t)
berghofe@11519
   583
  | thaw names names' (Const (s, T)) = Const (s, thawT names' T)
wenzelm@21646
   584
  | thaw names names' (Free (s, T)) =
berghofe@11519
   585
      let val T' = thawT names' T
haftmann@17325
   586
      in case AList.lookup (op =) names s of
skalberg@15531
   587
          NONE => Free (s, T')
skalberg@15531
   588
        | SOME ixn => Var (ixn, T')
berghofe@11519
   589
      end
berghofe@11519
   590
  | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
berghofe@11519
   591
  | thaw names names' t = t;
berghofe@11519
   592
berghofe@11519
   593
fun freeze_thaw_prf prf =
berghofe@11519
   594
  let
berghofe@11519
   595
    val (fs, Tfs, vs, Tvs) = fold_proof_terms
wenzelm@20147
   596
      (fn t => fn (fs, Tfs, vs, Tvs) =>
wenzelm@29261
   597
         (Term.add_free_names t fs, Term.add_tfree_names t Tfs,
wenzelm@29261
   598
          Term.add_var_names t vs, Term.add_tvar_names t Tvs))
wenzelm@20147
   599
      (fn T => fn (fs, Tfs, vs, Tvs) =>
wenzelm@29261
   600
         (fs, Term.add_tfree_namesT T Tfs,
wenzelm@29261
   601
          vs, Term.add_tvar_namesT T Tvs))
wenzelm@20147
   602
      prf ([], [], [], []);
wenzelm@29261
   603
    val names = vs ~~ Name.variant_list fs (map fst vs);
wenzelm@20071
   604
    val names' = Tvs ~~ Name.variant_list Tfs (map fst Tvs);
berghofe@11519
   605
    val rnames = map swap names;
berghofe@11519
   606
    val rnames' = map swap names';
berghofe@11519
   607
  in
berghofe@11519
   608
    (map_proof_terms (freeze names names') (frzT names') prf,
berghofe@11519
   609
     map_proof_terms (thaw rnames rnames') (thawT rnames'))
berghofe@11519
   610
  end;
berghofe@11519
   611
berghofe@11519
   612
berghofe@11519
   613
(***** implication introduction *****)
berghofe@11519
   614
berghofe@11519
   615
fun implies_intr_proof h prf =
berghofe@11519
   616
  let
wenzelm@32019
   617
    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise Same.SAME
berghofe@11519
   618
      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
wenzelm@32024
   619
      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i + 1) prf)
berghofe@11615
   620
      | abshyp i (prf % t) = abshyp i prf % t
wenzelm@32024
   621
      | abshyp i (prf1 %% prf2) =
wenzelm@32024
   622
          (abshyp i prf1 %% abshyph i prf2
wenzelm@32024
   623
            handle Same.SAME => prf1 %% abshyp i prf2)
wenzelm@32019
   624
      | abshyp _ _ = raise Same.SAME
wenzelm@32024
   625
    and abshyph i prf = (abshyp i prf handle Same.SAME => prf);
berghofe@11519
   626
  in
skalberg@15531
   627
    AbsP ("H", NONE (*h*), abshyph 0 prf)
berghofe@11519
   628
  end;
berghofe@11519
   629
berghofe@11519
   630
berghofe@11519
   631
(***** forall introduction *****)
berghofe@11519
   632
skalberg@15531
   633
fun forall_intr_proof x a prf = Abst (a, NONE, prf_abstract_over x prf);
berghofe@11519
   634
berghofe@11519
   635
berghofe@11519
   636
(***** varify *****)
berghofe@11519
   637
berghofe@11519
   638
fun varify_proof t fixed prf =
berghofe@11519
   639
  let
wenzelm@19304
   640
    val fs = Term.fold_types (Term.fold_atyps
wenzelm@19304
   641
      (fn TFree v => if member (op =) fixed v then I else insert (op =) v | _ => I)) t [];
wenzelm@29261
   642
    val used = Name.context
wenzelm@29261
   643
      |> fold_types (fold_atyps (fn TVar ((a, _), _) => Name.declare a | _ => I)) t;
wenzelm@32024
   644
    val fmap = fs ~~ #1 (Name.variants (map fst fs) used);
berghofe@11519
   645
    fun thaw (f as (a, S)) =
haftmann@17314
   646
      (case AList.lookup (op =) fmap f of
skalberg@15531
   647
        NONE => TFree f
skalberg@15531
   648
      | SOME b => TVar ((b, 0), S));
wenzelm@28803
   649
  in map_proof_terms (map_types (map_type_tfree thaw)) (map_type_tfree thaw) prf end;
berghofe@11519
   650
berghofe@11519
   651
berghofe@11519
   652
local
berghofe@11519
   653
berghofe@11519
   654
fun new_name (ix, (pairs,used)) =
wenzelm@20071
   655
  let val v = Name.variant used (string_of_indexname ix)
berghofe@11519
   656
  in  ((ix, v) :: pairs, v :: used)  end;
berghofe@11519
   657
haftmann@17325
   658
fun freeze_one alist (ix, sort) = (case AList.lookup (op =) alist ix of
skalberg@15531
   659
    NONE => TVar (ix, sort)
skalberg@15531
   660
  | SOME name => TFree (name, sort));
berghofe@11519
   661
berghofe@11519
   662
in
berghofe@11519
   663
wenzelm@36619
   664
fun legacy_freezeT t prf =
berghofe@11519
   665
  let
wenzelm@29270
   666
    val used = OldTerm.it_term_types OldTerm.add_typ_tfree_names (t, [])
wenzelm@29270
   667
    and tvars = map #1 (OldTerm.it_term_types OldTerm.add_typ_tvars (t, []));
wenzelm@23178
   668
    val (alist, _) = List.foldr new_name ([], used) tvars;
berghofe@11519
   669
  in
berghofe@11519
   670
    (case alist of
berghofe@11519
   671
      [] => prf (*nothing to do!*)
berghofe@11519
   672
    | _ =>
berghofe@11519
   673
      let val frzT = map_type_tvar (freeze_one alist)
wenzelm@20548
   674
      in map_proof_terms (map_types frzT) frzT prf end)
berghofe@11519
   675
  end;
berghofe@11519
   676
berghofe@11519
   677
end;
berghofe@11519
   678
berghofe@11519
   679
berghofe@11519
   680
(***** rotate assumptions *****)
berghofe@11519
   681
berghofe@11519
   682
fun rotate_proof Bs Bi m prf =
berghofe@11519
   683
  let
berghofe@11519
   684
    val params = Term.strip_all_vars Bi;
berghofe@11519
   685
    val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
berghofe@11519
   686
    val i = length asms;
berghofe@11519
   687
    val j = length Bs;
berghofe@11519
   688
  in
berghofe@11519
   689
    mk_AbsP (j+1, proof_combP (prf, map PBound
wenzelm@23178
   690
      (j downto 1) @ [mk_Abst params (mk_AbsP (i,
berghofe@11519
   691
        proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
wenzelm@23178
   692
          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
berghofe@11519
   693
  end;
berghofe@11519
   694
berghofe@11519
   695
berghofe@11519
   696
(***** permute premises *****)
berghofe@11519
   697
berghofe@11519
   698
fun permute_prems_prf prems j k prf =
berghofe@11519
   699
  let val n = length prems
berghofe@11519
   700
  in mk_AbsP (n, proof_combP (prf,
berghofe@11519
   701
    map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
berghofe@11519
   702
  end;
berghofe@11519
   703
berghofe@11519
   704
wenzelm@19908
   705
(***** generalization *****)
wenzelm@19908
   706
wenzelm@20000
   707
fun generalize (tfrees, frees) idx =
wenzelm@36620
   708
  Same.commit (map_proof_terms_same
wenzelm@36620
   709
    (Term_Subst.generalize_same (tfrees, frees) idx)
wenzelm@36620
   710
    (Term_Subst.generalizeT_same tfrees idx));
wenzelm@19908
   711
wenzelm@19908
   712
berghofe@11519
   713
(***** instantiation *****)
berghofe@11519
   714
wenzelm@20000
   715
fun instantiate (instT, inst) =
wenzelm@36620
   716
  Same.commit (map_proof_terms_same
wenzelm@36620
   717
    (Term_Subst.instantiate_same (instT, map (apsnd remove_types) inst))
wenzelm@36620
   718
    (Term_Subst.instantiateT_same instT));
berghofe@11519
   719
berghofe@11519
   720
berghofe@11519
   721
(***** lifting *****)
berghofe@11519
   722
berghofe@11519
   723
fun lift_proof Bi inc prop prf =
berghofe@11519
   724
  let
wenzelm@32024
   725
    fun lift'' Us Ts t =
wenzelm@32024
   726
      strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
berghofe@11519
   727
berghofe@11715
   728
    fun lift' Us Ts (Abst (s, T, prf)) =
wenzelm@32024
   729
          (Abst (s, Same.map_option (Logic.incr_tvar_same inc) T, lifth' Us (dummyT::Ts) prf)
wenzelm@32019
   730
           handle Same.SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
berghofe@11715
   731
      | lift' Us Ts (AbsP (s, t, prf)) =
wenzelm@32024
   732
          (AbsP (s, Same.map_option (same (op =) (lift'' Us Ts)) t, lifth' Us Ts prf)
wenzelm@32019
   733
           handle Same.SAME => AbsP (s, t, lift' Us Ts prf))
skalberg@15570
   734
      | lift' Us Ts (prf % t) = (lift' Us Ts prf % Option.map (lift'' Us Ts) t
wenzelm@32024
   735
          handle Same.SAME => prf % Same.map_option (same (op =) (lift'' Us Ts)) t)
berghofe@11715
   736
      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
wenzelm@32019
   737
          handle Same.SAME => prf1 %% lift' Us Ts prf2)
berghofe@11715
   738
      | lift' _ _ (PAxm (s, prop, Ts)) =
wenzelm@32024
   739
          PAxm (s, prop, (Same.map_option o Same.map) (Logic.incr_tvar_same inc) Ts)
wenzelm@31943
   740
      | lift' _ _ (OfClass (T, c)) =
wenzelm@32024
   741
          OfClass (Logic.incr_tvar_same inc T, c)
wenzelm@28828
   742
      | lift' _ _ (Oracle (s, prop, Ts)) =
wenzelm@32024
   743
          Oracle (s, prop, (Same.map_option o Same.map) (Logic.incr_tvar_same inc) Ts)
wenzelm@28828
   744
      | lift' _ _ (Promise (i, prop, Ts)) =
wenzelm@32024
   745
          Promise (i, prop, Same.map (Logic.incr_tvar_same inc) Ts)
wenzelm@28803
   746
      | lift' _ _ (PThm (i, ((s, prop, Ts), body))) =
wenzelm@32024
   747
          PThm (i, ((s, prop, (Same.map_option o Same.map) (Logic.incr_tvar inc) Ts), body))
wenzelm@32019
   748
      | lift' _ _ _ = raise Same.SAME
wenzelm@32019
   749
    and lifth' Us Ts prf = (lift' Us Ts prf handle Same.SAME => prf);
berghofe@11519
   750
wenzelm@18030
   751
    val ps = map (Logic.lift_all inc Bi) (Logic.strip_imp_prems prop);
berghofe@11519
   752
    val k = length ps;
berghofe@11519
   753
wenzelm@23178
   754
    fun mk_app b (i, j, prf) =
berghofe@11615
   755
          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
berghofe@11519
   756
berghofe@11519
   757
    fun lift Us bs i j (Const ("==>", _) $ A $ B) =
wenzelm@20147
   758
            AbsP ("H", NONE (*A*), lift Us (true::bs) (i+1) j B)
wenzelm@21646
   759
      | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) =
wenzelm@20147
   760
            Abst (a, NONE (*T*), lift (T::Us) (false::bs) i (j+1) t)
berghofe@11715
   761
      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
wenzelm@23178
   762
            map (fn k => (#3 (fold_rev mk_app bs (i-1, j-1, PBound k))))
berghofe@11519
   763
              (i + k - 1 downto i));
berghofe@11519
   764
  in
berghofe@11519
   765
    mk_AbsP (k, lift [] [] 0 0 Bi)
berghofe@11519
   766
  end;
berghofe@11519
   767
wenzelm@32027
   768
fun incr_indexes i =
wenzelm@36620
   769
  Same.commit (map_proof_terms_same
wenzelm@36620
   770
    (Logic.incr_indexes_same ([], i)) (Logic.incr_tvar_same i));
wenzelm@32027
   771
berghofe@11519
   772
berghofe@11519
   773
(***** proof by assumption *****)
berghofe@11519
   774
berghofe@23296
   775
fun mk_asm_prf t i m =
berghofe@23296
   776
  let
berghofe@23296
   777
    fun imp_prf _ i 0 = PBound i
berghofe@23296
   778
      | imp_prf (Const ("==>", _) $ A $ B) i m = AbsP ("H", NONE (*A*), imp_prf B (i+1) (m-1))
berghofe@23296
   779
      | imp_prf _ i _ = PBound i;
berghofe@23296
   780
    fun all_prf (Const ("all", _) $ Abs (a, T, t)) = Abst (a, NONE (*T*), all_prf t)
berghofe@23296
   781
      | all_prf t = imp_prf t (~i) m
berghofe@23296
   782
  in all_prf t end;
berghofe@11519
   783
berghofe@11519
   784
fun assumption_proof Bs Bi n prf =
berghofe@11519
   785
  mk_AbsP (length Bs, proof_combP (prf,
berghofe@23296
   786
    map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi n ~1]));
berghofe@11519
   787
berghofe@11519
   788
berghofe@11519
   789
(***** Composition of object rule with proof state *****)
berghofe@11519
   790
berghofe@11519
   791
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
skalberg@15531
   792
      AbsP ("H", NONE (*A*), flatten_params_proof (i+1) j n (B, k))
berghofe@11519
   793
  | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
skalberg@15531
   794
      Abst (a, NONE (*T*), flatten_params_proof i (j+1) n (t, k))
berghofe@11519
   795
  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
wenzelm@19304
   796
      map Bound (j-1 downto 0)), map PBound (remove (op =) (i-n) (i-1 downto 0)));
berghofe@11519
   797
berghofe@23296
   798
fun bicompose_proof flatten Bs oldAs newAs A n m rprf sprf =
berghofe@11519
   799
  let
berghofe@11519
   800
    val la = length newAs;
berghofe@11519
   801
    val lb = length Bs;
berghofe@11519
   802
  in
berghofe@11519
   803
    mk_AbsP (lb+la, proof_combP (sprf,
berghofe@11615
   804
      map PBound (lb + la - 1 downto la)) %%
berghofe@23296
   805
        proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) n m] else []) @
wenzelm@18485
   806
          map (if flatten then flatten_params_proof 0 0 n else PBound o snd)
wenzelm@18485
   807
            (oldAs ~~ (la - 1 downto 0))))
berghofe@11519
   808
  end;
berghofe@11519
   809
berghofe@11519
   810
berghofe@11519
   811
(***** axioms for equality *****)
berghofe@11519
   812
wenzelm@14854
   813
val aT = TFree ("'a", []);
wenzelm@14854
   814
val bT = TFree ("'b", []);
berghofe@11519
   815
val x = Free ("x", aT);
berghofe@11519
   816
val y = Free ("y", aT);
berghofe@11519
   817
val z = Free ("z", aT);
berghofe@11519
   818
val A = Free ("A", propT);
berghofe@11519
   819
val B = Free ("B", propT);
berghofe@11519
   820
val f = Free ("f", aT --> bT);
berghofe@11519
   821
val g = Free ("g", aT --> bT);
berghofe@11519
   822
berghofe@11519
   823
val equality_axms =
wenzelm@35851
   824
 [("reflexive", Logic.mk_equals (x, x)),
wenzelm@35851
   825
  ("symmetric", Logic.mk_implies (Logic.mk_equals (x, y), Logic.mk_equals (y, x))),
wenzelm@35851
   826
  ("transitive",
wenzelm@35851
   827
    Logic.list_implies ([Logic.mk_equals (x, y), Logic.mk_equals (y, z)], Logic.mk_equals (x, z))),
wenzelm@35851
   828
  ("equal_intr",
wenzelm@35851
   829
    Logic.list_implies ([Logic.mk_implies (A, B), Logic.mk_implies (B, A)], Logic.mk_equals (A, B))),
wenzelm@35851
   830
  ("equal_elim", Logic.list_implies ([Logic.mk_equals (A, B), A], B)),
wenzelm@35851
   831
  ("abstract_rule",
wenzelm@35851
   832
    Logic.mk_implies
wenzelm@35851
   833
      (Logic.all x
wenzelm@35851
   834
        (Logic.mk_equals (f $ x, g $ x)), Logic.mk_equals (lambda x (f $ x), lambda x (g $ x)))),
wenzelm@35851
   835
  ("combination", Logic.list_implies
wenzelm@35851
   836
    ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)], Logic.mk_equals (f $ x, g $ y)))];
berghofe@11519
   837
berghofe@11519
   838
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
berghofe@11519
   839
  equal_elim_axm, abstract_rule_axm, combination_axm] =
wenzelm@35851
   840
    map (fn (s, t) => PAxm ("Pure." ^ s, Logic.varify_global t, NONE)) equality_axms;
berghofe@11519
   841
skalberg@15531
   842
val reflexive = reflexive_axm % NONE;
berghofe@11519
   843
wenzelm@26424
   844
fun symmetric (prf as PAxm ("Pure.reflexive", _, _) % _) = prf
skalberg@15531
   845
  | symmetric prf = symmetric_axm % NONE % NONE %% prf;
berghofe@11519
   846
wenzelm@26424
   847
fun transitive _ _ (PAxm ("Pure.reflexive", _, _) % _) prf2 = prf2
wenzelm@26424
   848
  | transitive _ _ prf1 (PAxm ("Pure.reflexive", _, _) % _) = prf1
berghofe@11519
   849
  | transitive u (Type ("prop", [])) prf1 prf2 =
skalberg@15531
   850
      transitive_axm % NONE % SOME (remove_types u) % NONE %% prf1 %% prf2
berghofe@11519
   851
  | transitive u T prf1 prf2 =
skalberg@15531
   852
      transitive_axm % NONE % NONE % NONE %% prf1 %% prf2;
berghofe@11519
   853
berghofe@11519
   854
fun abstract_rule x a prf =
skalberg@15531
   855
  abstract_rule_axm % NONE % NONE %% forall_intr_proof x a prf;
berghofe@11519
   856
wenzelm@26424
   857
fun check_comb (PAxm ("Pure.combination", _, _) % f % g % _ % _ %% prf %% _) =
wenzelm@19502
   858
      is_some f orelse check_comb prf
wenzelm@26424
   859
  | check_comb (PAxm ("Pure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
berghofe@11519
   860
      check_comb prf1 andalso check_comb prf2
wenzelm@26424
   861
  | check_comb (PAxm ("Pure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
berghofe@11519
   862
  | check_comb _ = false;
berghofe@11519
   863
berghofe@11519
   864
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
berghofe@11519
   865
  let
berghofe@11519
   866
    val f = Envir.beta_norm f;
berghofe@11519
   867
    val g = Envir.beta_norm g;
berghofe@11519
   868
    val prf =  if check_comb prf1 then
skalberg@15531
   869
        combination_axm % NONE % NONE
berghofe@11519
   870
      else (case prf1 of
wenzelm@26424
   871
          PAxm ("Pure.reflexive", _, _) % _ =>
skalberg@15531
   872
            combination_axm %> remove_types f % NONE
berghofe@11615
   873
        | _ => combination_axm %> remove_types f %> remove_types g)
berghofe@11519
   874
  in
berghofe@11519
   875
    (case T of
berghofe@11615
   876
       Type ("fun", _) => prf %
berghofe@11519
   877
         (case head_of f of
skalberg@15531
   878
            Abs _ => SOME (remove_types t)
skalberg@15531
   879
          | Var _ => SOME (remove_types t)
skalberg@15531
   880
          | _ => NONE) %
berghofe@11519
   881
         (case head_of g of
skalberg@15531
   882
            Abs _ => SOME (remove_types u)
skalberg@15531
   883
          | Var _ => SOME (remove_types u)
skalberg@15531
   884
          | _ => NONE) %% prf1 %% prf2
skalberg@15531
   885
     | _ => prf % NONE % NONE %% prf1 %% prf2)
berghofe@11519
   886
  end;
berghofe@11519
   887
berghofe@11519
   888
fun equal_intr A B prf1 prf2 =
berghofe@11615
   889
  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   890
berghofe@11519
   891
fun equal_elim A B prf1 prf2 =
berghofe@11615
   892
  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   893
berghofe@11519
   894
wenzelm@36740
   895
(**** type classes ****)
wenzelm@36621
   896
wenzelm@36621
   897
fun strip_shyps_proof algebra present witnessed extra_sorts prf =
wenzelm@36621
   898
  let
wenzelm@36621
   899
    fun get S2 (T, S1) = if Sorts.sort_le algebra (S1, S2) then SOME T else NONE;
wenzelm@36732
   900
    val extra = map (fn S => (TFree ("'dummy", S), S)) extra_sorts;
wenzelm@36621
   901
    val replacements = present @ extra @ witnessed;
wenzelm@36621
   902
    fun replace T =
wenzelm@36621
   903
      if exists (fn (T', _) => T' = T) present then raise Same.SAME
wenzelm@36621
   904
      else
wenzelm@36621
   905
        (case get_first (get (Type.sort_of_atyp T)) replacements of
wenzelm@36621
   906
          SOME T' => T'
wenzelm@36621
   907
        | NONE => raise Fail "strip_shyps_proof: bad type variable in proof term");
wenzelm@36621
   908
  in Same.commit (map_proof_types_same (Term_Subst.map_atypsT_same replace)) prf end;
wenzelm@36621
   909
wenzelm@36621
   910
wenzelm@36740
   911
local
wenzelm@36740
   912
wenzelm@36740
   913
type axclass_proofs =
wenzelm@36740
   914
 {classrel_proof: theory -> class * class -> proof,
wenzelm@36740
   915
  arity_proof: theory -> string * sort list * class -> proof};
wenzelm@36740
   916
wenzelm@36740
   917
val axclass_proofs: axclass_proofs Single_Assignment.var =
wenzelm@36740
   918
  Single_Assignment.var "Proofterm.axclass_proofs";
wenzelm@36740
   919
wenzelm@36740
   920
fun axclass_proof which thy x =
wenzelm@36740
   921
  (case Single_Assignment.peek axclass_proofs of
wenzelm@36740
   922
    NONE => raise Fail "Axclass proof operations not installed"
wenzelm@36740
   923
  | SOME prfs => which prfs thy x);
wenzelm@36740
   924
wenzelm@36740
   925
in
wenzelm@36740
   926
wenzelm@36740
   927
val classrel_proof = axclass_proof #classrel_proof;
wenzelm@36740
   928
val arity_proof = axclass_proof #arity_proof;
wenzelm@36740
   929
wenzelm@36740
   930
fun install_axclass_proofs prfs = Single_Assignment.assign axclass_proofs prfs;
wenzelm@36740
   931
wenzelm@36740
   932
end;
wenzelm@36740
   933
wenzelm@36740
   934
wenzelm@36741
   935
local
wenzelm@36741
   936
wenzelm@36741
   937
fun canonical_instance typs =
wenzelm@36741
   938
  let
wenzelm@36741
   939
    val names = Name.invents Name.context Name.aT (length typs);
wenzelm@36741
   940
    val instT = map2 (fn a => fn T => (((a, 0), []), Type.strip_sorts T)) names typs;
wenzelm@36741
   941
  in instantiate (instT, []) end;
wenzelm@36741
   942
wenzelm@36741
   943
in
wenzelm@36741
   944
wenzelm@36741
   945
fun of_sort_proof thy hyps =
wenzelm@36741
   946
  Sorts.of_sort_derivation (Sign.classes_of thy)
wenzelm@36741
   947
   {class_relation = fn typ => fn (prf, c1) => fn c2 =>
wenzelm@36741
   948
      if c1 = c2 then prf
wenzelm@36741
   949
      else canonical_instance [typ] (classrel_proof thy (c1, c2)) %% prf,
wenzelm@36741
   950
    type_constructor = fn (a, typs) => fn dom => fn c =>
wenzelm@36741
   951
      let val Ss = map (map snd) dom and prfs = maps (map fst) dom
wenzelm@36741
   952
      in proof_combP (canonical_instance typs (arity_proof thy (a, Ss, c)), prfs) end,
wenzelm@36741
   953
    type_variable = fn typ => map (fn c => (hyps (typ, c), c)) (Type.sort_of_atyp typ)};
wenzelm@36741
   954
wenzelm@36741
   955
end;
wenzelm@36741
   956
wenzelm@36741
   957
berghofe@11519
   958
(***** axioms and theorems *****)
berghofe@11519
   959
wenzelm@32738
   960
val proofs = Unsynchronized.ref 2;
wenzelm@28803
   961
berghofe@28812
   962
fun vars_of t = map Var (rev (Term.add_vars t []));
berghofe@28812
   963
fun frees_of t = map Free (rev (Term.add_frees t []));
berghofe@11519
   964
berghofe@11519
   965
fun test_args _ [] = true
berghofe@11519
   966
  | test_args is (Bound i :: ts) =
wenzelm@17492
   967
      not (member (op =) is i) andalso test_args (i :: is) ts
berghofe@11519
   968
  | test_args _ _ = false;
berghofe@11519
   969
berghofe@11519
   970
fun is_fun (Type ("fun", _)) = true
berghofe@11519
   971
  | is_fun (TVar _) = true
berghofe@11519
   972
  | is_fun _ = false;
berghofe@11519
   973
berghofe@11519
   974
fun add_funvars Ts (vs, t) =
berghofe@11519
   975
  if is_fun (fastype_of1 (Ts, t)) then
haftmann@33042
   976
    union (op =) vs (map_filter (fn Var (ixn, T) =>
haftmann@33037
   977
      if is_fun T then SOME ixn else NONE | _ => NONE) (vars_of t))
berghofe@11519
   978
  else vs;
berghofe@11519
   979
berghofe@11519
   980
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
berghofe@11519
   981
      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
berghofe@11519
   982
  | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
berghofe@11519
   983
      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
berghofe@12041
   984
  | add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
berghofe@12041
   985
  | add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
berghofe@12041
   986
and add_npvars' Ts (vs, t) = (case strip_comb t of
berghofe@11519
   987
    (Var (ixn, _), ts) => if test_args [] ts then vs
haftmann@17314
   988
      else Library.foldl (add_npvars' Ts)
haftmann@17314
   989
        (AList.update (op =) (ixn,
haftmann@17314
   990
          Library.foldl (add_funvars Ts) ((these ooo AList.lookup) (op =) vs ixn, ts)) vs, ts)
skalberg@15570
   991
  | (Abs (_, T, u), ts) => Library.foldl (add_npvars' (T::Ts)) (vs, u :: ts)
skalberg@15570
   992
  | (_, ts) => Library.foldl (add_npvars' Ts) (vs, ts));
berghofe@11519
   993
haftmann@33042
   994
fun prop_vars (Const ("==>", _) $ P $ Q) = union (op =) (prop_vars P) (prop_vars Q)
berghofe@11519
   995
  | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
berghofe@11519
   996
  | prop_vars t = (case strip_comb t of
berghofe@11519
   997
      (Var (ixn, _), _) => [ixn] | _ => []);
berghofe@11519
   998
berghofe@11519
   999
fun is_proj t =
berghofe@11519
  1000
  let
berghofe@11519
  1001
    fun is_p i t = (case strip_comb t of
berghofe@11519
  1002
        (Bound j, []) => false
berghofe@11519
  1003
      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
berghofe@11519
  1004
      | (Abs (_, _, u), _) => is_p (i+1) u
berghofe@11519
  1005
      | (_, ts) => exists (is_p i) ts)
berghofe@11519
  1006
  in (case strip_abs_body t of
berghofe@11519
  1007
        Bound _ => true
berghofe@11519
  1008
      | t' => is_p 0 t')
berghofe@11519
  1009
  end;
berghofe@11519
  1010
wenzelm@21646
  1011
fun needed_vars prop =
haftmann@33042
  1012
  union (op =) (Library.foldl (uncurry (union (op =)))
haftmann@33042
  1013
    ([], map (uncurry (insert (op =))) (add_npvars true true [] ([], prop))))
haftmann@33042
  1014
  (prop_vars prop);
berghofe@11519
  1015
berghofe@11519
  1016
fun gen_axm_proof c name prop =
berghofe@11519
  1017
  let
berghofe@11519
  1018
    val nvs = needed_vars prop;
berghofe@11519
  1019
    val args = map (fn (v as Var (ixn, _)) =>
wenzelm@17492
  1020
        if member (op =) nvs ixn then SOME v else NONE) (vars_of prop) @
berghofe@28812
  1021
      map SOME (frees_of prop);
berghofe@11519
  1022
  in
skalberg@15531
  1023
    proof_combt' (c (name, prop, NONE), args)
berghofe@11519
  1024
  end;
berghofe@11519
  1025
berghofe@11519
  1026
val axm_proof = gen_axm_proof PAxm;
berghofe@17017
  1027
berghofe@17017
  1028
val dummy = Const (Term.dummy_patternN, dummyT);
berghofe@17017
  1029
berghofe@17017
  1030
fun oracle_proof name prop =
wenzelm@30716
  1031
  if ! proofs = 0 then ((name, dummy), Oracle (name, dummy, NONE))
wenzelm@30716
  1032
  else ((name, prop), gen_axm_proof Oracle name prop);
berghofe@11519
  1033
wenzelm@32785
  1034
val shrink_proof =
wenzelm@17492
  1035
  let
wenzelm@17492
  1036
    fun shrink ls lev (prf as Abst (a, T, body)) =
wenzelm@17492
  1037
          let val (b, is, ch, body') = shrink ls (lev+1) body
wenzelm@26631
  1038
          in (b, is, ch, if ch then Abst (a, T, body') else prf) end
wenzelm@17492
  1039
      | shrink ls lev (prf as AbsP (a, t, body)) =
wenzelm@17492
  1040
          let val (b, is, ch, body') = shrink (lev::ls) lev body
wenzelm@19482
  1041
          in (b orelse member (op =) is 0, map_filter (fn 0 => NONE | i => SOME (i-1)) is,
wenzelm@26631
  1042
            ch, if ch then AbsP (a, t, body') else prf)
wenzelm@17492
  1043
          end
wenzelm@17492
  1044
      | shrink ls lev prf =
wenzelm@17492
  1045
          let val (is, ch, _, prf') = shrink' ls lev [] [] prf
wenzelm@17492
  1046
          in (false, is, ch, prf') end
wenzelm@17492
  1047
    and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
wenzelm@17492
  1048
          let
wenzelm@17492
  1049
            val p as (_, is', ch', prf') = shrink ls lev prf2;
wenzelm@17492
  1050
            val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
haftmann@33042
  1051
          in (union (op =) is is', ch orelse ch', ts',
wenzelm@17492
  1052
              if ch orelse ch' then prf'' %% prf' else prf)
wenzelm@17492
  1053
          end
wenzelm@17492
  1054
      | shrink' ls lev ts prfs (prf as prf1 % t) =
wenzelm@17492
  1055
          let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
wenzelm@17492
  1056
          in (is, ch orelse ch', ts',
wenzelm@26631
  1057
              if ch orelse ch' then prf' % t' else prf) end
wenzelm@17492
  1058
      | shrink' ls lev ts prfs (prf as PBound i) =
wenzelm@30146
  1059
          (if exists (fn SOME (Bound j) => lev-j <= nth ls i | _ => true) ts
haftmann@18928
  1060
             orelse has_duplicates (op =)
haftmann@18928
  1061
               (Library.foldl (fn (js, SOME (Bound j)) => j :: js | (js, _) => js) ([], ts))
wenzelm@17492
  1062
             orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
wenzelm@31903
  1063
      | shrink' ls lev ts prfs (prf as Hyp _) = ([], false, map (pair false) ts, prf)
wenzelm@31903
  1064
      | shrink' ls lev ts prfs (prf as MinProof) = ([], false, map (pair false) ts, prf)
wenzelm@31943
  1065
      | shrink' ls lev ts prfs (prf as OfClass _) = ([], false, map (pair false) ts, prf)
wenzelm@17492
  1066
      | shrink' ls lev ts prfs prf =
wenzelm@17492
  1067
          let
wenzelm@28803
  1068
            val prop =
wenzelm@28803
  1069
              (case prf of
wenzelm@28803
  1070
                PAxm (_, prop, _) => prop
wenzelm@28803
  1071
              | Oracle (_, prop, _) => prop
wenzelm@28803
  1072
              | Promise (_, prop, _) => prop
wenzelm@28803
  1073
              | PThm (_, ((_, prop, _), _)) => prop
wenzelm@28319
  1074
              | _ => error "shrink: proof not in normal form");
wenzelm@17492
  1075
            val vs = vars_of prop;
wenzelm@19012
  1076
            val (ts', ts'') = chop (length vs) ts;
haftmann@33957
  1077
            val insts = take (length ts') (map (fst o dest_Var) vs) ~~ ts';
wenzelm@17492
  1078
            val nvs = Library.foldl (fn (ixns', (ixn, ixns)) =>
wenzelm@17492
  1079
              insert (op =) ixn (case AList.lookup (op =) insts ixn of
haftmann@33042
  1080
                  SOME (SOME t) => if is_proj t then union (op =) ixns ixns' else ixns'
haftmann@33042
  1081
                | _ => union (op =) ixns ixns'))
wenzelm@17492
  1082
                  (needed prop ts'' prfs, add_npvars false true [] ([], prop));
wenzelm@17492
  1083
            val insts' = map
wenzelm@17492
  1084
              (fn (ixn, x as SOME _) => if member (op =) nvs ixn then (false, x) else (true, NONE)
wenzelm@17492
  1085
                | (_, x) => (false, x)) insts
wenzelm@17492
  1086
          in ([], false, insts' @ map (pair false) ts'', prf) end
wenzelm@17492
  1087
    and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
haftmann@33042
  1088
          union (op =) (if b then map (fst o dest_Var) (vars_of t) else []) (needed u ts prfs)
wenzelm@17492
  1089
      | needed (Var (ixn, _)) (_::_) _ = [ixn]
wenzelm@17492
  1090
      | needed _ _ _ = [];
wenzelm@17492
  1091
  in shrink end;
berghofe@11519
  1092
berghofe@11519
  1093
berghofe@11519
  1094
(**** Simple first order matching functions for terms and proofs ****)
berghofe@11519
  1095
berghofe@11519
  1096
exception PMatch;
berghofe@11519
  1097
berghofe@11519
  1098
(** see pattern.ML **)
berghofe@11519
  1099
wenzelm@33317
  1100
fun flt (i: int) = filter (fn n => n < i);
berghofe@12279
  1101
berghofe@12279
  1102
fun fomatch Ts tymatch j =
berghofe@11519
  1103
  let
berghofe@11519
  1104
    fun mtch (instsp as (tyinsts, insts)) = fn
berghofe@11519
  1105
        (Var (ixn, T), t)  =>
berghofe@12279
  1106
          if j>0 andalso not (null (flt j (loose_bnos t)))
berghofe@12279
  1107
          then raise PMatch
berghofe@12279
  1108
          else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
berghofe@12279
  1109
            (ixn, t) :: insts)
berghofe@11519
  1110
      | (Free (a, T), Free (b, U)) =>
wenzelm@20147
  1111
          if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
  1112
      | (Const (a, T), Const (b, U))  =>
wenzelm@20147
  1113
          if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
  1114
      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
berghofe@12279
  1115
      | (Bound i, Bound j) => if i=j then instsp else raise PMatch
berghofe@11519
  1116
      | _ => raise PMatch
berghofe@11519
  1117
  in mtch end;
berghofe@11519
  1118
berghofe@12279
  1119
fun match_proof Ts tymatch =
berghofe@11519
  1120
  let
skalberg@15531
  1121
    fun optmatch _ inst (NONE, _) = inst
skalberg@15531
  1122
      | optmatch _ _ (SOME _, NONE) = raise PMatch
skalberg@15531
  1123
      | optmatch mtch inst (SOME x, SOME y) = mtch inst (x, y)
berghofe@12279
  1124
berghofe@12279
  1125
    fun matcht Ts j (pinst, tinst) (t, u) =
berghofe@12279
  1126
      (pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
berghofe@12279
  1127
    fun matchT (pinst, (tyinsts, insts)) p =
berghofe@12279
  1128
      (pinst, (tymatch (tyinsts, K p), insts));
skalberg@15570
  1129
    fun matchTs inst (Ts, Us) = Library.foldl (uncurry matchT) (inst, Ts ~~ Us);
berghofe@12279
  1130
berghofe@12279
  1131
    fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
berghofe@12279
  1132
          if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
berghofe@12279
  1133
          else (case apfst (flt i) (apsnd (flt j)
berghofe@12279
  1134
                  (prf_add_loose_bnos 0 0 prf ([], []))) of
berghofe@12279
  1135
              ([], []) => ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
  1136
            | ([], _) => if j = 0 then
berghofe@12279
  1137
                   ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
  1138
                 else raise PMatch
berghofe@12279
  1139
            | _ => raise PMatch)
berghofe@12279
  1140
      | mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
berghofe@12279
  1141
          optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
berghofe@12279
  1142
      | mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
berghofe@12279
  1143
          mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
berghofe@12279
  1144
      | mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
wenzelm@18485
  1145
          mtch (the_default dummyT opU :: Ts) i (j+1)
berghofe@12279
  1146
            (optmatch matchT inst (opT, opU)) (prf1, prf2)
berghofe@12279
  1147
      | mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
wenzelm@18485
  1148
          mtch (the_default dummyT opU :: Ts) i (j+1) inst
berghofe@12279
  1149
            (incr_pboundvars 0 1 prf1 %> Bound 0, prf2)
berghofe@12279
  1150
      | mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
berghofe@12279
  1151
          mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
berghofe@12279
  1152
      | mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
berghofe@12279
  1153
          mtch Ts (i+1) j inst (incr_pboundvars 1 0 prf1 %% PBound 0, prf2)
wenzelm@28803
  1154
      | mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
wenzelm@28803
  1155
          if s1 = s2 then optmatch matchTs inst (opTs, opUs)
wenzelm@28803
  1156
          else raise PMatch
wenzelm@31943
  1157
      | mtch Ts i j inst (OfClass (T1, c1), OfClass (T2, c2)) =
wenzelm@31903
  1158
          if c1 = c2 then matchT inst (T1, T2)
wenzelm@31903
  1159
          else raise PMatch
wenzelm@28803
  1160
      | mtch Ts i j inst (PThm (_, ((name1, prop1, opTs), _)), PThm (_, ((name2, prop2, opUs), _))) =
wenzelm@28803
  1161
          if name1 = name2 andalso prop1 = prop2 then
berghofe@12279
  1162
            optmatch matchTs inst (opTs, opUs)
berghofe@11519
  1163
          else raise PMatch
berghofe@12279
  1164
      | mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
berghofe@12279
  1165
      | mtch _ _ _ _ _ = raise PMatch
berghofe@12279
  1166
  in mtch Ts 0 0 end;
berghofe@11519
  1167
berghofe@11519
  1168
fun prf_subst (pinst, (tyinsts, insts)) =
berghofe@11519
  1169
  let
wenzelm@32049
  1170
    val substT = Envir.subst_type_same tyinsts;
wenzelm@32049
  1171
    val substTs = Same.map substT;
berghofe@11519
  1172
wenzelm@32049
  1173
    fun subst' lev (Var (xi, _)) =
wenzelm@32049
  1174
        (case AList.lookup (op =) insts xi of
wenzelm@32049
  1175
          NONE => raise Same.SAME
skalberg@15531
  1176
        | SOME u => incr_boundvars lev u)
wenzelm@32049
  1177
      | subst' _ (Const (s, T)) = Const (s, substT T)
wenzelm@32049
  1178
      | subst' _ (Free (s, T)) = Free (s, substT T)
wenzelm@32049
  1179
      | subst' lev (Abs (a, T, body)) =
wenzelm@32049
  1180
          (Abs (a, substT T, Same.commit (subst' (lev + 1)) body)
wenzelm@32049
  1181
            handle Same.SAME => Abs (a, T, subst' (lev + 1) body))
wenzelm@32049
  1182
      | subst' lev (f $ t) =
wenzelm@32049
  1183
          (subst' lev f $ Same.commit (subst' lev) t
wenzelm@32049
  1184
            handle Same.SAME => f $ subst' lev t)
wenzelm@32049
  1185
      | subst' _ _ = raise Same.SAME;
berghofe@11519
  1186
berghofe@11519
  1187
    fun subst plev tlev (AbsP (a, t, body)) =
wenzelm@32049
  1188
          (AbsP (a, Same.map_option (subst' tlev) t, Same.commit (subst (plev + 1) tlev) body)
wenzelm@32049
  1189
            handle Same.SAME => AbsP (a, t, subst (plev + 1) tlev body))
berghofe@11519
  1190
      | subst plev tlev (Abst (a, T, body)) =
wenzelm@32049
  1191
          (Abst (a, Same.map_option substT T, Same.commit (subst plev (tlev + 1)) body)
wenzelm@32049
  1192
            handle Same.SAME => Abst (a, T, subst plev (tlev + 1) body))
wenzelm@32049
  1193
      | subst plev tlev (prf %% prf') =
wenzelm@32049
  1194
          (subst plev tlev prf %% Same.commit (subst plev tlev) prf'
wenzelm@32049
  1195
            handle Same.SAME => prf %% subst plev tlev prf')
wenzelm@32049
  1196
      | subst plev tlev (prf % t) =
wenzelm@32049
  1197
          (subst plev tlev prf % Same.commit (Same.map_option (subst' tlev)) t
wenzelm@32049
  1198
            handle Same.SAME => prf % Same.map_option (subst' tlev) t)
wenzelm@32049
  1199
      | subst plev tlev (Hyp (Var (xi, _))) =
wenzelm@32049
  1200
          (case AList.lookup (op =) pinst xi of
wenzelm@32049
  1201
            NONE => raise Same.SAME
wenzelm@32049
  1202
          | SOME prf' => incr_pboundvars plev tlev prf')
wenzelm@32049
  1203
      | subst _ _ (PAxm (id, prop, Ts)) = PAxm (id, prop, Same.map_option substTs Ts)
wenzelm@31943
  1204
      | subst _ _ (OfClass (T, c)) = OfClass (substT T, c)
wenzelm@32049
  1205
      | subst _ _ (Oracle (id, prop, Ts)) = Oracle (id, prop, Same.map_option substTs Ts)
wenzelm@32049
  1206
      | subst _ _ (Promise (i, prop, Ts)) = Promise (i, prop, substTs Ts)
wenzelm@28803
  1207
      | subst _ _ (PThm (i, ((id, prop, Ts), body))) =
wenzelm@32049
  1208
          PThm (i, ((id, prop, Same.map_option substTs Ts), body))
wenzelm@32049
  1209
      | subst _ _ _ = raise Same.SAME;
wenzelm@32049
  1210
  in fn t => subst 0 0 t handle Same.SAME => t end;
berghofe@11519
  1211
wenzelm@21646
  1212
(*A fast unification filter: true unless the two terms cannot be unified.
berghofe@12871
  1213
  Terms must be NORMAL.  Treats all Vars as distinct. *)
berghofe@12871
  1214
fun could_unify prf1 prf2 =
berghofe@12871
  1215
  let
berghofe@12871
  1216
    fun matchrands (prf1 %% prf2) (prf1' %% prf2') =
berghofe@12871
  1217
          could_unify prf2 prf2' andalso matchrands prf1 prf1'
skalberg@15531
  1218
      | matchrands (prf % SOME t) (prf' % SOME t') =
berghofe@12871
  1219
          Term.could_unify (t, t') andalso matchrands prf prf'
berghofe@12871
  1220
      | matchrands (prf % _) (prf' % _) = matchrands prf prf'
berghofe@12871
  1221
      | matchrands _ _ = true
berghofe@12871
  1222
berghofe@12871
  1223
    fun head_of (prf %% _) = head_of prf
berghofe@12871
  1224
      | head_of (prf % _) = head_of prf
berghofe@12871
  1225
      | head_of prf = prf
berghofe@12871
  1226
berghofe@12871
  1227
  in case (head_of prf1, head_of prf2) of
berghofe@12871
  1228
        (_, Hyp (Var _)) => true
berghofe@12871
  1229
      | (Hyp (Var _), _) => true
wenzelm@28803
  1230
      | (PAxm (a, _, _), PAxm (b, _, _)) => a = b andalso matchrands prf1 prf2
wenzelm@31943
  1231
      | (OfClass (_, c), OfClass (_, d)) => c = d andalso matchrands prf1 prf2
wenzelm@28803
  1232
      | (PThm (_, ((a, propa, _), _)), PThm (_, ((b, propb, _), _))) =>
berghofe@12871
  1233
          a = b andalso propa = propb andalso matchrands prf1 prf2
wenzelm@28803
  1234
      | (PBound i, PBound j) => i = j andalso matchrands prf1 prf2
berghofe@12871
  1235
      | (AbsP _, _) =>  true   (*because of possible eta equality*)
berghofe@12871
  1236
      | (Abst _, _) =>  true
berghofe@12871
  1237
      | (_, AbsP _) =>  true
berghofe@12871
  1238
      | (_, Abst _) =>  true
berghofe@12871
  1239
      | _ => false
berghofe@12871
  1240
  end;
berghofe@12871
  1241
wenzelm@28329
  1242
berghofe@11519
  1243
(**** rewriting on proof terms ****)
berghofe@11519
  1244
wenzelm@33722
  1245
val no_skel = PBound 0;
wenzelm@33722
  1246
val normal_skel = Hyp (Var ((Name.uu, 0), propT));
berghofe@13102
  1247
berghofe@12279
  1248
fun rewrite_prf tymatch (rules, procs) prf =
berghofe@11519
  1249
  let
wenzelm@33722
  1250
    fun rew _ (Abst (_, _, body) % SOME t) = SOME (prf_subst_bounds [t] body, no_skel)
wenzelm@33722
  1251
      | rew _ (AbsP (_, _, body) %% prf) = SOME (prf_subst_pbounds [prf] body, no_skel)
wenzelm@33722
  1252
      | rew Ts prf =
wenzelm@33722
  1253
          (case get_first (fn r => r Ts prf) procs of
wenzelm@33722
  1254
            NONE => get_first (fn (prf1, prf2) => SOME (prf_subst
wenzelm@33722
  1255
              (match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2, prf2)
wenzelm@33722
  1256
                 handle PMatch => NONE) (filter (could_unify prf o fst) rules)
wenzelm@33722
  1257
          | some => some);
berghofe@11519
  1258
berghofe@11615
  1259
    fun rew0 Ts (prf as AbsP (_, _, prf' %% PBound 0)) =
berghofe@11519
  1260
          if prf_loose_Pbvar1 prf' 0 then rew Ts prf
berghofe@11519
  1261
          else
berghofe@11519
  1262
            let val prf'' = incr_pboundvars (~1) 0 prf'
wenzelm@33722
  1263
            in SOME (the_default (prf'', no_skel) (rew Ts prf'')) end
skalberg@15531
  1264
      | rew0 Ts (prf as Abst (_, _, prf' % SOME (Bound 0))) =
berghofe@11519
  1265
          if prf_loose_bvar1 prf' 0 then rew Ts prf
berghofe@11519
  1266
          else
berghofe@11519
  1267
            let val prf'' = incr_pboundvars 0 (~1) prf'
wenzelm@33722
  1268
            in SOME (the_default (prf'', no_skel) (rew Ts prf'')) end
berghofe@11519
  1269
      | rew0 Ts prf = rew Ts prf;
berghofe@11519
  1270
skalberg@15531
  1271
    fun rew1 _ (Hyp (Var _)) _ = NONE
berghofe@13102
  1272
      | rew1 Ts skel prf = (case rew2 Ts skel prf of
skalberg@15531
  1273
          SOME prf1 => (case rew0 Ts prf1 of
wenzelm@19502
  1274
              SOME (prf2, skel') => SOME (the_default prf2 (rew1 Ts skel' prf2))
skalberg@15531
  1275
            | NONE => SOME prf1)
skalberg@15531
  1276
        | NONE => (case rew0 Ts prf of
wenzelm@19502
  1277
              SOME (prf1, skel') => SOME (the_default prf1 (rew1 Ts skel' prf1))
skalberg@15531
  1278
            | NONE => NONE))
berghofe@11519
  1279
skalberg@15531
  1280
    and rew2 Ts skel (prf % SOME t) = (case prf of
berghofe@11519
  1281
            Abst (_, _, body) =>
berghofe@11519
  1282
              let val prf' = prf_subst_bounds [t] body
wenzelm@33722
  1283
              in SOME (the_default prf' (rew2 Ts no_skel prf')) end
wenzelm@33722
  1284
          | _ => (case rew1 Ts (case skel of skel' % _ => skel' | _ => no_skel) prf of
skalberg@15531
  1285
              SOME prf' => SOME (prf' % SOME t)
skalberg@15531
  1286
            | NONE => NONE))
skalberg@15570
  1287
      | rew2 Ts skel (prf % NONE) = Option.map (fn prf' => prf' % NONE)
wenzelm@33722
  1288
          (rew1 Ts (case skel of skel' % _ => skel' | _ => no_skel) prf)
berghofe@13102
  1289
      | rew2 Ts skel (prf1 %% prf2) = (case prf1 of
berghofe@11519
  1290
            AbsP (_, _, body) =>
berghofe@11519
  1291
              let val prf' = prf_subst_pbounds [prf2] body
wenzelm@33722
  1292
              in SOME (the_default prf' (rew2 Ts no_skel prf')) end
berghofe@13102
  1293
          | _ =>
berghofe@13102
  1294
            let val (skel1, skel2) = (case skel of
berghofe@13102
  1295
                skel1 %% skel2 => (skel1, skel2)
wenzelm@33722
  1296
              | _ => (no_skel, no_skel))
berghofe@13102
  1297
            in case rew1 Ts skel1 prf1 of
skalberg@15531
  1298
                SOME prf1' => (case rew1 Ts skel2 prf2 of
skalberg@15531
  1299
                    SOME prf2' => SOME (prf1' %% prf2')
skalberg@15531
  1300
                  | NONE => SOME (prf1' %% prf2))
skalberg@15531
  1301
              | NONE => (case rew1 Ts skel2 prf2 of
skalberg@15531
  1302
                    SOME prf2' => SOME (prf1 %% prf2')
skalberg@15531
  1303
                  | NONE => NONE)
berghofe@13102
  1304
            end)
wenzelm@19502
  1305
      | rew2 Ts skel (Abst (s, T, prf)) = (case rew1 (the_default dummyT T :: Ts)
wenzelm@33722
  1306
              (case skel of Abst (_, _, skel') => skel' | _ => no_skel) prf of
skalberg@15531
  1307
            SOME prf' => SOME (Abst (s, T, prf'))
skalberg@15531
  1308
          | NONE => NONE)
berghofe@13102
  1309
      | rew2 Ts skel (AbsP (s, t, prf)) = (case rew1 Ts
wenzelm@33722
  1310
              (case skel of AbsP (_, _, skel') => skel' | _ => no_skel) prf of
skalberg@15531
  1311
            SOME prf' => SOME (AbsP (s, t, prf'))
skalberg@15531
  1312
          | NONE => NONE)
wenzelm@32049
  1313
      | rew2 _ _ _ = NONE;
berghofe@11519
  1314
wenzelm@33722
  1315
  in the_default prf (rew1 [] no_skel prf) end;
berghofe@11519
  1316
wenzelm@17203
  1317
fun rewrite_proof thy = rewrite_prf (fn (tyenv, f) =>
wenzelm@17203
  1318
  Sign.typ_match thy (f ()) tyenv handle Type.TYPE_MATCH => raise PMatch);
berghofe@11519
  1319
berghofe@11715
  1320
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
berghofe@11615
  1321
wenzelm@16940
  1322
berghofe@11519
  1323
(**** theory data ****)
berghofe@11519
  1324
wenzelm@33522
  1325
structure ProofData = Theory_Data
wenzelm@22846
  1326
(
wenzelm@33722
  1327
  type T =
wenzelm@33722
  1328
    (stamp * (proof * proof)) list *
wenzelm@33722
  1329
    (stamp * (typ list -> proof -> (proof * proof) option)) list;
berghofe@11519
  1330
berghofe@12233
  1331
  val empty = ([], []);
wenzelm@16458
  1332
  val extend = I;
wenzelm@33522
  1333
  fun merge ((rules1, procs1), (rules2, procs2)) : T =
wenzelm@28803
  1334
    (AList.merge (op =) (K true) (rules1, rules2),
haftmann@22662
  1335
      AList.merge (op =) (K true) (procs1, procs2));
wenzelm@22846
  1336
);
berghofe@11519
  1337
wenzelm@28803
  1338
fun get_data thy = let val (rules, procs) = ProofData.get thy in (map #2 rules, map #2 procs) end;
wenzelm@28803
  1339
fun rew_proof thy = rewrite_prf fst (get_data thy);
berghofe@23780
  1340
wenzelm@28803
  1341
fun add_prf_rrule r = (ProofData.map o apfst) (cons (stamp (), r));
wenzelm@28803
  1342
fun add_prf_rproc p = (ProofData.map o apsnd) (cons (stamp (), p));
wenzelm@28803
  1343
wenzelm@28803
  1344
wenzelm@28828
  1345
(***** promises *****)
berghofe@11519
  1346
wenzelm@28828
  1347
fun promise_proof thy i prop =
wenzelm@28828
  1348
  let
wenzelm@28828
  1349
    val _ = prop |> Term.exists_subterm (fn t =>
wenzelm@28828
  1350
      (Term.is_Free t orelse Term.is_Var t) andalso
wenzelm@28828
  1351
        error ("promise_proof: illegal variable " ^ Syntax.string_of_term_global thy t));
wenzelm@28828
  1352
    val _ = prop |> Term.exists_type (Term.exists_subtype
wenzelm@28828
  1353
      (fn TFree (a, _) => error ("promise_proof: illegal type variable " ^ quote a)
wenzelm@28828
  1354
        | _ => false));
wenzelm@28828
  1355
  in Promise (i, prop, map TVar (Term.add_tvars prop [])) end;
wenzelm@28828
  1356
wenzelm@33722
  1357
fun fulfill_norm_proof thy ps body0 =
wenzelm@33722
  1358
  let
wenzelm@33722
  1359
    val PBody {oracles = oracles0, thms = thms0, proof = proof0} = body0;
wenzelm@33722
  1360
    val oracles = fold (fn (_, PBody {oracles, ...}) => merge_oracles oracles) ps oracles0;
wenzelm@33722
  1361
    val thms = fold (fn (_, PBody {thms, ...}) => merge_thms thms) ps thms0;
wenzelm@33722
  1362
    val proofs = fold (fn (i, PBody {proof, ...}) => Inttab.update (i, proof)) ps Inttab.empty;
wenzelm@28875
  1363
wenzelm@33722
  1364
    fun fill (Promise (i, prop, Ts)) =
wenzelm@33722
  1365
          (case Inttab.lookup proofs i of
wenzelm@33722
  1366
            NONE => NONE
wenzelm@33722
  1367
          | SOME prf => SOME (instantiate (Term.add_tvars prop [] ~~ Ts, []) prf, normal_skel))
wenzelm@33722
  1368
      | fill _ = NONE;
wenzelm@33722
  1369
    val (rules, procs) = get_data thy;
wenzelm@33722
  1370
    val proof = rewrite_prf fst (rules, K fill :: procs) proof0;
wenzelm@33722
  1371
  in PBody {oracles = oracles, thms = thms, proof = proof} end;
wenzelm@28828
  1372
wenzelm@32810
  1373
fun fulfill_proof_future _ [] body = Future.value body
wenzelm@32810
  1374
  | fulfill_proof_future thy promises body =
wenzelm@29642
  1375
      Future.fork_deps (map snd promises) (fn () =>
wenzelm@33722
  1376
        fulfill_norm_proof thy (map (apsnd Future.join) promises) body);
wenzelm@29642
  1377
wenzelm@28828
  1378
wenzelm@28828
  1379
(***** theorems *****)
berghofe@11519
  1380
wenzelm@32810
  1381
fun thm_proof thy name hyps concl promises body =
berghofe@11519
  1382
  let
wenzelm@28803
  1383
    val PBody {oracles = oracles0, thms = thms0, proof = prf} = body;
wenzelm@32810
  1384
    val prop = Logic.list_implies (hyps, concl);
berghofe@11519
  1385
    val nvs = needed_vars prop;
berghofe@11519
  1386
    val args = map (fn (v as Var (ixn, _)) =>
wenzelm@17492
  1387
        if member (op =) nvs ixn then SOME v else NONE) (vars_of prop) @
berghofe@28812
  1388
      map SOME (frees_of prop);
wenzelm@28803
  1389
wenzelm@28803
  1390
    val proof0 =
wenzelm@28876
  1391
      if ! proofs = 2 then
wenzelm@32785
  1392
        #4 (shrink_proof [] 0 (rew_proof thy (fold_rev implies_intr_proof hyps prf)))
wenzelm@28876
  1393
      else MinProof;
wenzelm@29642
  1394
    val body0 = PBody {oracles = oracles0, thms = thms0, proof = proof0};
wenzelm@28803
  1395
wenzelm@32810
  1396
    fun new_prf () = (serial (), name, prop, fulfill_proof_future thy promises body0);
wenzelm@28815
  1397
    val (i, name, prop, body') =
wenzelm@28803
  1398
      (case strip_combt (fst (strip_combP prf)) of
wenzelm@28803
  1399
        (PThm (i, ((old_name, prop', NONE), body')), args') =>
wenzelm@28815
  1400
          if (old_name = "" orelse old_name = name) andalso prop = prop' andalso args = args'
wenzelm@28815
  1401
          then (i, name, prop, body')
wenzelm@28803
  1402
          else new_prf ()
wenzelm@28815
  1403
      | _ => new_prf ());
wenzelm@28815
  1404
    val head = PThm (i, ((name, prop, NONE), body'));
berghofe@11519
  1405
  in
wenzelm@28815
  1406
    ((i, (name, prop, body')), proof_combP (proof_combt' (head, args), map Hyp hyps))
berghofe@11519
  1407
  end;
berghofe@11519
  1408
wenzelm@21646
  1409
fun get_name hyps prop prf =
wenzelm@12923
  1410
  let val prop = Logic.list_implies (hyps, prop) in
wenzelm@12923
  1411
    (case strip_combt (fst (strip_combP prf)) of
wenzelm@32183
  1412
      (PThm (_, ((name, prop', _), _)), _) => if prop = prop' then name else ""
wenzelm@21646
  1413
    | _ => "")
wenzelm@12923
  1414
  end;
berghofe@11519
  1415
berghofe@11519
  1416
end;
berghofe@11519
  1417
wenzelm@32094
  1418
structure Basic_Proofterm : BASIC_PROOFTERM = Proofterm;
wenzelm@32094
  1419
open Basic_Proofterm;