bulwahn@36098
|
1 |
(* Title: HOL/Imperative_HOL/ex/Imperative_Quicksort.thy
|
bulwahn@36098
|
2 |
Author: Lukas Bulwahn, TU Muenchen
|
bulwahn@36098
|
3 |
*)
|
bulwahn@36098
|
4 |
|
bulwahn@36098
|
5 |
header {* An imperative implementation of Quicksort on arrays *}
|
haftmann@30689
|
6 |
|
haftmann@30689
|
7 |
theory Imperative_Quicksort
|
haftmann@37771
|
8 |
imports Imperative_HOL Subarray Multiset Efficient_Nat
|
bulwahn@27656
|
9 |
begin
|
bulwahn@27656
|
10 |
|
bulwahn@27656
|
11 |
text {* We prove QuickSort correct in the Relational Calculus. *}
|
bulwahn@27656
|
12 |
|
bulwahn@27656
|
13 |
definition swap :: "nat array \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> unit Heap"
|
bulwahn@27656
|
14 |
where
|
krauss@37792
|
15 |
"swap arr i j =
|
krauss@37792
|
16 |
do {
|
haftmann@37798
|
17 |
x \<leftarrow> Array.nth arr i;
|
haftmann@37798
|
18 |
y \<leftarrow> Array.nth arr j;
|
haftmann@37798
|
19 |
Array.upd i y arr;
|
haftmann@37798
|
20 |
Array.upd j x arr;
|
bulwahn@27656
|
21 |
return ()
|
krauss@37792
|
22 |
}"
|
bulwahn@27656
|
23 |
|
haftmann@37771
|
24 |
lemma crel_swapI [crel_intros]:
|
haftmann@37802
|
25 |
assumes "i < Array.length h a" "j < Array.length h a"
|
haftmann@37771
|
26 |
"x = get_array a h ! i" "y = get_array a h ! j"
|
haftmann@37798
|
27 |
"h' = Array.update a j x (Array.update a i y h)"
|
haftmann@37771
|
28 |
shows "crel (swap a i j) h h' r"
|
haftmann@37771
|
29 |
unfolding swap_def using assms by (auto intro!: crel_intros)
|
haftmann@37771
|
30 |
|
bulwahn@27656
|
31 |
lemma swap_permutes:
|
bulwahn@27656
|
32 |
assumes "crel (swap a i j) h h' rs"
|
bulwahn@27656
|
33 |
shows "multiset_of (get_array a h')
|
bulwahn@27656
|
34 |
= multiset_of (get_array a h)"
|
bulwahn@27656
|
35 |
using assms
|
haftmann@28145
|
36 |
unfolding swap_def
|
haftmann@37771
|
37 |
by (auto simp add: Array.length_def multiset_of_swap dest: sym [of _ "h'"] elim!: crel_bindE crel_nthE crel_returnE crel_updE)
|
bulwahn@27656
|
38 |
|
bulwahn@27656
|
39 |
function part1 :: "nat array \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat Heap"
|
bulwahn@27656
|
40 |
where
|
bulwahn@27656
|
41 |
"part1 a left right p = (
|
bulwahn@27656
|
42 |
if (right \<le> left) then return right
|
krauss@37792
|
43 |
else do {
|
haftmann@37798
|
44 |
v \<leftarrow> Array.nth a left;
|
bulwahn@27656
|
45 |
(if (v \<le> p) then (part1 a (left + 1) right p)
|
krauss@37792
|
46 |
else (do { swap a left right;
|
krauss@37792
|
47 |
part1 a left (right - 1) p }))
|
krauss@37792
|
48 |
})"
|
bulwahn@27656
|
49 |
by pat_completeness auto
|
bulwahn@27656
|
50 |
|
bulwahn@27656
|
51 |
termination
|
bulwahn@27656
|
52 |
by (relation "measure (\<lambda>(_,l,r,_). r - l )") auto
|
bulwahn@27656
|
53 |
|
bulwahn@27656
|
54 |
declare part1.simps[simp del]
|
bulwahn@27656
|
55 |
|
bulwahn@27656
|
56 |
lemma part_permutes:
|
bulwahn@27656
|
57 |
assumes "crel (part1 a l r p) h h' rs"
|
bulwahn@27656
|
58 |
shows "multiset_of (get_array a h')
|
bulwahn@27656
|
59 |
= multiset_of (get_array a h)"
|
bulwahn@27656
|
60 |
using assms
|
bulwahn@27656
|
61 |
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
|
bulwahn@27656
|
62 |
case (1 a l r p h h' rs)
|
bulwahn@27656
|
63 |
thus ?case
|
haftmann@28145
|
64 |
unfolding part1.simps [of a l r p]
|
haftmann@37771
|
65 |
by (elim crel_bindE crel_ifE crel_returnE crel_nthE) (auto simp add: swap_permutes)
|
bulwahn@27656
|
66 |
qed
|
bulwahn@27656
|
67 |
|
bulwahn@27656
|
68 |
lemma part_returns_index_in_bounds:
|
bulwahn@27656
|
69 |
assumes "crel (part1 a l r p) h h' rs"
|
bulwahn@27656
|
70 |
assumes "l \<le> r"
|
bulwahn@27656
|
71 |
shows "l \<le> rs \<and> rs \<le> r"
|
bulwahn@27656
|
72 |
using assms
|
bulwahn@27656
|
73 |
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
|
bulwahn@27656
|
74 |
case (1 a l r p h h' rs)
|
bulwahn@27656
|
75 |
note cr = `crel (part1 a l r p) h h' rs`
|
bulwahn@27656
|
76 |
show ?case
|
bulwahn@27656
|
77 |
proof (cases "r \<le> l")
|
bulwahn@27656
|
78 |
case True (* Terminating case *)
|
bulwahn@27656
|
79 |
with cr `l \<le> r` show ?thesis
|
haftmann@28145
|
80 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
81 |
by (elim crel_bindE crel_ifE crel_returnE crel_nthE) auto
|
bulwahn@27656
|
82 |
next
|
bulwahn@27656
|
83 |
case False (* recursive case *)
|
bulwahn@27656
|
84 |
note rec_condition = this
|
bulwahn@27656
|
85 |
let ?v = "get_array a h ! l"
|
bulwahn@27656
|
86 |
show ?thesis
|
bulwahn@27656
|
87 |
proof (cases "?v \<le> p")
|
bulwahn@27656
|
88 |
case True
|
bulwahn@27656
|
89 |
with cr False
|
bulwahn@27656
|
90 |
have rec1: "crel (part1 a (l + 1) r p) h h' rs"
|
haftmann@28145
|
91 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
92 |
by (elim crel_bindE crel_nthE crel_ifE crel_returnE) auto
|
bulwahn@27656
|
93 |
from rec_condition have "l + 1 \<le> r" by arith
|
bulwahn@27656
|
94 |
from 1(1)[OF rec_condition True rec1 `l + 1 \<le> r`]
|
bulwahn@27656
|
95 |
show ?thesis by simp
|
bulwahn@27656
|
96 |
next
|
bulwahn@27656
|
97 |
case False
|
bulwahn@27656
|
98 |
with rec_condition cr
|
bulwahn@27656
|
99 |
obtain h1 where swp: "crel (swap a l r) h h1 ()"
|
bulwahn@27656
|
100 |
and rec2: "crel (part1 a l (r - 1) p) h1 h' rs"
|
haftmann@28145
|
101 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
102 |
by (elim crel_bindE crel_nthE crel_ifE crel_returnE) auto
|
bulwahn@27656
|
103 |
from rec_condition have "l \<le> r - 1" by arith
|
bulwahn@27656
|
104 |
from 1(2) [OF rec_condition False rec2 `l \<le> r - 1`] show ?thesis by fastsimp
|
bulwahn@27656
|
105 |
qed
|
bulwahn@27656
|
106 |
qed
|
bulwahn@27656
|
107 |
qed
|
bulwahn@27656
|
108 |
|
bulwahn@27656
|
109 |
lemma part_length_remains:
|
bulwahn@27656
|
110 |
assumes "crel (part1 a l r p) h h' rs"
|
haftmann@37802
|
111 |
shows "Array.length h a = Array.length h' a"
|
bulwahn@27656
|
112 |
using assms
|
bulwahn@27656
|
113 |
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
|
bulwahn@27656
|
114 |
case (1 a l r p h h' rs)
|
bulwahn@27656
|
115 |
note cr = `crel (part1 a l r p) h h' rs`
|
bulwahn@27656
|
116 |
|
bulwahn@27656
|
117 |
show ?case
|
bulwahn@27656
|
118 |
proof (cases "r \<le> l")
|
bulwahn@27656
|
119 |
case True (* Terminating case *)
|
bulwahn@27656
|
120 |
with cr show ?thesis
|
haftmann@28145
|
121 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
122 |
by (elim crel_bindE crel_ifE crel_returnE crel_nthE) auto
|
bulwahn@27656
|
123 |
next
|
bulwahn@27656
|
124 |
case False (* recursive case *)
|
bulwahn@27656
|
125 |
with cr 1 show ?thesis
|
haftmann@28145
|
126 |
unfolding part1.simps [of a l r p] swap_def
|
haftmann@37771
|
127 |
by (auto elim!: crel_bindE crel_ifE crel_nthE crel_returnE crel_updE) fastsimp
|
bulwahn@27656
|
128 |
qed
|
bulwahn@27656
|
129 |
qed
|
bulwahn@27656
|
130 |
|
bulwahn@27656
|
131 |
lemma part_outer_remains:
|
bulwahn@27656
|
132 |
assumes "crel (part1 a l r p) h h' rs"
|
bulwahn@27656
|
133 |
shows "\<forall>i. i < l \<or> r < i \<longrightarrow> get_array (a::nat array) h ! i = get_array a h' ! i"
|
bulwahn@27656
|
134 |
using assms
|
bulwahn@27656
|
135 |
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
|
bulwahn@27656
|
136 |
case (1 a l r p h h' rs)
|
bulwahn@27656
|
137 |
note cr = `crel (part1 a l r p) h h' rs`
|
bulwahn@27656
|
138 |
|
bulwahn@27656
|
139 |
show ?case
|
bulwahn@27656
|
140 |
proof (cases "r \<le> l")
|
bulwahn@27656
|
141 |
case True (* Terminating case *)
|
bulwahn@27656
|
142 |
with cr show ?thesis
|
haftmann@28145
|
143 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
144 |
by (elim crel_bindE crel_ifE crel_returnE crel_nthE) auto
|
bulwahn@27656
|
145 |
next
|
bulwahn@27656
|
146 |
case False (* recursive case *)
|
bulwahn@27656
|
147 |
note rec_condition = this
|
bulwahn@27656
|
148 |
let ?v = "get_array a h ! l"
|
bulwahn@27656
|
149 |
show ?thesis
|
bulwahn@27656
|
150 |
proof (cases "?v \<le> p")
|
bulwahn@27656
|
151 |
case True
|
bulwahn@27656
|
152 |
with cr False
|
bulwahn@27656
|
153 |
have rec1: "crel (part1 a (l + 1) r p) h h' rs"
|
haftmann@28145
|
154 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
155 |
by (elim crel_bindE crel_nthE crel_ifE crel_returnE) auto
|
bulwahn@27656
|
156 |
from 1(1)[OF rec_condition True rec1]
|
bulwahn@27656
|
157 |
show ?thesis by fastsimp
|
bulwahn@27656
|
158 |
next
|
bulwahn@27656
|
159 |
case False
|
bulwahn@27656
|
160 |
with rec_condition cr
|
bulwahn@27656
|
161 |
obtain h1 where swp: "crel (swap a l r) h h1 ()"
|
bulwahn@27656
|
162 |
and rec2: "crel (part1 a l (r - 1) p) h1 h' rs"
|
haftmann@28145
|
163 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
164 |
by (elim crel_bindE crel_nthE crel_ifE crel_returnE) auto
|
bulwahn@27656
|
165 |
from swp rec_condition have
|
haftmann@28013
|
166 |
"\<forall>i. i < l \<or> r < i \<longrightarrow> get_array a h ! i = get_array a h1 ! i"
|
wenzelm@32960
|
167 |
unfolding swap_def
|
haftmann@37771
|
168 |
by (elim crel_bindE crel_nthE crel_updE crel_returnE) auto
|
bulwahn@27656
|
169 |
with 1(2) [OF rec_condition False rec2] show ?thesis by fastsimp
|
bulwahn@27656
|
170 |
qed
|
bulwahn@27656
|
171 |
qed
|
bulwahn@27656
|
172 |
qed
|
bulwahn@27656
|
173 |
|
bulwahn@27656
|
174 |
|
bulwahn@27656
|
175 |
lemma part_partitions:
|
bulwahn@27656
|
176 |
assumes "crel (part1 a l r p) h h' rs"
|
bulwahn@27656
|
177 |
shows "(\<forall>i. l \<le> i \<and> i < rs \<longrightarrow> get_array (a::nat array) h' ! i \<le> p)
|
bulwahn@27656
|
178 |
\<and> (\<forall>i. rs < i \<and> i \<le> r \<longrightarrow> get_array a h' ! i \<ge> p)"
|
bulwahn@27656
|
179 |
using assms
|
bulwahn@27656
|
180 |
proof (induct a l r p arbitrary: h h' rs rule:part1.induct)
|
bulwahn@27656
|
181 |
case (1 a l r p h h' rs)
|
bulwahn@27656
|
182 |
note cr = `crel (part1 a l r p) h h' rs`
|
bulwahn@27656
|
183 |
|
bulwahn@27656
|
184 |
show ?case
|
bulwahn@27656
|
185 |
proof (cases "r \<le> l")
|
bulwahn@27656
|
186 |
case True (* Terminating case *)
|
bulwahn@27656
|
187 |
with cr have "rs = r"
|
haftmann@28145
|
188 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
189 |
by (elim crel_bindE crel_ifE crel_returnE crel_nthE) auto
|
bulwahn@27656
|
190 |
with True
|
bulwahn@27656
|
191 |
show ?thesis by auto
|
bulwahn@27656
|
192 |
next
|
bulwahn@27656
|
193 |
case False (* recursive case *)
|
bulwahn@27656
|
194 |
note lr = this
|
bulwahn@27656
|
195 |
let ?v = "get_array a h ! l"
|
bulwahn@27656
|
196 |
show ?thesis
|
bulwahn@27656
|
197 |
proof (cases "?v \<le> p")
|
bulwahn@27656
|
198 |
case True
|
bulwahn@27656
|
199 |
with lr cr
|
bulwahn@27656
|
200 |
have rec1: "crel (part1 a (l + 1) r p) h h' rs"
|
haftmann@28145
|
201 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
202 |
by (elim crel_bindE crel_nthE crel_ifE crel_returnE) auto
|
bulwahn@27656
|
203 |
from True part_outer_remains[OF rec1] have a_l: "get_array a h' ! l \<le> p"
|
wenzelm@32960
|
204 |
by fastsimp
|
bulwahn@27656
|
205 |
have "\<forall>i. (l \<le> i = (l = i \<or> Suc l \<le> i))" by arith
|
bulwahn@27656
|
206 |
with 1(1)[OF False True rec1] a_l show ?thesis
|
wenzelm@32960
|
207 |
by auto
|
bulwahn@27656
|
208 |
next
|
bulwahn@27656
|
209 |
case False
|
bulwahn@27656
|
210 |
with lr cr
|
bulwahn@27656
|
211 |
obtain h1 where swp: "crel (swap a l r) h h1 ()"
|
bulwahn@27656
|
212 |
and rec2: "crel (part1 a l (r - 1) p) h1 h' rs"
|
haftmann@28145
|
213 |
unfolding part1.simps[of a l r p]
|
haftmann@37771
|
214 |
by (elim crel_bindE crel_nthE crel_ifE crel_returnE) auto
|
bulwahn@27656
|
215 |
from swp False have "get_array a h1 ! r \<ge> p"
|
wenzelm@32960
|
216 |
unfolding swap_def
|
haftmann@37771
|
217 |
by (auto simp add: Array.length_def elim!: crel_bindE crel_nthE crel_updE crel_returnE)
|
bulwahn@27656
|
218 |
with part_outer_remains [OF rec2] lr have a_r: "get_array a h' ! r \<ge> p"
|
wenzelm@32960
|
219 |
by fastsimp
|
bulwahn@27656
|
220 |
have "\<forall>i. (i \<le> r = (i = r \<or> i \<le> r - 1))" by arith
|
bulwahn@27656
|
221 |
with 1(2)[OF lr False rec2] a_r show ?thesis
|
wenzelm@32960
|
222 |
by auto
|
bulwahn@27656
|
223 |
qed
|
bulwahn@27656
|
224 |
qed
|
bulwahn@27656
|
225 |
qed
|
bulwahn@27656
|
226 |
|
bulwahn@27656
|
227 |
|
bulwahn@27656
|
228 |
fun partition :: "nat array \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat Heap"
|
bulwahn@27656
|
229 |
where
|
krauss@37792
|
230 |
"partition a left right = do {
|
haftmann@37798
|
231 |
pivot \<leftarrow> Array.nth a right;
|
bulwahn@27656
|
232 |
middle \<leftarrow> part1 a left (right - 1) pivot;
|
haftmann@37798
|
233 |
v \<leftarrow> Array.nth a middle;
|
bulwahn@27656
|
234 |
m \<leftarrow> return (if (v \<le> pivot) then (middle + 1) else middle);
|
bulwahn@27656
|
235 |
swap a m right;
|
bulwahn@27656
|
236 |
return m
|
krauss@37792
|
237 |
}"
|
bulwahn@27656
|
238 |
|
bulwahn@27656
|
239 |
declare partition.simps[simp del]
|
bulwahn@27656
|
240 |
|
bulwahn@27656
|
241 |
lemma partition_permutes:
|
bulwahn@27656
|
242 |
assumes "crel (partition a l r) h h' rs"
|
bulwahn@27656
|
243 |
shows "multiset_of (get_array a h')
|
bulwahn@27656
|
244 |
= multiset_of (get_array a h)"
|
bulwahn@27656
|
245 |
proof -
|
bulwahn@27656
|
246 |
from assms part_permutes swap_permutes show ?thesis
|
haftmann@28145
|
247 |
unfolding partition.simps
|
haftmann@37771
|
248 |
by (elim crel_bindE crel_returnE crel_nthE crel_ifE crel_updE) auto
|
bulwahn@27656
|
249 |
qed
|
bulwahn@27656
|
250 |
|
bulwahn@27656
|
251 |
lemma partition_length_remains:
|
bulwahn@27656
|
252 |
assumes "crel (partition a l r) h h' rs"
|
haftmann@37802
|
253 |
shows "Array.length h a = Array.length h' a"
|
bulwahn@27656
|
254 |
proof -
|
bulwahn@27656
|
255 |
from assms part_length_remains show ?thesis
|
haftmann@28145
|
256 |
unfolding partition.simps swap_def
|
haftmann@37771
|
257 |
by (elim crel_bindE crel_returnE crel_nthE crel_ifE crel_updE) auto
|
bulwahn@27656
|
258 |
qed
|
bulwahn@27656
|
259 |
|
bulwahn@27656
|
260 |
lemma partition_outer_remains:
|
bulwahn@27656
|
261 |
assumes "crel (partition a l r) h h' rs"
|
bulwahn@27656
|
262 |
assumes "l < r"
|
bulwahn@27656
|
263 |
shows "\<forall>i. i < l \<or> r < i \<longrightarrow> get_array (a::nat array) h ! i = get_array a h' ! i"
|
bulwahn@27656
|
264 |
proof -
|
bulwahn@27656
|
265 |
from assms part_outer_remains part_returns_index_in_bounds show ?thesis
|
haftmann@28145
|
266 |
unfolding partition.simps swap_def
|
haftmann@37771
|
267 |
by (elim crel_bindE crel_returnE crel_nthE crel_ifE crel_updE) fastsimp
|
bulwahn@27656
|
268 |
qed
|
bulwahn@27656
|
269 |
|
bulwahn@27656
|
270 |
lemma partition_returns_index_in_bounds:
|
bulwahn@27656
|
271 |
assumes crel: "crel (partition a l r) h h' rs"
|
bulwahn@27656
|
272 |
assumes "l < r"
|
bulwahn@27656
|
273 |
shows "l \<le> rs \<and> rs \<le> r"
|
bulwahn@27656
|
274 |
proof -
|
bulwahn@27656
|
275 |
from crel obtain middle h'' p where part: "crel (part1 a l (r - 1) p) h h'' middle"
|
bulwahn@27656
|
276 |
and rs_equals: "rs = (if get_array a h'' ! middle \<le> get_array a h ! r then middle + 1
|
bulwahn@27656
|
277 |
else middle)"
|
haftmann@28145
|
278 |
unfolding partition.simps
|
haftmann@37771
|
279 |
by (elim crel_bindE crel_returnE crel_nthE crel_ifE crel_updE) simp
|
bulwahn@27656
|
280 |
from `l < r` have "l \<le> r - 1" by arith
|
bulwahn@27656
|
281 |
from part_returns_index_in_bounds[OF part this] rs_equals `l < r` show ?thesis by auto
|
bulwahn@27656
|
282 |
qed
|
bulwahn@27656
|
283 |
|
bulwahn@27656
|
284 |
lemma partition_partitions:
|
bulwahn@27656
|
285 |
assumes crel: "crel (partition a l r) h h' rs"
|
bulwahn@27656
|
286 |
assumes "l < r"
|
bulwahn@27656
|
287 |
shows "(\<forall>i. l \<le> i \<and> i < rs \<longrightarrow> get_array (a::nat array) h' ! i \<le> get_array a h' ! rs) \<and>
|
bulwahn@27656
|
288 |
(\<forall>i. rs < i \<and> i \<le> r \<longrightarrow> get_array a h' ! rs \<le> get_array a h' ! i)"
|
bulwahn@27656
|
289 |
proof -
|
bulwahn@27656
|
290 |
let ?pivot = "get_array a h ! r"
|
bulwahn@27656
|
291 |
from crel obtain middle h1 where part: "crel (part1 a l (r - 1) ?pivot) h h1 middle"
|
bulwahn@27656
|
292 |
and swap: "crel (swap a rs r) h1 h' ()"
|
bulwahn@27656
|
293 |
and rs_equals: "rs = (if get_array a h1 ! middle \<le> ?pivot then middle + 1
|
bulwahn@27656
|
294 |
else middle)"
|
haftmann@28145
|
295 |
unfolding partition.simps
|
haftmann@37771
|
296 |
by (elim crel_bindE crel_returnE crel_nthE crel_ifE crel_updE) simp
|
haftmann@37798
|
297 |
from swap have h'_def: "h' = Array.update a r (get_array a h1 ! rs)
|
haftmann@37798
|
298 |
(Array.update a rs (get_array a h1 ! r) h1)"
|
haftmann@28145
|
299 |
unfolding swap_def
|
haftmann@37771
|
300 |
by (elim crel_bindE crel_returnE crel_nthE crel_updE) simp
|
haftmann@37802
|
301 |
from swap have in_bounds: "r < Array.length h1 a \<and> rs < Array.length h1 a"
|
haftmann@28145
|
302 |
unfolding swap_def
|
haftmann@37771
|
303 |
by (elim crel_bindE crel_returnE crel_nthE crel_updE) simp
|
haftmann@37802
|
304 |
from swap have swap_length_remains: "Array.length h1 a = Array.length h' a"
|
haftmann@37771
|
305 |
unfolding swap_def by (elim crel_bindE crel_returnE crel_nthE crel_updE) auto
|
haftmann@37771
|
306 |
from `l < r` have "l \<le> r - 1" by simp
|
bulwahn@27656
|
307 |
note middle_in_bounds = part_returns_index_in_bounds[OF part this]
|
bulwahn@27656
|
308 |
from part_outer_remains[OF part] `l < r`
|
bulwahn@27656
|
309 |
have "get_array a h ! r = get_array a h1 ! r"
|
bulwahn@27656
|
310 |
by fastsimp
|
bulwahn@27656
|
311 |
with swap
|
bulwahn@27656
|
312 |
have right_remains: "get_array a h ! r = get_array a h' ! rs"
|
haftmann@28145
|
313 |
unfolding swap_def
|
haftmann@37771
|
314 |
by (auto simp add: Array.length_def elim!: crel_bindE crel_returnE crel_nthE crel_updE) (cases "r = rs", auto)
|
bulwahn@27656
|
315 |
from part_partitions [OF part]
|
bulwahn@27656
|
316 |
show ?thesis
|
bulwahn@27656
|
317 |
proof (cases "get_array a h1 ! middle \<le> ?pivot")
|
bulwahn@27656
|
318 |
case True
|
bulwahn@27656
|
319 |
with rs_equals have rs_equals: "rs = middle + 1" by simp
|
bulwahn@27656
|
320 |
{
|
bulwahn@27656
|
321 |
fix i
|
bulwahn@27656
|
322 |
assume i_is_left: "l \<le> i \<and> i < rs"
|
bulwahn@27656
|
323 |
with swap_length_remains in_bounds middle_in_bounds rs_equals `l < r`
|
haftmann@37802
|
324 |
have i_props: "i < Array.length h' a" "i \<noteq> r" "i \<noteq> rs" by auto
|
bulwahn@27656
|
325 |
from i_is_left rs_equals have "l \<le> i \<and> i < middle \<or> i = middle" by arith
|
bulwahn@27656
|
326 |
with part_partitions[OF part] right_remains True
|
bulwahn@27656
|
327 |
have "get_array a h1 ! i \<le> get_array a h' ! rs" by fastsimp
|
bulwahn@27656
|
328 |
with i_props h'_def in_bounds have "get_array a h' ! i \<le> get_array a h' ! rs"
|
haftmann@37798
|
329 |
unfolding Array.update_def Array.length_def by simp
|
bulwahn@27656
|
330 |
}
|
bulwahn@27656
|
331 |
moreover
|
bulwahn@27656
|
332 |
{
|
bulwahn@27656
|
333 |
fix i
|
bulwahn@27656
|
334 |
assume "rs < i \<and> i \<le> r"
|
bulwahn@27656
|
335 |
|
bulwahn@27656
|
336 |
hence "(rs < i \<and> i \<le> r - 1) \<or> (rs < i \<and> i = r)" by arith
|
bulwahn@27656
|
337 |
hence "get_array a h' ! rs \<le> get_array a h' ! i"
|
bulwahn@27656
|
338 |
proof
|
wenzelm@32960
|
339 |
assume i_is: "rs < i \<and> i \<le> r - 1"
|
wenzelm@32960
|
340 |
with swap_length_remains in_bounds middle_in_bounds rs_equals
|
haftmann@37802
|
341 |
have i_props: "i < Array.length h' a" "i \<noteq> r" "i \<noteq> rs" by auto
|
wenzelm@32960
|
342 |
from part_partitions[OF part] rs_equals right_remains i_is
|
wenzelm@32960
|
343 |
have "get_array a h' ! rs \<le> get_array a h1 ! i"
|
wenzelm@32960
|
344 |
by fastsimp
|
wenzelm@32960
|
345 |
with i_props h'_def show ?thesis by fastsimp
|
bulwahn@27656
|
346 |
next
|
wenzelm@32960
|
347 |
assume i_is: "rs < i \<and> i = r"
|
wenzelm@32960
|
348 |
with rs_equals have "Suc middle \<noteq> r" by arith
|
wenzelm@32960
|
349 |
with middle_in_bounds `l < r` have "Suc middle \<le> r - 1" by arith
|
wenzelm@32960
|
350 |
with part_partitions[OF part] right_remains
|
wenzelm@32960
|
351 |
have "get_array a h' ! rs \<le> get_array a h1 ! (Suc middle)"
|
wenzelm@32960
|
352 |
by fastsimp
|
wenzelm@32960
|
353 |
with i_is True rs_equals right_remains h'_def
|
wenzelm@32960
|
354 |
show ?thesis using in_bounds
|
haftmann@37798
|
355 |
unfolding Array.update_def Array.length_def
|
wenzelm@32960
|
356 |
by auto
|
bulwahn@27656
|
357 |
qed
|
bulwahn@27656
|
358 |
}
|
bulwahn@27656
|
359 |
ultimately show ?thesis by auto
|
bulwahn@27656
|
360 |
next
|
bulwahn@27656
|
361 |
case False
|
bulwahn@27656
|
362 |
with rs_equals have rs_equals: "middle = rs" by simp
|
bulwahn@27656
|
363 |
{
|
bulwahn@27656
|
364 |
fix i
|
bulwahn@27656
|
365 |
assume i_is_left: "l \<le> i \<and> i < rs"
|
bulwahn@27656
|
366 |
with swap_length_remains in_bounds middle_in_bounds rs_equals
|
haftmann@37802
|
367 |
have i_props: "i < Array.length h' a" "i \<noteq> r" "i \<noteq> rs" by auto
|
bulwahn@27656
|
368 |
from part_partitions[OF part] rs_equals right_remains i_is_left
|
bulwahn@27656
|
369 |
have "get_array a h1 ! i \<le> get_array a h' ! rs" by fastsimp
|
bulwahn@27656
|
370 |
with i_props h'_def have "get_array a h' ! i \<le> get_array a h' ! rs"
|
haftmann@37798
|
371 |
unfolding Array.update_def by simp
|
bulwahn@27656
|
372 |
}
|
bulwahn@27656
|
373 |
moreover
|
bulwahn@27656
|
374 |
{
|
bulwahn@27656
|
375 |
fix i
|
bulwahn@27656
|
376 |
assume "rs < i \<and> i \<le> r"
|
bulwahn@27656
|
377 |
hence "(rs < i \<and> i \<le> r - 1) \<or> i = r" by arith
|
bulwahn@27656
|
378 |
hence "get_array a h' ! rs \<le> get_array a h' ! i"
|
bulwahn@27656
|
379 |
proof
|
wenzelm@32960
|
380 |
assume i_is: "rs < i \<and> i \<le> r - 1"
|
wenzelm@32960
|
381 |
with swap_length_remains in_bounds middle_in_bounds rs_equals
|
haftmann@37802
|
382 |
have i_props: "i < Array.length h' a" "i \<noteq> r" "i \<noteq> rs" by auto
|
wenzelm@32960
|
383 |
from part_partitions[OF part] rs_equals right_remains i_is
|
wenzelm@32960
|
384 |
have "get_array a h' ! rs \<le> get_array a h1 ! i"
|
wenzelm@32960
|
385 |
by fastsimp
|
wenzelm@32960
|
386 |
with i_props h'_def show ?thesis by fastsimp
|
bulwahn@27656
|
387 |
next
|
wenzelm@32960
|
388 |
assume i_is: "i = r"
|
wenzelm@32960
|
389 |
from i_is False rs_equals right_remains h'_def
|
wenzelm@32960
|
390 |
show ?thesis using in_bounds
|
haftmann@37798
|
391 |
unfolding Array.update_def Array.length_def
|
wenzelm@32960
|
392 |
by auto
|
bulwahn@27656
|
393 |
qed
|
bulwahn@27656
|
394 |
}
|
bulwahn@27656
|
395 |
ultimately
|
bulwahn@27656
|
396 |
show ?thesis by auto
|
bulwahn@27656
|
397 |
qed
|
bulwahn@27656
|
398 |
qed
|
bulwahn@27656
|
399 |
|
bulwahn@27656
|
400 |
|
bulwahn@27656
|
401 |
function quicksort :: "nat array \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> unit Heap"
|
bulwahn@27656
|
402 |
where
|
bulwahn@27656
|
403 |
"quicksort arr left right =
|
bulwahn@27656
|
404 |
(if (right > left) then
|
krauss@37792
|
405 |
do {
|
bulwahn@27656
|
406 |
pivotNewIndex \<leftarrow> partition arr left right;
|
bulwahn@27656
|
407 |
pivotNewIndex \<leftarrow> assert (\<lambda>x. left \<le> x \<and> x \<le> right) pivotNewIndex;
|
bulwahn@27656
|
408 |
quicksort arr left (pivotNewIndex - 1);
|
bulwahn@27656
|
409 |
quicksort arr (pivotNewIndex + 1) right
|
krauss@37792
|
410 |
}
|
bulwahn@27656
|
411 |
else return ())"
|
bulwahn@27656
|
412 |
by pat_completeness auto
|
bulwahn@27656
|
413 |
|
bulwahn@27656
|
414 |
(* For termination, we must show that the pivotNewIndex is between left and right *)
|
bulwahn@27656
|
415 |
termination
|
bulwahn@27656
|
416 |
by (relation "measure (\<lambda>(a, l, r). (r - l))") auto
|
bulwahn@27656
|
417 |
|
bulwahn@27656
|
418 |
declare quicksort.simps[simp del]
|
bulwahn@27656
|
419 |
|
bulwahn@27656
|
420 |
|
bulwahn@27656
|
421 |
lemma quicksort_permutes:
|
bulwahn@27656
|
422 |
assumes "crel (quicksort a l r) h h' rs"
|
bulwahn@27656
|
423 |
shows "multiset_of (get_array a h')
|
bulwahn@27656
|
424 |
= multiset_of (get_array a h)"
|
bulwahn@27656
|
425 |
using assms
|
bulwahn@27656
|
426 |
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
|
bulwahn@27656
|
427 |
case (1 a l r h h' rs)
|
bulwahn@27656
|
428 |
with partition_permutes show ?case
|
haftmann@28145
|
429 |
unfolding quicksort.simps [of a l r]
|
haftmann@37771
|
430 |
by (elim crel_ifE crel_bindE crel_assertE crel_returnE) auto
|
bulwahn@27656
|
431 |
qed
|
bulwahn@27656
|
432 |
|
bulwahn@27656
|
433 |
lemma length_remains:
|
bulwahn@27656
|
434 |
assumes "crel (quicksort a l r) h h' rs"
|
haftmann@37802
|
435 |
shows "Array.length h a = Array.length h' a"
|
bulwahn@27656
|
436 |
using assms
|
bulwahn@27656
|
437 |
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
|
bulwahn@27656
|
438 |
case (1 a l r h h' rs)
|
bulwahn@27656
|
439 |
with partition_length_remains show ?case
|
haftmann@28145
|
440 |
unfolding quicksort.simps [of a l r]
|
haftmann@37771
|
441 |
by (elim crel_ifE crel_bindE crel_assertE crel_returnE) auto
|
bulwahn@27656
|
442 |
qed
|
bulwahn@27656
|
443 |
|
bulwahn@27656
|
444 |
lemma quicksort_outer_remains:
|
bulwahn@27656
|
445 |
assumes "crel (quicksort a l r) h h' rs"
|
bulwahn@27656
|
446 |
shows "\<forall>i. i < l \<or> r < i \<longrightarrow> get_array (a::nat array) h ! i = get_array a h' ! i"
|
bulwahn@27656
|
447 |
using assms
|
bulwahn@27656
|
448 |
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
|
bulwahn@27656
|
449 |
case (1 a l r h h' rs)
|
bulwahn@27656
|
450 |
note cr = `crel (quicksort a l r) h h' rs`
|
bulwahn@27656
|
451 |
thus ?case
|
bulwahn@27656
|
452 |
proof (cases "r > l")
|
bulwahn@27656
|
453 |
case False
|
bulwahn@27656
|
454 |
with cr have "h' = h"
|
bulwahn@27656
|
455 |
unfolding quicksort.simps [of a l r]
|
haftmann@37771
|
456 |
by (elim crel_ifE crel_returnE) auto
|
bulwahn@27656
|
457 |
thus ?thesis by simp
|
bulwahn@27656
|
458 |
next
|
bulwahn@27656
|
459 |
case True
|
bulwahn@27656
|
460 |
{
|
bulwahn@27656
|
461 |
fix h1 h2 p ret1 ret2 i
|
bulwahn@27656
|
462 |
assume part: "crel (partition a l r) h h1 p"
|
bulwahn@27656
|
463 |
assume qs1: "crel (quicksort a l (p - 1)) h1 h2 ret1"
|
bulwahn@27656
|
464 |
assume qs2: "crel (quicksort a (p + 1) r) h2 h' ret2"
|
bulwahn@27656
|
465 |
assume pivot: "l \<le> p \<and> p \<le> r"
|
bulwahn@27656
|
466 |
assume i_outer: "i < l \<or> r < i"
|
bulwahn@27656
|
467 |
from partition_outer_remains [OF part True] i_outer
|
bulwahn@27656
|
468 |
have "get_array a h !i = get_array a h1 ! i" by fastsimp
|
bulwahn@27656
|
469 |
moreover
|
bulwahn@27656
|
470 |
with 1(1) [OF True pivot qs1] pivot i_outer
|
bulwahn@27656
|
471 |
have "get_array a h1 ! i = get_array a h2 ! i" by auto
|
bulwahn@27656
|
472 |
moreover
|
bulwahn@27656
|
473 |
with qs2 1(2) [of p h2 h' ret2] True pivot i_outer
|
bulwahn@27656
|
474 |
have "get_array a h2 ! i = get_array a h' ! i" by auto
|
bulwahn@27656
|
475 |
ultimately have "get_array a h ! i= get_array a h' ! i" by simp
|
bulwahn@27656
|
476 |
}
|
bulwahn@27656
|
477 |
with cr show ?thesis
|
haftmann@28145
|
478 |
unfolding quicksort.simps [of a l r]
|
haftmann@37771
|
479 |
by (elim crel_ifE crel_bindE crel_assertE crel_returnE) auto
|
bulwahn@27656
|
480 |
qed
|
bulwahn@27656
|
481 |
qed
|
bulwahn@27656
|
482 |
|
bulwahn@27656
|
483 |
lemma quicksort_is_skip:
|
bulwahn@27656
|
484 |
assumes "crel (quicksort a l r) h h' rs"
|
bulwahn@27656
|
485 |
shows "r \<le> l \<longrightarrow> h = h'"
|
bulwahn@27656
|
486 |
using assms
|
haftmann@28145
|
487 |
unfolding quicksort.simps [of a l r]
|
haftmann@37771
|
488 |
by (elim crel_ifE crel_returnE) auto
|
bulwahn@27656
|
489 |
|
bulwahn@27656
|
490 |
lemma quicksort_sorts:
|
bulwahn@27656
|
491 |
assumes "crel (quicksort a l r) h h' rs"
|
haftmann@37802
|
492 |
assumes l_r_length: "l < Array.length h a" "r < Array.length h a"
|
bulwahn@27656
|
493 |
shows "sorted (subarray l (r + 1) a h')"
|
bulwahn@27656
|
494 |
using assms
|
bulwahn@27656
|
495 |
proof (induct a l r arbitrary: h h' rs rule: quicksort.induct)
|
bulwahn@27656
|
496 |
case (1 a l r h h' rs)
|
bulwahn@27656
|
497 |
note cr = `crel (quicksort a l r) h h' rs`
|
bulwahn@27656
|
498 |
thus ?case
|
bulwahn@27656
|
499 |
proof (cases "r > l")
|
bulwahn@27656
|
500 |
case False
|
bulwahn@27656
|
501 |
hence "l \<ge> r + 1 \<or> l = r" by arith
|
bulwahn@27656
|
502 |
with length_remains[OF cr] 1(5) show ?thesis
|
bulwahn@27656
|
503 |
by (auto simp add: subarray_Nil subarray_single)
|
bulwahn@27656
|
504 |
next
|
bulwahn@27656
|
505 |
case True
|
bulwahn@27656
|
506 |
{
|
bulwahn@27656
|
507 |
fix h1 h2 p
|
bulwahn@27656
|
508 |
assume part: "crel (partition a l r) h h1 p"
|
bulwahn@27656
|
509 |
assume qs1: "crel (quicksort a l (p - 1)) h1 h2 ()"
|
bulwahn@27656
|
510 |
assume qs2: "crel (quicksort a (p + 1) r) h2 h' ()"
|
bulwahn@27656
|
511 |
from partition_returns_index_in_bounds [OF part True]
|
bulwahn@27656
|
512 |
have pivot: "l\<le> p \<and> p \<le> r" .
|
bulwahn@27656
|
513 |
note length_remains = length_remains[OF qs2] length_remains[OF qs1] partition_length_remains[OF part]
|
bulwahn@27656
|
514 |
from quicksort_outer_remains [OF qs2] quicksort_outer_remains [OF qs1] pivot quicksort_is_skip[OF qs1]
|
bulwahn@27656
|
515 |
have pivot_unchanged: "get_array a h1 ! p = get_array a h' ! p" by (cases p, auto)
|
haftmann@28013
|
516 |
(*-- First of all, by induction hypothesis both sublists are sorted. *)
|
bulwahn@27656
|
517 |
from 1(1)[OF True pivot qs1] length_remains pivot 1(5)
|
bulwahn@27656
|
518 |
have IH1: "sorted (subarray l p a h2)" by (cases p, auto simp add: subarray_Nil)
|
bulwahn@27656
|
519 |
from quicksort_outer_remains [OF qs2] length_remains
|
bulwahn@27656
|
520 |
have left_subarray_remains: "subarray l p a h2 = subarray l p a h'"
|
wenzelm@32960
|
521 |
by (simp add: subarray_eq_samelength_iff)
|
bulwahn@27656
|
522 |
with IH1 have IH1': "sorted (subarray l p a h')" by simp
|
bulwahn@27656
|
523 |
from 1(2)[OF True pivot qs2] pivot 1(5) length_remains
|
bulwahn@27656
|
524 |
have IH2: "sorted (subarray (p + 1) (r + 1) a h')"
|
haftmann@28013
|
525 |
by (cases "Suc p \<le> r", auto simp add: subarray_Nil)
|
haftmann@28013
|
526 |
(* -- Secondly, both sublists remain partitioned. *)
|
bulwahn@27656
|
527 |
from partition_partitions[OF part True]
|
bulwahn@27656
|
528 |
have part_conds1: "\<forall>j. j \<in> set (subarray l p a h1) \<longrightarrow> j \<le> get_array a h1 ! p "
|
haftmann@28013
|
529 |
and part_conds2: "\<forall>j. j \<in> set (subarray (p + 1) (r + 1) a h1) \<longrightarrow> get_array a h1 ! p \<le> j"
|
haftmann@28013
|
530 |
by (auto simp add: all_in_set_subarray_conv)
|
bulwahn@27656
|
531 |
from quicksort_outer_remains [OF qs1] quicksort_permutes [OF qs1] True
|
haftmann@28013
|
532 |
length_remains 1(5) pivot multiset_of_sublist [of l p "get_array a h1" "get_array a h2"]
|
bulwahn@27656
|
533 |
have multiset_partconds1: "multiset_of (subarray l p a h2) = multiset_of (subarray l p a h1)"
|
haftmann@37719
|
534 |
unfolding Array.length_def subarray_def by (cases p, auto)
|
bulwahn@27656
|
535 |
with left_subarray_remains part_conds1 pivot_unchanged
|
bulwahn@27656
|
536 |
have part_conds2': "\<forall>j. j \<in> set (subarray l p a h') \<longrightarrow> j \<le> get_array a h' ! p"
|
haftmann@28013
|
537 |
by (simp, subst set_of_multiset_of[symmetric], simp)
|
haftmann@28013
|
538 |
(* -- These steps are the analogous for the right sublist \<dots> *)
|
bulwahn@27656
|
539 |
from quicksort_outer_remains [OF qs1] length_remains
|
bulwahn@27656
|
540 |
have right_subarray_remains: "subarray (p + 1) (r + 1) a h1 = subarray (p + 1) (r + 1) a h2"
|
wenzelm@32960
|
541 |
by (auto simp add: subarray_eq_samelength_iff)
|
bulwahn@27656
|
542 |
from quicksort_outer_remains [OF qs2] quicksort_permutes [OF qs2] True
|
haftmann@28013
|
543 |
length_remains 1(5) pivot multiset_of_sublist [of "p + 1" "r + 1" "get_array a h2" "get_array a h'"]
|
bulwahn@27656
|
544 |
have multiset_partconds2: "multiset_of (subarray (p + 1) (r + 1) a h') = multiset_of (subarray (p + 1) (r + 1) a h2)"
|
haftmann@37719
|
545 |
unfolding Array.length_def subarray_def by auto
|
bulwahn@27656
|
546 |
with right_subarray_remains part_conds2 pivot_unchanged
|
bulwahn@27656
|
547 |
have part_conds1': "\<forall>j. j \<in> set (subarray (p + 1) (r + 1) a h') \<longrightarrow> get_array a h' ! p \<le> j"
|
haftmann@28013
|
548 |
by (simp, subst set_of_multiset_of[symmetric], simp)
|
haftmann@28013
|
549 |
(* -- Thirdly and finally, we show that the array is sorted
|
haftmann@28013
|
550 |
following from the facts above. *)
|
bulwahn@27656
|
551 |
from True pivot 1(5) length_remains have "subarray l (r + 1) a h' = subarray l p a h' @ [get_array a h' ! p] @ subarray (p + 1) (r + 1) a h'"
|
wenzelm@32960
|
552 |
by (simp add: subarray_nth_array_Cons, cases "l < p") (auto simp add: subarray_append subarray_Nil)
|
bulwahn@27656
|
553 |
with IH1' IH2 part_conds1' part_conds2' pivot have ?thesis
|
wenzelm@32960
|
554 |
unfolding subarray_def
|
wenzelm@32960
|
555 |
apply (auto simp add: sorted_append sorted_Cons all_in_set_sublist'_conv)
|
wenzelm@32960
|
556 |
by (auto simp add: set_sublist' dest: le_trans [of _ "get_array a h' ! p"])
|
bulwahn@27656
|
557 |
}
|
bulwahn@27656
|
558 |
with True cr show ?thesis
|
haftmann@28145
|
559 |
unfolding quicksort.simps [of a l r]
|
haftmann@37771
|
560 |
by (elim crel_ifE crel_returnE crel_bindE crel_assertE) auto
|
bulwahn@27656
|
561 |
qed
|
bulwahn@27656
|
562 |
qed
|
bulwahn@27656
|
563 |
|
bulwahn@27656
|
564 |
|
bulwahn@27656
|
565 |
lemma quicksort_is_sort:
|
haftmann@37802
|
566 |
assumes crel: "crel (quicksort a 0 (Array.length h a - 1)) h h' rs"
|
bulwahn@27656
|
567 |
shows "get_array a h' = sort (get_array a h)"
|
bulwahn@27656
|
568 |
proof (cases "get_array a h = []")
|
bulwahn@27656
|
569 |
case True
|
bulwahn@27656
|
570 |
with quicksort_is_skip[OF crel] show ?thesis
|
haftmann@37719
|
571 |
unfolding Array.length_def by simp
|
bulwahn@27656
|
572 |
next
|
bulwahn@27656
|
573 |
case False
|
bulwahn@27656
|
574 |
from quicksort_sorts [OF crel] False have "sorted (sublist' 0 (List.length (get_array a h)) (get_array a h'))"
|
haftmann@37719
|
575 |
unfolding Array.length_def subarray_def by auto
|
bulwahn@27656
|
576 |
with length_remains[OF crel] have "sorted (get_array a h')"
|
haftmann@37719
|
577 |
unfolding Array.length_def by simp
|
bulwahn@27656
|
578 |
with quicksort_permutes [OF crel] properties_for_sort show ?thesis by fastsimp
|
bulwahn@27656
|
579 |
qed
|
bulwahn@27656
|
580 |
|
bulwahn@27656
|
581 |
subsection {* No Errors in quicksort *}
|
bulwahn@27656
|
582 |
text {* We have proved that quicksort sorts (if no exceptions occur).
|
bulwahn@27656
|
583 |
We will now show that exceptions do not occur. *}
|
bulwahn@27656
|
584 |
|
haftmann@37758
|
585 |
lemma success_part1I:
|
haftmann@37802
|
586 |
assumes "l < Array.length h a" "r < Array.length h a"
|
haftmann@37758
|
587 |
shows "success (part1 a l r p) h"
|
bulwahn@27656
|
588 |
using assms
|
bulwahn@27656
|
589 |
proof (induct a l r p arbitrary: h rule: part1.induct)
|
bulwahn@27656
|
590 |
case (1 a l r p)
|
haftmann@37771
|
591 |
thus ?case unfolding part1.simps [of a l r]
|
haftmann@37771
|
592 |
apply (auto intro!: success_intros del: success_ifI simp add: not_le)
|
haftmann@37771
|
593 |
apply (auto intro!: crel_intros crel_swapI)
|
haftmann@37771
|
594 |
done
|
bulwahn@27656
|
595 |
qed
|
bulwahn@27656
|
596 |
|
haftmann@37758
|
597 |
lemma success_bindI' [success_intros]: (*FIXME move*)
|
haftmann@37758
|
598 |
assumes "success f h"
|
haftmann@37758
|
599 |
assumes "\<And>h' r. crel f h h' r \<Longrightarrow> success (g r) h'"
|
haftmann@37758
|
600 |
shows "success (f \<guillemotright>= g) h"
|
haftmann@37771
|
601 |
using assms(1) proof (rule success_crelE)
|
haftmann@37771
|
602 |
fix h' r
|
haftmann@37771
|
603 |
assume "crel f h h' r"
|
haftmann@37771
|
604 |
moreover with assms(2) have "success (g r) h'" .
|
haftmann@37771
|
605 |
ultimately show "success (f \<guillemotright>= g) h" by (rule success_bind_crelI)
|
haftmann@37771
|
606 |
qed
|
haftmann@37758
|
607 |
|
haftmann@37758
|
608 |
lemma success_partitionI:
|
haftmann@37802
|
609 |
assumes "l < r" "l < Array.length h a" "r < Array.length h a"
|
haftmann@37758
|
610 |
shows "success (partition a l r) h"
|
haftmann@37758
|
611 |
using assms unfolding partition.simps swap_def
|
haftmann@37771
|
612 |
apply (auto intro!: success_bindI' success_ifI success_returnI success_nthI success_updI success_part1I elim!: crel_bindE crel_updE crel_nthE crel_returnE simp add:)
|
bulwahn@27656
|
613 |
apply (frule part_length_remains)
|
bulwahn@27656
|
614 |
apply (frule part_returns_index_in_bounds)
|
bulwahn@27656
|
615 |
apply auto
|
bulwahn@27656
|
616 |
apply (frule part_length_remains)
|
bulwahn@27656
|
617 |
apply (frule part_returns_index_in_bounds)
|
bulwahn@27656
|
618 |
apply auto
|
bulwahn@27656
|
619 |
apply (frule part_length_remains)
|
bulwahn@27656
|
620 |
apply auto
|
bulwahn@27656
|
621 |
done
|
bulwahn@27656
|
622 |
|
haftmann@37758
|
623 |
lemma success_quicksortI:
|
haftmann@37802
|
624 |
assumes "l < Array.length h a" "r < Array.length h a"
|
haftmann@37758
|
625 |
shows "success (quicksort a l r) h"
|
bulwahn@27656
|
626 |
using assms
|
bulwahn@27656
|
627 |
proof (induct a l r arbitrary: h rule: quicksort.induct)
|
bulwahn@27656
|
628 |
case (1 a l ri h)
|
bulwahn@27656
|
629 |
thus ?case
|
haftmann@28145
|
630 |
unfolding quicksort.simps [of a l ri]
|
haftmann@37758
|
631 |
apply (auto intro!: success_ifI success_bindI' success_returnI success_nthI success_updI success_assertI success_partitionI)
|
bulwahn@27656
|
632 |
apply (frule partition_returns_index_in_bounds)
|
bulwahn@27656
|
633 |
apply auto
|
bulwahn@27656
|
634 |
apply (frule partition_returns_index_in_bounds)
|
bulwahn@27656
|
635 |
apply auto
|
haftmann@37771
|
636 |
apply (auto elim!: crel_assertE dest!: partition_length_remains length_remains)
|
bulwahn@27656
|
637 |
apply (subgoal_tac "Suc r \<le> ri \<or> r = ri")
|
bulwahn@27656
|
638 |
apply (erule disjE)
|
bulwahn@27656
|
639 |
apply auto
|
haftmann@28145
|
640 |
unfolding quicksort.simps [of a "Suc ri" ri]
|
haftmann@37758
|
641 |
apply (auto intro!: success_ifI success_returnI)
|
bulwahn@27656
|
642 |
done
|
bulwahn@27656
|
643 |
qed
|
bulwahn@27656
|
644 |
|
haftmann@27674
|
645 |
|
haftmann@27674
|
646 |
subsection {* Example *}
|
haftmann@27674
|
647 |
|
krauss@37792
|
648 |
definition "qsort a = do {
|
haftmann@37798
|
649 |
k \<leftarrow> Array.len a;
|
haftmann@27674
|
650 |
quicksort a 0 (k - 1);
|
haftmann@27674
|
651 |
return a
|
krauss@37792
|
652 |
}"
|
haftmann@27674
|
653 |
|
haftmann@35041
|
654 |
code_reserved SML upto
|
haftmann@35041
|
655 |
|
haftmann@27674
|
656 |
ML {* @{code qsort} (Array.fromList [42, 2, 3, 5, 0, 1705, 8, 3, 15]) () *}
|
haftmann@27674
|
657 |
|
haftmann@37750
|
658 |
export_code qsort in SML_imp module_name QSort file -
|
haftmann@29793
|
659 |
export_code qsort in OCaml module_name QSort file -
|
haftmann@31887
|
660 |
export_code qsort in OCaml_imp module_name QSort file -
|
haftmann@29793
|
661 |
export_code qsort in Haskell module_name QSort file -
|
haftmann@27674
|
662 |
|
bulwahn@27656
|
663 |
end |