src/Pure/drule.ML
author berghofe
Fri Aug 31 16:07:56 2001 +0200 (2001-08-31 ago)
changeset 11512 da3a96ab5630
parent 11163 14732e3eaa6e
child 11741 470e608d7a74
permissions -rw-r--r--
Some basic rules are now stored with "open" derivations, to facilitate
simplification of proof terms.
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@9288
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
berghofe@10414
    16
  val dest_equals       : cterm -> cterm * cterm
wenzelm@8328
    17
  val skip_flexpairs    : cterm -> cterm
wenzelm@8328
    18
  val strip_imp_prems   : cterm -> cterm list
berghofe@10414
    19
  val strip_imp_concl   : cterm -> cterm
wenzelm@8328
    20
  val cprems_of         : thm -> cterm list
wenzelm@8328
    21
  val read_insts        :
wenzelm@4285
    22
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    23
                  -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    24
                  -> string list -> (string*string)list
wenzelm@4285
    25
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    26
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    27
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    28
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    29
  val forall_intr_frees : thm -> thm
wenzelm@8328
    30
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    31
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    32
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    33
  val forall_elim_vars  : int -> thm -> thm
wenzelm@9554
    34
  val forall_elim_vars_safe  : thm -> thm
wenzelm@8328
    35
  val freeze_thaw       : thm -> thm * (thm -> thm)
wenzelm@8328
    36
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    37
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    38
  val instantiate       :
paulson@8129
    39
    (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    40
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    41
  val standard          : thm -> thm
berghofe@11512
    42
  val standard'         : thm -> thm
paulson@4610
    43
  val rotate_prems      : int -> thm -> thm
oheimb@11163
    44
  val rearrange_prems   : int list -> thm -> thm
wenzelm@8328
    45
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    46
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    47
  val RS                : thm * thm -> thm
wenzelm@8328
    48
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    49
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    50
  val MRS               : thm list * thm -> thm
wenzelm@8328
    51
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    52
  val OF                : thm * thm list -> thm
wenzelm@8328
    53
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    54
  val COMP              : thm * thm -> thm
clasohm@0
    55
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@8328
    56
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    57
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@8328
    58
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    59
  val eq_thm_sg         : thm * thm -> bool
wenzelm@8328
    60
  val size_of_thm       : thm -> int
wenzelm@8328
    61
  val reflexive_thm     : thm
wenzelm@8328
    62
  val symmetric_thm     : thm
wenzelm@8328
    63
  val transitive_thm    : thm
paulson@2004
    64
  val refl_implies      : thm
nipkow@4679
    65
  val symmetric_fun     : thm -> thm
berghofe@11512
    66
  val extensional       : thm -> thm
berghofe@10414
    67
  val imp_cong          : thm
berghofe@10414
    68
  val swap_prems_eq     : thm
wenzelm@8328
    69
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    70
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    71
  val flexpair_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    72
  val asm_rl            : thm
wenzelm@8328
    73
  val cut_rl            : thm
wenzelm@8328
    74
  val revcut_rl         : thm
wenzelm@8328
    75
  val thin_rl           : thm
wenzelm@4285
    76
  val triv_forall_equality: thm
nipkow@1756
    77
  val swap_prems_rl     : thm
wenzelm@4285
    78
  val equal_intr_rule   : thm
paulson@8550
    79
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    80
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    81
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    82
end;
wenzelm@5903
    83
wenzelm@5903
    84
signature DRULE =
wenzelm@5903
    85
sig
wenzelm@5903
    86
  include BASIC_DRULE
wenzelm@9455
    87
  val rule_attribute    : ('a -> thm -> thm) -> 'a attribute
wenzelm@9455
    88
  val tag_rule          : tag -> thm -> thm
wenzelm@9455
    89
  val untag_rule        : string -> thm -> thm
wenzelm@9455
    90
  val tag               : tag -> 'a attribute
wenzelm@9455
    91
  val untag             : string -> 'a attribute
wenzelm@9455
    92
  val tag_lemma         : 'a attribute
wenzelm@9455
    93
  val tag_internal      : 'a attribute
wenzelm@9455
    94
  val has_internal	: tag list -> bool
wenzelm@10515
    95
  val close_derivation  : thm -> thm
wenzelm@8328
    96
  val compose_single    : thm * int * thm -> thm
wenzelm@9829
    97
  val add_rules		: thm list -> thm list -> thm list
wenzelm@9829
    98
  val del_rules		: thm list -> thm list -> thm list
wenzelm@9418
    99
  val merge_rules	: thm list * thm list -> thm list
wenzelm@9554
   100
  val norm_hhf_eq	: thm
wenzelm@8328
   101
  val triv_goal         : thm
wenzelm@8328
   102
  val rev_triv_goal     : thm
wenzelm@8328
   103
  val freeze_all        : thm -> thm
paulson@5311
   104
  val mk_triv_goal      : cterm -> thm
wenzelm@8328
   105
  val mk_cgoal          : cterm -> cterm
wenzelm@8328
   106
  val assume_goal       : cterm -> thm
wenzelm@8328
   107
  val tvars_of_terms    : term list -> (indexname * sort) list
wenzelm@8328
   108
  val vars_of_terms     : term list -> (indexname * typ) list
wenzelm@8328
   109
  val tvars_of          : thm -> (indexname * sort) list
wenzelm@8328
   110
  val vars_of           : thm -> (indexname * typ) list
wenzelm@8328
   111
  val unvarifyT         : thm -> thm
wenzelm@8328
   112
  val unvarify          : thm -> thm
wenzelm@8605
   113
  val tvars_intr_list	: string list -> thm -> thm
wenzelm@3766
   114
end;
clasohm@0
   115
wenzelm@5903
   116
structure Drule: DRULE =
clasohm@0
   117
struct
clasohm@0
   118
wenzelm@3991
   119
lcp@708
   120
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   121
paulson@2004
   122
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   123
clasohm@1703
   124
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   125
fun dest_implies ct =
wenzelm@8328
   126
    case term_of ct of
wenzelm@8328
   127
        (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   128
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   129
            in  (#2 (Thm.dest_comb ct1), ct2)  end
paulson@2004
   130
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   131
berghofe@10414
   132
fun dest_equals ct =
berghofe@10414
   133
    case term_of ct of
berghofe@10414
   134
        (Const("==", _) $ _ $ _) =>
wenzelm@10767
   135
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   136
            in  (#2 (Thm.dest_comb ct1), ct2)  end
berghofe@10414
   137
      | _ => raise TERM ("dest_equals", [term_of ct]) ;
berghofe@10414
   138
clasohm@1703
   139
lcp@708
   140
(*Discard flexflex pairs; return a cterm*)
paulson@2004
   141
fun skip_flexpairs ct =
lcp@708
   142
    case term_of ct of
wenzelm@8328
   143
        (Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
wenzelm@8328
   144
            skip_flexpairs (#2 (dest_implies ct))
lcp@708
   145
      | _ => ct;
lcp@708
   146
lcp@708
   147
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   148
fun strip_imp_prems ct =
paulson@2004
   149
    let val (cA,cB) = dest_implies ct
paulson@2004
   150
    in  cA :: strip_imp_prems cB  end
lcp@708
   151
    handle TERM _ => [];
lcp@708
   152
paulson@2004
   153
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   154
fun strip_imp_concl ct =
wenzelm@8328
   155
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   156
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   157
  | _ => ct;
paulson@2004
   158
lcp@708
   159
(*The premises of a theorem, as a cterm list*)
paulson@2004
   160
val cprems_of = strip_imp_prems o skip_flexpairs o cprop_of;
lcp@708
   161
paulson@9547
   162
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@9547
   163
paulson@9547
   164
val implies = cterm_of proto_sign Term.implies;
paulson@9547
   165
paulson@9547
   166
(*cterm version of mk_implies*)
wenzelm@10767
   167
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   168
paulson@9547
   169
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   170
fun list_implies([], B) = B
paulson@9547
   171
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   172
lcp@708
   173
lcp@229
   174
(** reading of instantiations **)
lcp@229
   175
lcp@229
   176
fun absent ixn =
lcp@229
   177
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   178
lcp@229
   179
fun inst_failure ixn =
lcp@229
   180
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   181
nipkow@4281
   182
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   183
let
nipkow@4281
   184
    fun split([],tvs,vs) = (tvs,vs)
wenzelm@4691
   185
      | split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
wenzelm@4691
   186
                  "'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
wenzelm@4691
   187
                | cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
nipkow@4281
   188
    val (tvs,vs) = split(insts,[],[]);
nipkow@4281
   189
    fun readT((a,i),st) =
nipkow@4281
   190
        let val ixn = ("'" ^ a,i);
nipkow@4281
   191
            val S = case rsorts ixn of Some S => S | None => absent ixn;
nipkow@4281
   192
            val T = Sign.read_typ (sign,sorts) st;
wenzelm@10403
   193
        in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   194
           else inst_failure ixn
nipkow@4281
   195
        end
nipkow@4281
   196
    val tye = map readT tvs;
nipkow@4281
   197
    fun mkty(ixn,st) = (case rtypes ixn of
nipkow@4281
   198
                          Some T => (ixn,(st,typ_subst_TVars tye T))
nipkow@4281
   199
                        | None => absent ixn);
nipkow@4281
   200
    val ixnsTs = map mkty vs;
nipkow@4281
   201
    val ixns = map fst ixnsTs
nipkow@4281
   202
    and sTs  = map snd ixnsTs
nipkow@4281
   203
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   204
    fun mkcVar(ixn,T) =
nipkow@4281
   205
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   206
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   207
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   208
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   209
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   210
end;
lcp@229
   211
lcp@229
   212
wenzelm@252
   213
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   214
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   215
     type variables) when reading another term.
clasohm@0
   216
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   217
***)
clasohm@0
   218
clasohm@0
   219
fun types_sorts thm =
clasohm@0
   220
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   221
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   222
        val vars = map dest_Var (term_vars big);
wenzelm@252
   223
        val frees = map dest_Free (term_frees big);
wenzelm@252
   224
        val tvars = term_tvars big;
wenzelm@252
   225
        val tfrees = term_tfrees big;
wenzelm@252
   226
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   227
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   228
    in (typ,sort) end;
clasohm@0
   229
wenzelm@7636
   230
wenzelm@9455
   231
wenzelm@9455
   232
(** basic attributes **)
wenzelm@9455
   233
wenzelm@9455
   234
(* dependent rules *)
wenzelm@9455
   235
wenzelm@9455
   236
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   237
wenzelm@9455
   238
wenzelm@9455
   239
(* add / delete tags *)
wenzelm@9455
   240
wenzelm@9455
   241
fun map_tags f thm =
wenzelm@9455
   242
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   243
wenzelm@9455
   244
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   245
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   246
wenzelm@9455
   247
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   248
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   249
wenzelm@9455
   250
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   251
wenzelm@9455
   252
fun tag_lemma x = simple_tag "lemma" x;
wenzelm@9455
   253
wenzelm@9455
   254
val internal_tag = ("internal", []);
wenzelm@9455
   255
fun tag_internal x = tag internal_tag x;
wenzelm@9455
   256
fun has_internal tags = exists (equal internal_tag) tags;
wenzelm@9455
   257
wenzelm@9455
   258
wenzelm@9455
   259
clasohm@0
   260
(** Standardization of rules **)
clasohm@0
   261
wenzelm@7636
   262
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   263
fun strip_shyps_warning thm =
wenzelm@7636
   264
  let
wenzelm@7636
   265
    val str_of_sort = Sign.str_of_sort (Thm.sign_of_thm thm);
wenzelm@7636
   266
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   267
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   268
  in
wenzelm@7636
   269
    if null xshyps then ()
wenzelm@7636
   270
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   271
    thm'
wenzelm@7636
   272
  end;
wenzelm@7636
   273
clasohm@0
   274
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   275
fun forall_intr_list [] th = th
clasohm@0
   276
  | forall_intr_list (y::ys) th =
wenzelm@252
   277
        let val gth = forall_intr_list ys th
wenzelm@252
   278
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   279
clasohm@0
   280
(*Generalization over all suitable Free variables*)
clasohm@0
   281
fun forall_intr_frees th =
clasohm@0
   282
    let val {prop,sign,...} = rep_thm th
clasohm@0
   283
    in  forall_intr_list
wenzelm@4440
   284
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   285
         th
clasohm@0
   286
    end;
clasohm@0
   287
wenzelm@7898
   288
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   289
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   290
wenzelm@9554
   291
fun forall_elim_vars_safe th =
wenzelm@9554
   292
  forall_elim_vars_safe (forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th)
wenzelm@9554
   293
    handle THM _ => th;
wenzelm@9554
   294
wenzelm@9554
   295
clasohm@0
   296
(*Specialization over a list of cterms*)
clasohm@0
   297
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   298
clasohm@0
   299
(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   300
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   301
clasohm@0
   302
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   303
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   304
clasohm@0
   305
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   306
fun zero_var_indexes th =
clasohm@0
   307
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   308
        val vars = term_vars prop
clasohm@0
   309
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   310
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   311
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   312
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
wenzelm@8328
   313
                     (inrs, nms')
wenzelm@252
   314
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   315
        fun varpairs([],[]) = []
wenzelm@252
   316
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   317
                let val T' = typ_subst_TVars tye T
wenzelm@252
   318
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   319
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   320
                end
wenzelm@252
   321
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   322
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   323
clasohm@0
   324
clasohm@0
   325
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
clasohm@0
   326
    all generality expressed by Vars having index 0.*)
wenzelm@10515
   327
wenzelm@10515
   328
fun close_derivation thm =
wenzelm@10515
   329
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   330
  else thm;
wenzelm@10515
   331
berghofe@11512
   332
fun standard' th =
wenzelm@10515
   333
  let val {maxidx,...} = rep_thm th in
wenzelm@10515
   334
    th
wenzelm@10515
   335
    |> implies_intr_hyps
wenzelm@10515
   336
    |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@10515
   337
    |> strip_shyps_warning
berghofe@11512
   338
    |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   339
  end;
wenzelm@1218
   340
berghofe@11512
   341
val standard = close_derivation o standard';
berghofe@11512
   342
clasohm@0
   343
wenzelm@8328
   344
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   345
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   346
  Similar code in type/freeze_thaw*)
paulson@4610
   347
fun freeze_thaw th =
paulson@7248
   348
 let val fth = freezeT th
paulson@7248
   349
     val {prop,sign,...} = rep_thm fth
paulson@7248
   350
 in
paulson@7248
   351
   case term_vars prop of
paulson@7248
   352
       [] => (fth, fn x => x)
paulson@7248
   353
     | vars =>
wenzelm@8328
   354
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   355
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   356
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@8328
   357
             val (alist, _) = foldr newName
wenzelm@8328
   358
                                (vars, ([], add_term_names (prop, [])))
wenzelm@8328
   359
             fun mk_inst (Var(v,T)) =
wenzelm@8328
   360
                 (cterm_of sign (Var(v,T)),
wenzelm@8328
   361
                  cterm_of sign (Free(the (assoc(alist,v)), T)))
wenzelm@8328
   362
             val insts = map mk_inst vars
wenzelm@8328
   363
             fun thaw th' =
wenzelm@8328
   364
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   365
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   366
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   367
 end;
paulson@4610
   368
paulson@4610
   369
paulson@7248
   370
(*Rotates a rule's premises to the left by k*)
paulson@7248
   371
val rotate_prems = permute_prems 0;
paulson@4610
   372
oheimb@11163
   373
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   374
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   375
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   376
val rearrange_prems = let
oheimb@11163
   377
  fun rearr new []      thm = thm
oheimb@11163
   378
  |   rearr new (p::ps) thm = rearr (new+1) 
oheimb@11163
   379
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   380
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   381
  in rearr 0 end;
paulson@4610
   382
wenzelm@252
   383
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   384
  Generalizes over Free variables,
clasohm@0
   385
  creates the assumption, and then strips quantifiers.
clasohm@0
   386
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   387
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   388
fun assume_ax thy sP =
wenzelm@6390
   389
    let val sign = Theory.sign_of thy
paulson@4610
   390
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   391
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   392
wenzelm@252
   393
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   394
fun tha RSN (i,thb) =
wenzelm@4270
   395
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   396
      ([th],_) => th
clasohm@0
   397
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   398
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   399
clasohm@0
   400
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   401
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   402
clasohm@0
   403
(*For joining lists of rules*)
wenzelm@252
   404
fun thas RLN (i,thbs) =
clasohm@0
   405
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   406
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   407
  in  List.concat (map resb thbs)  end;
clasohm@0
   408
clasohm@0
   409
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   410
lcp@11
   411
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   412
  makes proof trees*)
wenzelm@252
   413
fun rls MRS bottom_rl =
lcp@11
   414
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   415
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   416
  in  rs_aux 1 rls  end;
lcp@11
   417
lcp@11
   418
(*As above, but for rule lists*)
wenzelm@252
   419
fun rlss MRL bottom_rls =
lcp@11
   420
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   421
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   422
  in  rs_aux 1 rlss  end;
lcp@11
   423
wenzelm@9288
   424
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   425
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   426
wenzelm@252
   427
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   428
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   429
  ALWAYS deletes premise i *)
wenzelm@252
   430
fun compose(tha,i,thb) =
wenzelm@4270
   431
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   432
wenzelm@6946
   433
fun compose_single (tha,i,thb) =
wenzelm@6946
   434
  (case compose (tha,i,thb) of
wenzelm@6946
   435
    [th] => th
wenzelm@6946
   436
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   437
clasohm@0
   438
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   439
fun tha COMP thb =
clasohm@0
   440
    case compose(tha,1,thb) of
wenzelm@252
   441
        [th] => th
clasohm@0
   442
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   443
wenzelm@4016
   444
(** theorem equality **)
clasohm@0
   445
clasohm@0
   446
(*Do the two theorems have the same signature?*)
wenzelm@252
   447
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
clasohm@0
   448
clasohm@0
   449
(*Useful "distance" function for BEST_FIRST*)
clasohm@0
   450
val size_of_thm = size_of_term o #prop o rep_thm;
clasohm@0
   451
wenzelm@9829
   452
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@9829
   453
fun del_rules rs rules = Library.gen_rems Thm.eq_thm (rules, rs);
wenzelm@9862
   454
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@9829
   455
fun merge_rules (rules1, rules2) = Library.generic_merge Thm.eq_thm I I rules1 rules2;
wenzelm@9829
   456
clasohm@0
   457
lcp@1194
   458
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   459
    (some) type variable renaming **)
lcp@1194
   460
lcp@1194
   461
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   462
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   463
    in the term. *)
lcp@1194
   464
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   465
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   466
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   467
  | term_vars' _ = [];
lcp@1194
   468
lcp@1194
   469
fun forall_intr_vars th =
lcp@1194
   470
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   471
      val vars = distinct (term_vars' prop);
lcp@1194
   472
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   473
wenzelm@1237
   474
fun weak_eq_thm (tha,thb) =
lcp@1194
   475
    eq_thm(forall_intr_vars (freezeT tha), forall_intr_vars (freezeT thb));
lcp@1194
   476
lcp@1194
   477
lcp@1194
   478
clasohm@0
   479
(*** Meta-Rewriting Rules ***)
clasohm@0
   480
paulson@4610
   481
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   482
wenzelm@9455
   483
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   484
fun store_standard_thm name thm = store_thm name (standard thm);
berghofe@11512
   485
fun open_store_thm name thm = hd (PureThy.open_smart_store_thms (name, [thm]));
berghofe@11512
   486
fun open_store_standard_thm name thm = open_store_thm name (standard' thm);
wenzelm@4016
   487
clasohm@0
   488
val reflexive_thm =
paulson@4610
   489
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
wenzelm@9455
   490
  in store_standard_thm "reflexive" (Thm.reflexive cx) end;
clasohm@0
   491
clasohm@0
   492
val symmetric_thm =
paulson@4610
   493
  let val xy = read_prop "x::'a::logic == y"
wenzelm@9455
   494
  in store_standard_thm "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   495
clasohm@0
   496
val transitive_thm =
paulson@4610
   497
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   498
      val yz = read_prop "y::'a::logic == z"
clasohm@0
   499
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@9455
   500
  in store_standard_thm "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   501
nipkow@4679
   502
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   503
berghofe@11512
   504
fun extensional eq =
berghofe@11512
   505
  let val eq' =
berghofe@11512
   506
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   507
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   508
berghofe@10414
   509
val imp_cong =
berghofe@10414
   510
  let
berghofe@10414
   511
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   512
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   513
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   514
    val A = read_prop "PROP A"
berghofe@10414
   515
  in
berghofe@11512
   516
    open_store_standard_thm "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   517
      (implies_intr AB (implies_intr A
berghofe@10414
   518
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   519
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   520
      (implies_intr AC (implies_intr A
berghofe@10414
   521
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   522
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   523
  end;
berghofe@10414
   524
berghofe@10414
   525
val swap_prems_eq =
berghofe@10414
   526
  let
berghofe@10414
   527
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   528
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   529
    val A = read_prop "PROP A"
berghofe@10414
   530
    val B = read_prop "PROP B"
berghofe@10414
   531
  in
berghofe@11512
   532
    open_store_standard_thm "swap_prems_eq" (equal_intr
berghofe@10414
   533
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   534
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   535
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   536
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   537
  end;
lcp@229
   538
paulson@9547
   539
val refl_implies = reflexive implies;
clasohm@0
   540
clasohm@0
   541
clasohm@0
   542
(*** Some useful meta-theorems ***)
clasohm@0
   543
clasohm@0
   544
(*The rule V/V, obtains assumption solving for eresolve_tac*)
berghofe@11512
   545
val asm_rl = open_store_standard_thm "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   546
val _ = store_thm "_" asm_rl;
clasohm@0
   547
clasohm@0
   548
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   549
val cut_rl =
berghofe@11512
   550
  open_store_standard_thm "cut_rl"
wenzelm@9455
   551
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   552
wenzelm@252
   553
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   554
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   555
val revcut_rl =
paulson@4610
   556
  let val V = read_prop "PROP V"
paulson@4610
   557
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   558
  in
berghofe@11512
   559
    open_store_standard_thm "revcut_rl"
wenzelm@4016
   560
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   561
  end;
clasohm@0
   562
lcp@668
   563
(*for deleting an unwanted assumption*)
lcp@668
   564
val thin_rl =
paulson@4610
   565
  let val V = read_prop "PROP V"
paulson@4610
   566
      and W = read_prop "PROP W";
berghofe@11512
   567
  in  open_store_standard_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
lcp@668
   568
  end;
lcp@668
   569
clasohm@0
   570
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   571
val triv_forall_equality =
paulson@4610
   572
  let val V  = read_prop "PROP V"
paulson@4610
   573
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@8086
   574
      and x  = read_cterm proto_sign ("x", TypeInfer.logicT);
wenzelm@4016
   575
  in
berghofe@11512
   576
    open_store_standard_thm "triv_forall_equality"
berghofe@11512
   577
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   578
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   579
  end;
clasohm@0
   580
nipkow@1756
   581
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   582
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   583
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   584
*)
nipkow@1756
   585
val swap_prems_rl =
paulson@4610
   586
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   587
      val major = assume cmajor;
paulson@4610
   588
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   589
      val minor1 = assume cminor1;
paulson@4610
   590
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   591
      val minor2 = assume cminor2;
berghofe@11512
   592
  in open_store_standard_thm "swap_prems_rl"
nipkow@1756
   593
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   594
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   595
  end;
nipkow@1756
   596
nipkow@3653
   597
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   598
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   599
   Introduction rule for == as a meta-theorem.
nipkow@3653
   600
*)
nipkow@3653
   601
val equal_intr_rule =
paulson@4610
   602
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   603
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   604
  in
berghofe@11512
   605
    open_store_standard_thm "equal_intr_rule"
wenzelm@4016
   606
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   607
  end;
nipkow@3653
   608
wenzelm@4285
   609
wenzelm@9554
   610
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@9554
   611
  Rewrite rule for HHF normalization.
wenzelm@9554
   612
*)
wenzelm@9554
   613
wenzelm@9554
   614
val norm_hhf_eq =
wenzelm@9554
   615
  let
wenzelm@9554
   616
    val cert = Thm.cterm_of proto_sign;
wenzelm@9554
   617
    val aT = TFree ("'a", Term.logicS);
wenzelm@9554
   618
    val all = Term.all aT;
wenzelm@9554
   619
    val x = Free ("x", aT);
wenzelm@9554
   620
    val phi = Free ("phi", propT);
wenzelm@9554
   621
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   622
wenzelm@9554
   623
    val cx = cert x;
wenzelm@9554
   624
    val cphi = cert phi;
wenzelm@9554
   625
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   626
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   627
  in
wenzelm@9554
   628
    Thm.equal_intr
wenzelm@9554
   629
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   630
        |> Thm.forall_elim cx
wenzelm@9554
   631
        |> Thm.implies_intr cphi
wenzelm@9554
   632
        |> Thm.forall_intr cx
wenzelm@9554
   633
        |> Thm.implies_intr lhs)
wenzelm@9554
   634
      (Thm.implies_elim
wenzelm@9554
   635
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   636
        |> Thm.forall_intr cx
wenzelm@9554
   637
        |> Thm.implies_intr cphi
wenzelm@9554
   638
        |> Thm.implies_intr rhs)
wenzelm@10441
   639
    |> store_standard_thm "norm_hhf_eq"
wenzelm@9554
   640
  end;
wenzelm@9554
   641
wenzelm@9554
   642
paulson@8129
   643
(*** Instantiate theorem th, reading instantiations under signature sg ****)
paulson@8129
   644
paulson@8129
   645
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   646
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   647
paulson@8129
   648
fun read_instantiate_sg sg sinsts th =
paulson@8129
   649
    let val ts = types_sorts th;
paulson@8129
   650
        val used = add_term_tvarnames(#prop(rep_thm th),[]);
paulson@8129
   651
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
paulson@8129
   652
paulson@8129
   653
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   654
fun read_instantiate sinsts th =
paulson@8129
   655
    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
paulson@8129
   656
paulson@8129
   657
paulson@8129
   658
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   659
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   660
local
paulson@8129
   661
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@8129
   662
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@8129
   663
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   664
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
paulson@8129
   665
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
paulson@8129
   666
        val (tye',maxi') = Type.unify (#tsig(Sign.rep_sg sign')) maxi tye (T,U)
wenzelm@10403
   667
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
paulson@8129
   668
    in  (sign', tye', maxi')  end;
paulson@8129
   669
in
paulson@8129
   670
fun cterm_instantiate ctpairs0 th =
berghofe@8406
   671
  let val (sign,tye,_) = foldr add_types (ctpairs0, (#sign(rep_thm th), Vartab.empty, 0))
berghofe@8406
   672
      fun instT(ct,cu) = let val inst = subst_TVars_Vartab tye
paulson@8129
   673
                         in (cterm_fun inst ct, cterm_fun inst cu) end
paulson@8129
   674
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
berghofe@8406
   675
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   676
  handle TERM _ =>
paulson@8129
   677
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
paulson@8129
   678
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   679
end;
paulson@8129
   680
paulson@8129
   681
paulson@8129
   682
(** Derived rules mainly for METAHYPS **)
paulson@8129
   683
paulson@8129
   684
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   685
fun equal_abs_elim ca eqth =
paulson@8129
   686
  let val {sign=signa, t=a, ...} = rep_cterm ca
paulson@8129
   687
      and combth = combination eqth (reflexive ca)
paulson@8129
   688
      val {sign,prop,...} = rep_thm eqth
paulson@8129
   689
      val (abst,absu) = Logic.dest_equals prop
paulson@8129
   690
      val cterm = cterm_of (Sign.merge (sign,signa))
berghofe@10414
   691
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   692
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   693
  end
paulson@8129
   694
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   695
paulson@8129
   696
(*Calling equal_abs_elim with multiple terms*)
paulson@8129
   697
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
paulson@8129
   698
paulson@8129
   699
local
paulson@8129
   700
  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
paulson@8129
   701
  fun err th = raise THM("flexpair_inst: ", 0, [th])
paulson@8129
   702
  fun flexpair_inst def th =
paulson@8129
   703
    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
paulson@8129
   704
        val cterm = cterm_of sign
paulson@8129
   705
        fun cvar a = cterm(Var((a,0),alpha))
paulson@8129
   706
        val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
paulson@8129
   707
                   def
paulson@8129
   708
    in  equal_elim def' th
paulson@8129
   709
    end
paulson@8129
   710
    handle THM _ => err th | Bind => err th
paulson@8129
   711
in
paulson@8129
   712
val flexpair_intr = flexpair_inst (symmetric ProtoPure.flexpair_def)
paulson@8129
   713
and flexpair_elim = flexpair_inst ProtoPure.flexpair_def
paulson@8129
   714
end;
paulson@8129
   715
paulson@8129
   716
(*Version for flexflex pairs -- this supports lifting.*)
paulson@8129
   717
fun flexpair_abs_elim_list cts =
paulson@8129
   718
    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
paulson@8129
   719
paulson@8129
   720
wenzelm@10667
   721
(*** Goal (PROP A) <==> PROP A ***)
wenzelm@4789
   722
wenzelm@4789
   723
local
wenzelm@10667
   724
  val cert = Thm.cterm_of proto_sign;
wenzelm@10667
   725
  val A = Free ("A", propT);
wenzelm@10667
   726
  val G = Logic.mk_goal A;
wenzelm@4789
   727
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   728
in
wenzelm@10667
   729
  val triv_goal = store_thm "triv_goal" (tag_rule internal_tag (standard
wenzelm@10667
   730
      (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
wenzelm@10667
   731
  val rev_triv_goal = store_thm "rev_triv_goal" (tag_rule internal_tag (standard
wenzelm@10667
   732
      (Thm.equal_elim G_def (Thm.assume (cert G)))));
wenzelm@4789
   733
end;
wenzelm@4789
   734
wenzelm@9460
   735
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
wenzelm@6995
   736
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   737
wenzelm@4789
   738
wenzelm@4285
   739
wenzelm@5688
   740
(** variations on instantiate **)
wenzelm@4285
   741
paulson@8550
   742
(*shorthand for instantiating just one variable in the current theory*)
paulson@8550
   743
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
paulson@8550
   744
paulson@8550
   745
wenzelm@4285
   746
(* collect vars *)
wenzelm@4285
   747
wenzelm@4285
   748
val add_tvarsT = foldl_atyps (fn (vs, TVar v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   749
val add_tvars = foldl_types add_tvarsT;
wenzelm@4285
   750
val add_vars = foldl_aterms (fn (vs, Var v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   751
wenzelm@5903
   752
fun tvars_of_terms ts = rev (foldl add_tvars ([], ts));
wenzelm@5903
   753
fun vars_of_terms ts = rev (foldl add_vars ([], ts));
wenzelm@5903
   754
wenzelm@5903
   755
fun tvars_of thm = tvars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@5903
   756
fun vars_of thm = vars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@4285
   757
wenzelm@4285
   758
wenzelm@4285
   759
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   760
wenzelm@4285
   761
fun instantiate' cTs cts thm =
wenzelm@4285
   762
  let
wenzelm@4285
   763
    fun err msg =
wenzelm@4285
   764
      raise TYPE ("instantiate': " ^ msg,
wenzelm@4285
   765
        mapfilter (apsome Thm.typ_of) cTs,
wenzelm@4285
   766
        mapfilter (apsome Thm.term_of) cts);
wenzelm@4285
   767
wenzelm@4285
   768
    fun inst_of (v, ct) =
wenzelm@4285
   769
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   770
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   771
wenzelm@4285
   772
    fun zip_vars _ [] = []
wenzelm@4285
   773
      | zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
wenzelm@4285
   774
      | zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   775
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   776
wenzelm@4285
   777
    (*instantiate types first!*)
wenzelm@4285
   778
    val thm' =
wenzelm@4285
   779
      if forall is_none cTs then thm
wenzelm@4285
   780
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   781
    in
wenzelm@4285
   782
      if forall is_none cts then thm'
wenzelm@4285
   783
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   784
    end;
wenzelm@4285
   785
wenzelm@4285
   786
wenzelm@5688
   787
(* unvarify(T) *)
wenzelm@5688
   788
wenzelm@5688
   789
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   790
wenzelm@5688
   791
fun unvarifyT thm =
wenzelm@5688
   792
  let
wenzelm@5688
   793
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
wenzelm@5688
   794
    val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   795
  in instantiate' tfrees [] thm end;
wenzelm@5688
   796
wenzelm@5688
   797
fun unvarify raw_thm =
wenzelm@5688
   798
  let
wenzelm@5688
   799
    val thm = unvarifyT raw_thm;
wenzelm@5688
   800
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
wenzelm@5688
   801
    val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   802
  in instantiate' [] frees thm end;
wenzelm@5688
   803
wenzelm@5688
   804
wenzelm@8605
   805
(* tvars_intr_list *)
wenzelm@8605
   806
wenzelm@8605
   807
fun tfrees_of thm =
wenzelm@8605
   808
  let val {hyps, prop, ...} = Thm.rep_thm thm
wenzelm@8605
   809
  in foldr Term.add_term_tfree_names (prop :: hyps, []) end;
wenzelm@8605
   810
wenzelm@8605
   811
fun tvars_intr_list tfrees thm =
wenzelm@8605
   812
  Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
wenzelm@8605
   813
wenzelm@8605
   814
wenzelm@6435
   815
(* increment var indexes *)
wenzelm@6435
   816
wenzelm@6435
   817
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
   818
  let
wenzelm@6435
   819
    val maxidx =
wenzelm@6435
   820
      foldl Int.max (~1, is @
wenzelm@6435
   821
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
   822
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
   823
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
   824
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
   825
wenzelm@6435
   826
wenzelm@8328
   827
(* freeze_all *)
wenzelm@8328
   828
wenzelm@8328
   829
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
   830
wenzelm@8328
   831
fun freeze_all_TVars thm =
wenzelm@8328
   832
  (case tvars_of thm of
wenzelm@8328
   833
    [] => thm
wenzelm@8328
   834
  | tvars =>
wenzelm@8328
   835
      let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
wenzelm@8328
   836
      in instantiate' (map (fn ((x, _), S) => Some (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
   837
wenzelm@8328
   838
fun freeze_all_Vars thm =
wenzelm@8328
   839
  (case vars_of thm of
wenzelm@8328
   840
    [] => thm
wenzelm@8328
   841
  | vars =>
wenzelm@8328
   842
      let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
wenzelm@8328
   843
      in instantiate' [] (map (fn ((x, _), T) => Some (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
   844
wenzelm@8328
   845
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
   846
wenzelm@8328
   847
wenzelm@5688
   848
(* mk_triv_goal *)
wenzelm@5688
   849
wenzelm@5688
   850
(*make an initial proof state, "PROP A ==> (PROP A)" *)
paulson@5311
   851
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
paulson@5311
   852
clasohm@0
   853
end;
wenzelm@252
   854
wenzelm@5903
   855
wenzelm@5903
   856
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   857
open BasicDrule;