wenzelm@252
|
1 |
(* Title: Pure/drule.ML
|
clasohm@0
|
2 |
ID: $Id$
|
wenzelm@252
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
4 |
Copyright 1993 University of Cambridge
|
clasohm@0
|
5 |
|
wenzelm@3766
|
6 |
Derived rules and other operations on theorems.
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
berghofe@13606
|
9 |
infix 0 RS RSN RL RLN MRS MRL OF COMP;
|
clasohm@0
|
10 |
|
wenzelm@5903
|
11 |
signature BASIC_DRULE =
|
wenzelm@3766
|
12 |
sig
|
paulson@9547
|
13 |
val mk_implies : cterm * cterm -> cterm
|
paulson@9547
|
14 |
val list_implies : cterm list * cterm -> cterm
|
wenzelm@4285
|
15 |
val dest_implies : cterm -> cterm * cterm
|
berghofe@10414
|
16 |
val dest_equals : cterm -> cterm * cterm
|
wenzelm@8328
|
17 |
val strip_imp_prems : cterm -> cterm list
|
berghofe@10414
|
18 |
val strip_imp_concl : cterm -> cterm
|
wenzelm@8328
|
19 |
val cprems_of : thm -> cterm list
|
wenzelm@8328
|
20 |
val read_insts :
|
wenzelm@4285
|
21 |
Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
|
wenzelm@4285
|
22 |
-> (indexname -> typ option) * (indexname -> sort option)
|
wenzelm@4285
|
23 |
-> string list -> (string*string)list
|
wenzelm@4285
|
24 |
-> (indexname*ctyp)list * (cterm*cterm)list
|
wenzelm@4285
|
25 |
val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
|
wenzelm@7636
|
26 |
val strip_shyps_warning : thm -> thm
|
wenzelm@8328
|
27 |
val forall_intr_list : cterm list -> thm -> thm
|
wenzelm@8328
|
28 |
val forall_intr_frees : thm -> thm
|
wenzelm@8328
|
29 |
val forall_intr_vars : thm -> thm
|
wenzelm@8328
|
30 |
val forall_elim_list : cterm list -> thm -> thm
|
wenzelm@8328
|
31 |
val forall_elim_var : int -> thm -> thm
|
wenzelm@8328
|
32 |
val forall_elim_vars : int -> thm -> thm
|
wenzelm@12725
|
33 |
val gen_all : thm -> thm
|
wenzelm@8328
|
34 |
val freeze_thaw : thm -> thm * (thm -> thm)
|
wenzelm@8328
|
35 |
val implies_elim_list : thm -> thm list -> thm
|
wenzelm@8328
|
36 |
val implies_intr_list : cterm list -> thm -> thm
|
paulson@8129
|
37 |
val instantiate :
|
paulson@8129
|
38 |
(indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
|
wenzelm@8328
|
39 |
val zero_var_indexes : thm -> thm
|
wenzelm@8328
|
40 |
val standard : thm -> thm
|
berghofe@11512
|
41 |
val standard' : thm -> thm
|
paulson@4610
|
42 |
val rotate_prems : int -> thm -> thm
|
oheimb@11163
|
43 |
val rearrange_prems : int list -> thm -> thm
|
wenzelm@8328
|
44 |
val assume_ax : theory -> string -> thm
|
wenzelm@8328
|
45 |
val RSN : thm * (int * thm) -> thm
|
wenzelm@8328
|
46 |
val RS : thm * thm -> thm
|
wenzelm@8328
|
47 |
val RLN : thm list * (int * thm list) -> thm list
|
wenzelm@8328
|
48 |
val RL : thm list * thm list -> thm list
|
wenzelm@8328
|
49 |
val MRS : thm list * thm -> thm
|
wenzelm@8328
|
50 |
val MRL : thm list list * thm list -> thm list
|
wenzelm@9288
|
51 |
val OF : thm * thm list -> thm
|
wenzelm@8328
|
52 |
val compose : thm * int * thm -> thm list
|
wenzelm@8328
|
53 |
val COMP : thm * thm -> thm
|
clasohm@0
|
54 |
val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
|
wenzelm@8328
|
55 |
val read_instantiate : (string*string)list -> thm -> thm
|
wenzelm@8328
|
56 |
val cterm_instantiate : (cterm*cterm)list -> thm -> thm
|
wenzelm@13105
|
57 |
val eq_thm_sg : thm * thm -> bool
|
wenzelm@13105
|
58 |
val eq_thm_prop : thm * thm -> bool
|
wenzelm@8328
|
59 |
val weak_eq_thm : thm * thm -> bool
|
wenzelm@8328
|
60 |
val size_of_thm : thm -> int
|
wenzelm@8328
|
61 |
val reflexive_thm : thm
|
wenzelm@8328
|
62 |
val symmetric_thm : thm
|
wenzelm@8328
|
63 |
val transitive_thm : thm
|
nipkow@4679
|
64 |
val symmetric_fun : thm -> thm
|
berghofe@11512
|
65 |
val extensional : thm -> thm
|
berghofe@10414
|
66 |
val imp_cong : thm
|
berghofe@10414
|
67 |
val swap_prems_eq : thm
|
wenzelm@8328
|
68 |
val equal_abs_elim : cterm -> thm -> thm
|
wenzelm@4285
|
69 |
val equal_abs_elim_list: cterm list -> thm -> thm
|
wenzelm@8328
|
70 |
val asm_rl : thm
|
wenzelm@8328
|
71 |
val cut_rl : thm
|
wenzelm@8328
|
72 |
val revcut_rl : thm
|
wenzelm@8328
|
73 |
val thin_rl : thm
|
wenzelm@4285
|
74 |
val triv_forall_equality: thm
|
nipkow@1756
|
75 |
val swap_prems_rl : thm
|
wenzelm@4285
|
76 |
val equal_intr_rule : thm
|
wenzelm@13368
|
77 |
val equal_elim_rule1 : thm
|
paulson@8550
|
78 |
val inst : string -> string -> thm -> thm
|
wenzelm@8328
|
79 |
val instantiate' : ctyp option list -> cterm option list -> thm -> thm
|
wenzelm@8328
|
80 |
val incr_indexes_wrt : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
|
wenzelm@5903
|
81 |
end;
|
wenzelm@5903
|
82 |
|
wenzelm@5903
|
83 |
signature DRULE =
|
wenzelm@5903
|
84 |
sig
|
wenzelm@5903
|
85 |
include BASIC_DRULE
|
berghofe@12908
|
86 |
val strip_comb: cterm -> cterm * cterm list
|
wenzelm@11975
|
87 |
val rule_attribute: ('a -> thm -> thm) -> 'a attribute
|
wenzelm@11975
|
88 |
val tag_rule: tag -> thm -> thm
|
wenzelm@11975
|
89 |
val untag_rule: string -> thm -> thm
|
wenzelm@11975
|
90 |
val tag: tag -> 'a attribute
|
wenzelm@11975
|
91 |
val untag: string -> 'a attribute
|
wenzelm@11975
|
92 |
val get_kind: thm -> string
|
wenzelm@11975
|
93 |
val kind: string -> 'a attribute
|
wenzelm@11975
|
94 |
val theoremK: string
|
wenzelm@11975
|
95 |
val lemmaK: string
|
wenzelm@11975
|
96 |
val corollaryK: string
|
wenzelm@11975
|
97 |
val internalK: string
|
wenzelm@11975
|
98 |
val kind_internal: 'a attribute
|
wenzelm@11975
|
99 |
val has_internal: tag list -> bool
|
wenzelm@11975
|
100 |
val impose_hyps: cterm list -> thm -> thm
|
wenzelm@13389
|
101 |
val satisfy_hyps: thm list -> thm -> thm
|
wenzelm@11975
|
102 |
val close_derivation: thm -> thm
|
wenzelm@12005
|
103 |
val local_standard: thm -> thm
|
wenzelm@11975
|
104 |
val compose_single: thm * int * thm -> thm
|
wenzelm@12373
|
105 |
val add_rule: thm -> thm list -> thm list
|
wenzelm@12373
|
106 |
val del_rule: thm -> thm list -> thm list
|
wenzelm@11975
|
107 |
val add_rules: thm list -> thm list -> thm list
|
wenzelm@11975
|
108 |
val del_rules: thm list -> thm list -> thm list
|
wenzelm@11975
|
109 |
val merge_rules: thm list * thm list -> thm list
|
skalberg@15001
|
110 |
val imp_cong' : thm -> thm -> thm
|
skalberg@15001
|
111 |
val beta_eta_conversion: cterm -> thm
|
skalberg@15001
|
112 |
val goals_conv : (int -> bool) -> (cterm -> thm) -> cterm -> thm
|
skalberg@15001
|
113 |
val forall_conv : (cterm -> thm) -> cterm -> thm
|
skalberg@15001
|
114 |
val fconv_rule : (cterm -> thm) -> thm -> thm
|
wenzelm@11975
|
115 |
val norm_hhf_eq: thm
|
wenzelm@12800
|
116 |
val is_norm_hhf: term -> bool
|
wenzelm@12800
|
117 |
val norm_hhf: Sign.sg -> term -> term
|
wenzelm@11975
|
118 |
val triv_goal: thm
|
wenzelm@11975
|
119 |
val rev_triv_goal: thm
|
wenzelm@11815
|
120 |
val implies_intr_goals: cterm list -> thm -> thm
|
wenzelm@11975
|
121 |
val freeze_all: thm -> thm
|
wenzelm@11975
|
122 |
val mk_triv_goal: cterm -> thm
|
wenzelm@11975
|
123 |
val tvars_of_terms: term list -> (indexname * sort) list
|
wenzelm@11975
|
124 |
val vars_of_terms: term list -> (indexname * typ) list
|
wenzelm@11975
|
125 |
val tvars_of: thm -> (indexname * sort) list
|
wenzelm@11975
|
126 |
val vars_of: thm -> (indexname * typ) list
|
berghofe@14081
|
127 |
val rename_bvars: (string * string) list -> thm -> thm
|
berghofe@14081
|
128 |
val rename_bvars': string option list -> thm -> thm
|
wenzelm@11975
|
129 |
val unvarifyT: thm -> thm
|
wenzelm@11975
|
130 |
val unvarify: thm -> thm
|
wenzelm@12495
|
131 |
val tvars_intr_list: string list -> thm -> thm * (string * indexname) list
|
wenzelm@12297
|
132 |
val remdups_rl: thm
|
wenzelm@11975
|
133 |
val conj_intr: thm -> thm -> thm
|
wenzelm@11975
|
134 |
val conj_intr_list: thm list -> thm
|
wenzelm@11975
|
135 |
val conj_elim: thm -> thm * thm
|
wenzelm@11975
|
136 |
val conj_elim_list: thm -> thm list
|
wenzelm@12135
|
137 |
val conj_elim_precise: int -> thm -> thm list
|
wenzelm@12135
|
138 |
val conj_intr_thm: thm
|
berghofe@13325
|
139 |
val abs_def: thm -> thm
|
wenzelm@3766
|
140 |
end;
|
clasohm@0
|
141 |
|
wenzelm@5903
|
142 |
structure Drule: DRULE =
|
clasohm@0
|
143 |
struct
|
clasohm@0
|
144 |
|
wenzelm@3991
|
145 |
|
lcp@708
|
146 |
(** some cterm->cterm operations: much faster than calling cterm_of! **)
|
lcp@708
|
147 |
|
paulson@2004
|
148 |
(** SAME NAMES as in structure Logic: use compound identifiers! **)
|
paulson@2004
|
149 |
|
clasohm@1703
|
150 |
(*dest_implies for cterms. Note T=prop below*)
|
paulson@2004
|
151 |
fun dest_implies ct =
|
wenzelm@8328
|
152 |
case term_of ct of
|
wenzelm@8328
|
153 |
(Const("==>", _) $ _ $ _) =>
|
wenzelm@10767
|
154 |
let val (ct1,ct2) = Thm.dest_comb ct
|
wenzelm@10767
|
155 |
in (#2 (Thm.dest_comb ct1), ct2) end
|
paulson@2004
|
156 |
| _ => raise TERM ("dest_implies", [term_of ct]) ;
|
clasohm@1703
|
157 |
|
berghofe@10414
|
158 |
fun dest_equals ct =
|
berghofe@10414
|
159 |
case term_of ct of
|
berghofe@10414
|
160 |
(Const("==", _) $ _ $ _) =>
|
wenzelm@10767
|
161 |
let val (ct1,ct2) = Thm.dest_comb ct
|
wenzelm@10767
|
162 |
in (#2 (Thm.dest_comb ct1), ct2) end
|
berghofe@10414
|
163 |
| _ => raise TERM ("dest_equals", [term_of ct]) ;
|
berghofe@10414
|
164 |
|
clasohm@1703
|
165 |
|
lcp@708
|
166 |
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
|
paulson@2004
|
167 |
fun strip_imp_prems ct =
|
paulson@2004
|
168 |
let val (cA,cB) = dest_implies ct
|
paulson@2004
|
169 |
in cA :: strip_imp_prems cB end
|
lcp@708
|
170 |
handle TERM _ => [];
|
lcp@708
|
171 |
|
paulson@2004
|
172 |
(* A1==>...An==>B goes to B, where B is not an implication *)
|
paulson@2004
|
173 |
fun strip_imp_concl ct =
|
wenzelm@8328
|
174 |
case term_of ct of (Const("==>", _) $ _ $ _) =>
|
wenzelm@10767
|
175 |
strip_imp_concl (#2 (Thm.dest_comb ct))
|
paulson@2004
|
176 |
| _ => ct;
|
paulson@2004
|
177 |
|
lcp@708
|
178 |
(*The premises of a theorem, as a cterm list*)
|
berghofe@13659
|
179 |
val cprems_of = strip_imp_prems o cprop_of;
|
lcp@708
|
180 |
|
paulson@9547
|
181 |
val proto_sign = Theory.sign_of ProtoPure.thy;
|
paulson@9547
|
182 |
|
paulson@9547
|
183 |
val implies = cterm_of proto_sign Term.implies;
|
paulson@9547
|
184 |
|
paulson@9547
|
185 |
(*cterm version of mk_implies*)
|
wenzelm@10767
|
186 |
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
|
paulson@9547
|
187 |
|
paulson@9547
|
188 |
(*cterm version of list_implies: [A1,...,An], B goes to [|A1;==>;An|]==>B *)
|
paulson@9547
|
189 |
fun list_implies([], B) = B
|
paulson@9547
|
190 |
| list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
|
paulson@9547
|
191 |
|
berghofe@12908
|
192 |
(*cterm version of strip_comb: maps f(t1,...,tn) to (f, [t1,...,tn]) *)
|
berghofe@12908
|
193 |
fun strip_comb ct =
|
berghofe@12908
|
194 |
let
|
berghofe@12908
|
195 |
fun stripc (p as (ct, cts)) =
|
berghofe@12908
|
196 |
let val (ct1, ct2) = Thm.dest_comb ct
|
berghofe@12908
|
197 |
in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
|
berghofe@12908
|
198 |
in stripc (ct, []) end;
|
berghofe@12908
|
199 |
|
lcp@708
|
200 |
|
lcp@229
|
201 |
(** reading of instantiations **)
|
lcp@229
|
202 |
|
lcp@229
|
203 |
fun absent ixn =
|
lcp@229
|
204 |
error("No such variable in term: " ^ Syntax.string_of_vname ixn);
|
lcp@229
|
205 |
|
lcp@229
|
206 |
fun inst_failure ixn =
|
lcp@229
|
207 |
error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
|
lcp@229
|
208 |
|
nipkow@4281
|
209 |
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
|
wenzelm@10403
|
210 |
let
|
nipkow@4281
|
211 |
fun split([],tvs,vs) = (tvs,vs)
|
wenzelm@4691
|
212 |
| split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
|
wenzelm@4691
|
213 |
"'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
|
wenzelm@4691
|
214 |
| cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
|
nipkow@4281
|
215 |
val (tvs,vs) = split(insts,[],[]);
|
nipkow@4281
|
216 |
fun readT((a,i),st) =
|
nipkow@4281
|
217 |
let val ixn = ("'" ^ a,i);
|
nipkow@4281
|
218 |
val S = case rsorts ixn of Some S => S | None => absent ixn;
|
nipkow@4281
|
219 |
val T = Sign.read_typ (sign,sorts) st;
|
wenzelm@10403
|
220 |
in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
|
nipkow@4281
|
221 |
else inst_failure ixn
|
nipkow@4281
|
222 |
end
|
nipkow@4281
|
223 |
val tye = map readT tvs;
|
nipkow@4281
|
224 |
fun mkty(ixn,st) = (case rtypes ixn of
|
nipkow@4281
|
225 |
Some T => (ixn,(st,typ_subst_TVars tye T))
|
nipkow@4281
|
226 |
| None => absent ixn);
|
nipkow@4281
|
227 |
val ixnsTs = map mkty vs;
|
nipkow@4281
|
228 |
val ixns = map fst ixnsTs
|
nipkow@4281
|
229 |
and sTs = map snd ixnsTs
|
nipkow@4281
|
230 |
val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
|
nipkow@4281
|
231 |
fun mkcVar(ixn,T) =
|
nipkow@4281
|
232 |
let val U = typ_subst_TVars tye2 T
|
nipkow@4281
|
233 |
in cterm_of sign (Var(ixn,U)) end
|
nipkow@4281
|
234 |
val ixnTs = ListPair.zip(ixns, map snd sTs)
|
nipkow@4281
|
235 |
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
|
nipkow@4281
|
236 |
ListPair.zip(map mkcVar ixnTs,cts))
|
nipkow@4281
|
237 |
end;
|
lcp@229
|
238 |
|
lcp@229
|
239 |
|
wenzelm@252
|
240 |
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
|
clasohm@0
|
241 |
Used for establishing default types (of variables) and sorts (of
|
clasohm@0
|
242 |
type variables) when reading another term.
|
clasohm@0
|
243 |
Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
|
clasohm@0
|
244 |
***)
|
clasohm@0
|
245 |
|
clasohm@0
|
246 |
fun types_sorts thm =
|
clasohm@0
|
247 |
let val {prop,hyps,...} = rep_thm thm;
|
wenzelm@252
|
248 |
val big = list_comb(prop,hyps); (* bogus term! *)
|
wenzelm@252
|
249 |
val vars = map dest_Var (term_vars big);
|
wenzelm@252
|
250 |
val frees = map dest_Free (term_frees big);
|
wenzelm@252
|
251 |
val tvars = term_tvars big;
|
wenzelm@252
|
252 |
val tfrees = term_tfrees big;
|
wenzelm@252
|
253 |
fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
|
wenzelm@252
|
254 |
fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
|
clasohm@0
|
255 |
in (typ,sort) end;
|
clasohm@0
|
256 |
|
wenzelm@7636
|
257 |
|
wenzelm@9455
|
258 |
|
wenzelm@9455
|
259 |
(** basic attributes **)
|
wenzelm@9455
|
260 |
|
wenzelm@9455
|
261 |
(* dependent rules *)
|
wenzelm@9455
|
262 |
|
wenzelm@9455
|
263 |
fun rule_attribute f (x, thm) = (x, (f x thm));
|
wenzelm@9455
|
264 |
|
wenzelm@9455
|
265 |
|
wenzelm@9455
|
266 |
(* add / delete tags *)
|
wenzelm@9455
|
267 |
|
wenzelm@9455
|
268 |
fun map_tags f thm =
|
wenzelm@9455
|
269 |
Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
|
wenzelm@9455
|
270 |
|
wenzelm@9455
|
271 |
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
|
wenzelm@9455
|
272 |
fun untag_rule s = map_tags (filter_out (equal s o #1));
|
wenzelm@9455
|
273 |
|
wenzelm@9455
|
274 |
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
|
wenzelm@9455
|
275 |
fun untag s x = rule_attribute (K (untag_rule s)) x;
|
wenzelm@9455
|
276 |
|
wenzelm@9455
|
277 |
fun simple_tag name x = tag (name, []) x;
|
wenzelm@9455
|
278 |
|
wenzelm@11741
|
279 |
|
wenzelm@11741
|
280 |
(* theorem kinds *)
|
wenzelm@11741
|
281 |
|
wenzelm@11741
|
282 |
val theoremK = "theorem";
|
wenzelm@11741
|
283 |
val lemmaK = "lemma";
|
wenzelm@11741
|
284 |
val corollaryK = "corollary";
|
wenzelm@11741
|
285 |
val internalK = "internal";
|
wenzelm@9455
|
286 |
|
wenzelm@11741
|
287 |
fun get_kind thm =
|
wenzelm@11741
|
288 |
(case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
|
wenzelm@11741
|
289 |
Some (k :: _) => k
|
wenzelm@11741
|
290 |
| _ => "unknown");
|
wenzelm@11741
|
291 |
|
wenzelm@11741
|
292 |
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
|
wenzelm@12710
|
293 |
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
|
wenzelm@11741
|
294 |
fun kind_internal x = kind internalK x;
|
wenzelm@11741
|
295 |
fun has_internal tags = exists (equal internalK o fst) tags;
|
wenzelm@9455
|
296 |
|
wenzelm@9455
|
297 |
|
wenzelm@9455
|
298 |
|
clasohm@0
|
299 |
(** Standardization of rules **)
|
clasohm@0
|
300 |
|
wenzelm@7636
|
301 |
(*Strip extraneous shyps as far as possible*)
|
wenzelm@7636
|
302 |
fun strip_shyps_warning thm =
|
wenzelm@7636
|
303 |
let
|
wenzelm@14824
|
304 |
val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.sign_of_thm thm);
|
wenzelm@7636
|
305 |
val thm' = Thm.strip_shyps thm;
|
wenzelm@7636
|
306 |
val xshyps = Thm.extra_shyps thm';
|
wenzelm@7636
|
307 |
in
|
wenzelm@7636
|
308 |
if null xshyps then ()
|
wenzelm@7636
|
309 |
else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
|
wenzelm@7636
|
310 |
thm'
|
wenzelm@7636
|
311 |
end;
|
wenzelm@7636
|
312 |
|
clasohm@0
|
313 |
(*Generalization over a list of variables, IGNORING bad ones*)
|
clasohm@0
|
314 |
fun forall_intr_list [] th = th
|
clasohm@0
|
315 |
| forall_intr_list (y::ys) th =
|
wenzelm@252
|
316 |
let val gth = forall_intr_list ys th
|
wenzelm@252
|
317 |
in forall_intr y gth handle THM _ => gth end;
|
clasohm@0
|
318 |
|
clasohm@0
|
319 |
(*Generalization over all suitable Free variables*)
|
clasohm@0
|
320 |
fun forall_intr_frees th =
|
clasohm@0
|
321 |
let val {prop,sign,...} = rep_thm th
|
clasohm@0
|
322 |
in forall_intr_list
|
wenzelm@4440
|
323 |
(map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
|
clasohm@0
|
324 |
th
|
clasohm@0
|
325 |
end;
|
clasohm@0
|
326 |
|
wenzelm@7898
|
327 |
val forall_elim_var = PureThy.forall_elim_var;
|
wenzelm@7898
|
328 |
val forall_elim_vars = PureThy.forall_elim_vars;
|
clasohm@0
|
329 |
|
wenzelm@12725
|
330 |
fun gen_all thm =
|
wenzelm@12719
|
331 |
let
|
wenzelm@12719
|
332 |
val {sign, prop, maxidx, ...} = Thm.rep_thm thm;
|
wenzelm@12719
|
333 |
fun elim (th, (x, T)) = Thm.forall_elim (Thm.cterm_of sign (Var ((x, maxidx + 1), T))) th;
|
wenzelm@12719
|
334 |
val vs = Term.strip_all_vars prop;
|
wenzelm@12719
|
335 |
in foldl elim (thm, Term.variantlist (map #1 vs, []) ~~ map #2 vs) end;
|
wenzelm@9554
|
336 |
|
clasohm@0
|
337 |
(*Specialization over a list of cterms*)
|
clasohm@0
|
338 |
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
|
clasohm@0
|
339 |
|
wenzelm@11815
|
340 |
(* maps A1,...,An |- B to [| A1;...;An |] ==> B *)
|
clasohm@0
|
341 |
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
|
clasohm@0
|
342 |
|
clasohm@0
|
343 |
(* maps [| A1;...;An |] ==> B and [A1,...,An] to B *)
|
clasohm@0
|
344 |
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
|
clasohm@0
|
345 |
|
wenzelm@11960
|
346 |
(* maps |- B to A1,...,An |- B *)
|
wenzelm@11960
|
347 |
fun impose_hyps chyps th =
|
wenzelm@12092
|
348 |
let val chyps' = gen_rems (op aconv o apfst Thm.term_of) (chyps, #hyps (Thm.rep_thm th))
|
wenzelm@12092
|
349 |
in implies_elim_list (implies_intr_list chyps' th) (map Thm.assume chyps') end;
|
wenzelm@11960
|
350 |
|
wenzelm@13389
|
351 |
(* maps A1,...,An and A1,...,An |- B to |- B *)
|
wenzelm@13389
|
352 |
fun satisfy_hyps ths th =
|
wenzelm@13389
|
353 |
implies_elim_list (implies_intr_list (map (#prop o Thm.crep_thm) ths) th) ths;
|
wenzelm@13389
|
354 |
|
clasohm@0
|
355 |
(*Reset Var indexes to zero, renaming to preserve distinctness*)
|
wenzelm@252
|
356 |
fun zero_var_indexes th =
|
clasohm@0
|
357 |
let val {prop,sign,...} = rep_thm th;
|
clasohm@0
|
358 |
val vars = term_vars prop
|
clasohm@0
|
359 |
val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
|
wenzelm@252
|
360 |
val inrs = add_term_tvars(prop,[]);
|
wenzelm@252
|
361 |
val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
|
paulson@2266
|
362 |
val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
|
wenzelm@8328
|
363 |
(inrs, nms')
|
wenzelm@252
|
364 |
val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
|
wenzelm@252
|
365 |
fun varpairs([],[]) = []
|
wenzelm@252
|
366 |
| varpairs((var as Var(v,T)) :: vars, b::bs) =
|
wenzelm@252
|
367 |
let val T' = typ_subst_TVars tye T
|
wenzelm@252
|
368 |
in (cterm_of sign (Var(v,T')),
|
wenzelm@252
|
369 |
cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
|
wenzelm@252
|
370 |
end
|
wenzelm@252
|
371 |
| varpairs _ = raise TERM("varpairs", []);
|
paulson@8129
|
372 |
in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
|
clasohm@0
|
373 |
|
clasohm@0
|
374 |
|
paulson@14394
|
375 |
(** Standard form of object-rule: no hypotheses, flexflex constraints,
|
paulson@14394
|
376 |
Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
|
wenzelm@10515
|
377 |
|
paulson@14394
|
378 |
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
|
paulson@14394
|
379 |
This step can lose information.*)
|
paulson@14387
|
380 |
fun flexflex_unique th =
|
paulson@14387
|
381 |
case Seq.chop (2, flexflex_rule th) of
|
paulson@14387
|
382 |
([th],_) => th
|
paulson@14387
|
383 |
| ([],_) => raise THM("flexflex_unique: impossible constraints", 0, [th])
|
paulson@14387
|
384 |
| _ => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
|
paulson@14387
|
385 |
|
wenzelm@10515
|
386 |
fun close_derivation thm =
|
wenzelm@10515
|
387 |
if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
|
wenzelm@10515
|
388 |
else thm;
|
wenzelm@10515
|
389 |
|
berghofe@11512
|
390 |
fun standard' th =
|
wenzelm@10515
|
391 |
let val {maxidx,...} = rep_thm th in
|
wenzelm@10515
|
392 |
th
|
berghofe@14391
|
393 |
|> implies_intr_hyps
|
wenzelm@10515
|
394 |
|> forall_intr_frees |> forall_elim_vars (maxidx + 1)
|
wenzelm@10515
|
395 |
|> strip_shyps_warning
|
berghofe@11512
|
396 |
|> zero_var_indexes |> Thm.varifyT |> Thm.compress
|
wenzelm@1218
|
397 |
end;
|
wenzelm@1218
|
398 |
|
berghofe@14391
|
399 |
val standard = close_derivation o standard' o flexflex_unique;
|
berghofe@11512
|
400 |
|
wenzelm@12005
|
401 |
fun local_standard th =
|
wenzelm@12221
|
402 |
th |> strip_shyps |> zero_var_indexes
|
wenzelm@12005
|
403 |
|> Thm.compress |> close_derivation;
|
wenzelm@12005
|
404 |
|
clasohm@0
|
405 |
|
wenzelm@8328
|
406 |
(*Convert all Vars in a theorem to Frees. Also return a function for
|
paulson@4610
|
407 |
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.
|
paulson@4610
|
408 |
Similar code in type/freeze_thaw*)
|
paulson@4610
|
409 |
fun freeze_thaw th =
|
paulson@7248
|
410 |
let val fth = freezeT th
|
berghofe@13659
|
411 |
val {prop, tpairs, sign, ...} = rep_thm fth
|
paulson@7248
|
412 |
in
|
berghofe@13659
|
413 |
case foldr add_term_vars (prop :: Thm.terms_of_tpairs tpairs, []) of
|
paulson@7248
|
414 |
[] => (fth, fn x => x)
|
paulson@7248
|
415 |
| vars =>
|
wenzelm@8328
|
416 |
let fun newName (Var(ix,_), (pairs,used)) =
|
wenzelm@8328
|
417 |
let val v = variant used (string_of_indexname ix)
|
wenzelm@8328
|
418 |
in ((ix,v)::pairs, v::used) end;
|
berghofe@13659
|
419 |
val (alist, _) = foldr newName (vars, ([], foldr add_term_names
|
berghofe@13659
|
420 |
(prop :: Thm.terms_of_tpairs tpairs, [])))
|
wenzelm@8328
|
421 |
fun mk_inst (Var(v,T)) =
|
wenzelm@8328
|
422 |
(cterm_of sign (Var(v,T)),
|
wenzelm@8328
|
423 |
cterm_of sign (Free(the (assoc(alist,v)), T)))
|
wenzelm@8328
|
424 |
val insts = map mk_inst vars
|
wenzelm@8328
|
425 |
fun thaw th' =
|
wenzelm@8328
|
426 |
th' |> forall_intr_list (map #2 insts)
|
wenzelm@8328
|
427 |
|> forall_elim_list (map #1 insts)
|
wenzelm@8328
|
428 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@7248
|
429 |
end;
|
paulson@4610
|
430 |
|
paulson@4610
|
431 |
|
paulson@7248
|
432 |
(*Rotates a rule's premises to the left by k*)
|
paulson@7248
|
433 |
val rotate_prems = permute_prems 0;
|
paulson@4610
|
434 |
|
oheimb@11163
|
435 |
(* permute prems, where the i-th position in the argument list (counting from 0)
|
oheimb@11163
|
436 |
gives the position within the original thm to be transferred to position i.
|
oheimb@11163
|
437 |
Any remaining trailing positions are left unchanged. *)
|
oheimb@11163
|
438 |
val rearrange_prems = let
|
oheimb@11163
|
439 |
fun rearr new [] thm = thm
|
wenzelm@11815
|
440 |
| rearr new (p::ps) thm = rearr (new+1)
|
oheimb@11163
|
441 |
(map (fn q => if new<=q andalso q<p then q+1 else q) ps)
|
oheimb@11163
|
442 |
(permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
|
oheimb@11163
|
443 |
in rearr 0 end;
|
paulson@4610
|
444 |
|
wenzelm@252
|
445 |
(*Assume a new formula, read following the same conventions as axioms.
|
clasohm@0
|
446 |
Generalizes over Free variables,
|
clasohm@0
|
447 |
creates the assumption, and then strips quantifiers.
|
clasohm@0
|
448 |
Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
|
wenzelm@252
|
449 |
[ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ] *)
|
clasohm@0
|
450 |
fun assume_ax thy sP =
|
wenzelm@6390
|
451 |
let val sign = Theory.sign_of thy
|
paulson@4610
|
452 |
val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
|
lcp@229
|
453 |
in forall_elim_vars 0 (assume (cterm_of sign prop)) end;
|
clasohm@0
|
454 |
|
wenzelm@252
|
455 |
(*Resolution: exactly one resolvent must be produced.*)
|
clasohm@0
|
456 |
fun tha RSN (i,thb) =
|
wenzelm@4270
|
457 |
case Seq.chop (2, biresolution false [(false,tha)] i thb) of
|
clasohm@0
|
458 |
([th],_) => th
|
clasohm@0
|
459 |
| ([],_) => raise THM("RSN: no unifiers", i, [tha,thb])
|
clasohm@0
|
460 |
| _ => raise THM("RSN: multiple unifiers", i, [tha,thb]);
|
clasohm@0
|
461 |
|
clasohm@0
|
462 |
(*resolution: P==>Q, Q==>R gives P==>R. *)
|
clasohm@0
|
463 |
fun tha RS thb = tha RSN (1,thb);
|
clasohm@0
|
464 |
|
clasohm@0
|
465 |
(*For joining lists of rules*)
|
wenzelm@252
|
466 |
fun thas RLN (i,thbs) =
|
clasohm@0
|
467 |
let val resolve = biresolution false (map (pair false) thas) i
|
wenzelm@4270
|
468 |
fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
|
paulson@2672
|
469 |
in List.concat (map resb thbs) end;
|
clasohm@0
|
470 |
|
clasohm@0
|
471 |
fun thas RL thbs = thas RLN (1,thbs);
|
clasohm@0
|
472 |
|
lcp@11
|
473 |
(*Resolve a list of rules against bottom_rl from right to left;
|
lcp@11
|
474 |
makes proof trees*)
|
wenzelm@252
|
475 |
fun rls MRS bottom_rl =
|
lcp@11
|
476 |
let fun rs_aux i [] = bottom_rl
|
wenzelm@252
|
477 |
| rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
|
lcp@11
|
478 |
in rs_aux 1 rls end;
|
lcp@11
|
479 |
|
lcp@11
|
480 |
(*As above, but for rule lists*)
|
wenzelm@252
|
481 |
fun rlss MRL bottom_rls =
|
lcp@11
|
482 |
let fun rs_aux i [] = bottom_rls
|
wenzelm@252
|
483 |
| rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
|
lcp@11
|
484 |
in rs_aux 1 rlss end;
|
lcp@11
|
485 |
|
wenzelm@9288
|
486 |
(*A version of MRS with more appropriate argument order*)
|
wenzelm@9288
|
487 |
fun bottom_rl OF rls = rls MRS bottom_rl;
|
wenzelm@9288
|
488 |
|
wenzelm@252
|
489 |
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
|
clasohm@0
|
490 |
with no lifting or renaming! Q may contain ==> or meta-quants
|
clasohm@0
|
491 |
ALWAYS deletes premise i *)
|
wenzelm@252
|
492 |
fun compose(tha,i,thb) =
|
wenzelm@4270
|
493 |
Seq.list_of (bicompose false (false,tha,0) i thb);
|
clasohm@0
|
494 |
|
wenzelm@6946
|
495 |
fun compose_single (tha,i,thb) =
|
wenzelm@6946
|
496 |
(case compose (tha,i,thb) of
|
wenzelm@6946
|
497 |
[th] => th
|
wenzelm@6946
|
498 |
| _ => raise THM ("compose: unique result expected", i, [tha,thb]));
|
wenzelm@6946
|
499 |
|
clasohm@0
|
500 |
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
|
clasohm@0
|
501 |
fun tha COMP thb =
|
clasohm@0
|
502 |
case compose(tha,1,thb) of
|
wenzelm@252
|
503 |
[th] => th
|
clasohm@0
|
504 |
| _ => raise THM("COMP", 1, [tha,thb]);
|
clasohm@0
|
505 |
|
wenzelm@13105
|
506 |
|
wenzelm@4016
|
507 |
(** theorem equality **)
|
clasohm@0
|
508 |
|
paulson@13650
|
509 |
(*True if the two theorems have the same signature.*)
|
wenzelm@13105
|
510 |
val eq_thm_sg = Sign.eq_sg o pairself Thm.sign_of_thm;
|
paulson@13650
|
511 |
|
paulson@13650
|
512 |
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
|
wenzelm@13105
|
513 |
val eq_thm_prop = op aconv o pairself Thm.prop_of;
|
clasohm@0
|
514 |
|
clasohm@0
|
515 |
(*Useful "distance" function for BEST_FIRST*)
|
wenzelm@12800
|
516 |
val size_of_thm = size_of_term o prop_of;
|
clasohm@0
|
517 |
|
wenzelm@9829
|
518 |
(*maintain lists of theorems --- preserving canonical order*)
|
wenzelm@13105
|
519 |
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
|
wenzelm@9862
|
520 |
fun add_rules rs rules = rs @ del_rules rs rules;
|
wenzelm@12373
|
521 |
val del_rule = del_rules o single;
|
wenzelm@12373
|
522 |
val add_rule = add_rules o single;
|
wenzelm@13105
|
523 |
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
|
wenzelm@9829
|
524 |
|
lcp@1194
|
525 |
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
|
lcp@1194
|
526 |
(some) type variable renaming **)
|
lcp@1194
|
527 |
|
lcp@1194
|
528 |
(* Can't use term_vars, because it sorts the resulting list of variable names.
|
lcp@1194
|
529 |
We instead need the unique list noramlised by the order of appearance
|
lcp@1194
|
530 |
in the term. *)
|
lcp@1194
|
531 |
fun term_vars' (t as Var(v,T)) = [t]
|
lcp@1194
|
532 |
| term_vars' (Abs(_,_,b)) = term_vars' b
|
lcp@1194
|
533 |
| term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
|
lcp@1194
|
534 |
| term_vars' _ = [];
|
lcp@1194
|
535 |
|
lcp@1194
|
536 |
fun forall_intr_vars th =
|
lcp@1194
|
537 |
let val {prop,sign,...} = rep_thm th;
|
lcp@1194
|
538 |
val vars = distinct (term_vars' prop);
|
lcp@1194
|
539 |
in forall_intr_list (map (cterm_of sign) vars) th end;
|
lcp@1194
|
540 |
|
wenzelm@13105
|
541 |
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
|
lcp@1194
|
542 |
|
lcp@1194
|
543 |
|
clasohm@0
|
544 |
(*** Meta-Rewriting Rules ***)
|
clasohm@0
|
545 |
|
paulson@4610
|
546 |
fun read_prop s = read_cterm proto_sign (s, propT);
|
paulson@4610
|
547 |
|
wenzelm@9455
|
548 |
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
|
wenzelm@9455
|
549 |
fun store_standard_thm name thm = store_thm name (standard thm);
|
wenzelm@12135
|
550 |
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
|
wenzelm@12135
|
551 |
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
|
wenzelm@4016
|
552 |
|
clasohm@0
|
553 |
val reflexive_thm =
|
wenzelm@14854
|
554 |
let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),[])))
|
wenzelm@12135
|
555 |
in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
|
clasohm@0
|
556 |
|
clasohm@0
|
557 |
val symmetric_thm =
|
wenzelm@14854
|
558 |
let val xy = read_prop "x == y"
|
wenzelm@12135
|
559 |
in store_standard_thm_open "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
|
clasohm@0
|
560 |
|
clasohm@0
|
561 |
val transitive_thm =
|
wenzelm@14854
|
562 |
let val xy = read_prop "x == y"
|
wenzelm@14854
|
563 |
val yz = read_prop "y == z"
|
clasohm@0
|
564 |
val xythm = Thm.assume xy and yzthm = Thm.assume yz
|
wenzelm@12135
|
565 |
in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
|
clasohm@0
|
566 |
|
nipkow@4679
|
567 |
fun symmetric_fun thm = thm RS symmetric_thm;
|
nipkow@4679
|
568 |
|
berghofe@11512
|
569 |
fun extensional eq =
|
berghofe@11512
|
570 |
let val eq' =
|
berghofe@11512
|
571 |
abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
|
berghofe@11512
|
572 |
in equal_elim (eta_conversion (cprop_of eq')) eq' end;
|
berghofe@11512
|
573 |
|
berghofe@10414
|
574 |
val imp_cong =
|
berghofe@10414
|
575 |
let
|
berghofe@10414
|
576 |
val ABC = read_prop "PROP A ==> PROP B == PROP C"
|
berghofe@10414
|
577 |
val AB = read_prop "PROP A ==> PROP B"
|
berghofe@10414
|
578 |
val AC = read_prop "PROP A ==> PROP C"
|
berghofe@10414
|
579 |
val A = read_prop "PROP A"
|
berghofe@10414
|
580 |
in
|
wenzelm@12135
|
581 |
store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
|
berghofe@10414
|
582 |
(implies_intr AB (implies_intr A
|
berghofe@10414
|
583 |
(equal_elim (implies_elim (assume ABC) (assume A))
|
berghofe@10414
|
584 |
(implies_elim (assume AB) (assume A)))))
|
berghofe@10414
|
585 |
(implies_intr AC (implies_intr A
|
berghofe@10414
|
586 |
(equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
|
berghofe@10414
|
587 |
(implies_elim (assume AC) (assume A)))))))
|
berghofe@10414
|
588 |
end;
|
berghofe@10414
|
589 |
|
berghofe@10414
|
590 |
val swap_prems_eq =
|
berghofe@10414
|
591 |
let
|
berghofe@10414
|
592 |
val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
|
berghofe@10414
|
593 |
val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
|
berghofe@10414
|
594 |
val A = read_prop "PROP A"
|
berghofe@10414
|
595 |
val B = read_prop "PROP B"
|
berghofe@10414
|
596 |
in
|
wenzelm@12135
|
597 |
store_standard_thm_open "swap_prems_eq" (equal_intr
|
berghofe@10414
|
598 |
(implies_intr ABC (implies_intr B (implies_intr A
|
berghofe@10414
|
599 |
(implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
|
berghofe@10414
|
600 |
(implies_intr BAC (implies_intr A (implies_intr B
|
berghofe@10414
|
601 |
(implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
|
berghofe@10414
|
602 |
end;
|
lcp@229
|
603 |
|
skalberg@15001
|
604 |
val imp_cong' = combination o combination (reflexive implies)
|
clasohm@0
|
605 |
|
berghofe@13325
|
606 |
fun abs_def thm =
|
berghofe@13325
|
607 |
let
|
berghofe@13325
|
608 |
val (_, cvs) = strip_comb (fst (dest_equals (cprop_of thm)));
|
berghofe@13325
|
609 |
val thm' = foldr (fn (ct, thm) => Thm.abstract_rule
|
berghofe@13325
|
610 |
(case term_of ct of Var ((a, _), _) => a | Free (a, _) => a | _ => "x")
|
berghofe@13325
|
611 |
ct thm) (cvs, thm)
|
berghofe@13325
|
612 |
in transitive
|
berghofe@13325
|
613 |
(symmetric (eta_conversion (fst (dest_equals (cprop_of thm'))))) thm'
|
berghofe@13325
|
614 |
end;
|
berghofe@13325
|
615 |
|
clasohm@0
|
616 |
|
skalberg@15001
|
617 |
local
|
skalberg@15001
|
618 |
val dest_eq = dest_equals o cprop_of
|
skalberg@15001
|
619 |
val rhs_of = snd o dest_eq
|
skalberg@15001
|
620 |
in
|
skalberg@15001
|
621 |
fun beta_eta_conversion t =
|
skalberg@15001
|
622 |
let val thm = beta_conversion true t
|
skalberg@15001
|
623 |
in transitive thm (eta_conversion (rhs_of thm)) end
|
skalberg@15001
|
624 |
end;
|
skalberg@15001
|
625 |
|
skalberg@15001
|
626 |
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
|
skalberg@15001
|
627 |
fun goals_conv pred cv =
|
skalberg@15001
|
628 |
let fun gconv i ct =
|
skalberg@15001
|
629 |
let val (A,B) = dest_implies ct
|
skalberg@15001
|
630 |
in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
|
skalberg@15001
|
631 |
handle TERM _ => reflexive ct
|
skalberg@15001
|
632 |
in gconv 1 end
|
skalberg@15001
|
633 |
|
skalberg@15001
|
634 |
(* Rewrite A in !!x1,...,xn. A *)
|
skalberg@15001
|
635 |
fun forall_conv cv ct =
|
skalberg@15001
|
636 |
let val p as (ct1, ct2) = Thm.dest_comb ct
|
skalberg@15001
|
637 |
in (case pairself term_of p of
|
skalberg@15001
|
638 |
(Const ("all", _), Abs (s, _, _)) =>
|
skalberg@15001
|
639 |
let val (v, ct') = Thm.dest_abs (Some "@") ct2;
|
skalberg@15001
|
640 |
in Thm.combination (Thm.reflexive ct1)
|
skalberg@15001
|
641 |
(Thm.abstract_rule s v (forall_conv cv ct'))
|
skalberg@15001
|
642 |
end
|
skalberg@15001
|
643 |
| _ => cv ct)
|
skalberg@15001
|
644 |
end handle TERM _ => cv ct;
|
skalberg@15001
|
645 |
|
skalberg@15001
|
646 |
(*Use a conversion to transform a theorem*)
|
skalberg@15001
|
647 |
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
|
skalberg@15001
|
648 |
|
clasohm@0
|
649 |
(*** Some useful meta-theorems ***)
|
clasohm@0
|
650 |
|
clasohm@0
|
651 |
(*The rule V/V, obtains assumption solving for eresolve_tac*)
|
wenzelm@12135
|
652 |
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
|
wenzelm@7380
|
653 |
val _ = store_thm "_" asm_rl;
|
clasohm@0
|
654 |
|
clasohm@0
|
655 |
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
|
wenzelm@4016
|
656 |
val cut_rl =
|
wenzelm@12135
|
657 |
store_standard_thm_open "cut_rl"
|
wenzelm@9455
|
658 |
(Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
|
clasohm@0
|
659 |
|
wenzelm@252
|
660 |
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
|
clasohm@0
|
661 |
[| PROP V; PROP V ==> PROP W |] ==> PROP W *)
|
clasohm@0
|
662 |
val revcut_rl =
|
paulson@4610
|
663 |
let val V = read_prop "PROP V"
|
paulson@4610
|
664 |
and VW = read_prop "PROP V ==> PROP W";
|
wenzelm@4016
|
665 |
in
|
wenzelm@12135
|
666 |
store_standard_thm_open "revcut_rl"
|
wenzelm@4016
|
667 |
(implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
|
clasohm@0
|
668 |
end;
|
clasohm@0
|
669 |
|
lcp@668
|
670 |
(*for deleting an unwanted assumption*)
|
lcp@668
|
671 |
val thin_rl =
|
paulson@4610
|
672 |
let val V = read_prop "PROP V"
|
paulson@4610
|
673 |
and W = read_prop "PROP W";
|
wenzelm@12135
|
674 |
in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
|
lcp@668
|
675 |
|
clasohm@0
|
676 |
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
|
clasohm@0
|
677 |
val triv_forall_equality =
|
paulson@4610
|
678 |
let val V = read_prop "PROP V"
|
paulson@4610
|
679 |
and QV = read_prop "!!x::'a. PROP V"
|
wenzelm@8086
|
680 |
and x = read_cterm proto_sign ("x", TypeInfer.logicT);
|
wenzelm@4016
|
681 |
in
|
wenzelm@12135
|
682 |
store_standard_thm_open "triv_forall_equality"
|
berghofe@11512
|
683 |
(equal_intr (implies_intr QV (forall_elim x (assume QV)))
|
berghofe@11512
|
684 |
(implies_intr V (forall_intr x (assume V))))
|
clasohm@0
|
685 |
end;
|
clasohm@0
|
686 |
|
nipkow@1756
|
687 |
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
|
nipkow@1756
|
688 |
(PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
|
nipkow@1756
|
689 |
`thm COMP swap_prems_rl' swaps the first two premises of `thm'
|
nipkow@1756
|
690 |
*)
|
nipkow@1756
|
691 |
val swap_prems_rl =
|
paulson@4610
|
692 |
let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
|
nipkow@1756
|
693 |
val major = assume cmajor;
|
paulson@4610
|
694 |
val cminor1 = read_prop "PROP PhiA";
|
nipkow@1756
|
695 |
val minor1 = assume cminor1;
|
paulson@4610
|
696 |
val cminor2 = read_prop "PROP PhiB";
|
nipkow@1756
|
697 |
val minor2 = assume cminor2;
|
wenzelm@12135
|
698 |
in store_standard_thm_open "swap_prems_rl"
|
nipkow@1756
|
699 |
(implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
|
nipkow@1756
|
700 |
(implies_elim (implies_elim major minor1) minor2))))
|
nipkow@1756
|
701 |
end;
|
nipkow@1756
|
702 |
|
nipkow@3653
|
703 |
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
|
nipkow@3653
|
704 |
==> PROP ?phi == PROP ?psi
|
wenzelm@8328
|
705 |
Introduction rule for == as a meta-theorem.
|
nipkow@3653
|
706 |
*)
|
nipkow@3653
|
707 |
val equal_intr_rule =
|
paulson@4610
|
708 |
let val PQ = read_prop "PROP phi ==> PROP psi"
|
paulson@4610
|
709 |
and QP = read_prop "PROP psi ==> PROP phi"
|
wenzelm@4016
|
710 |
in
|
wenzelm@12135
|
711 |
store_standard_thm_open "equal_intr_rule"
|
wenzelm@4016
|
712 |
(implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
|
nipkow@3653
|
713 |
end;
|
nipkow@3653
|
714 |
|
wenzelm@13368
|
715 |
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
|
wenzelm@13368
|
716 |
val equal_elim_rule1 =
|
wenzelm@13368
|
717 |
let val eq = read_prop "PROP phi == PROP psi"
|
wenzelm@13368
|
718 |
and P = read_prop "PROP phi"
|
wenzelm@13368
|
719 |
in store_standard_thm_open "equal_elim_rule1"
|
wenzelm@13368
|
720 |
(Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
|
wenzelm@13368
|
721 |
end;
|
wenzelm@4285
|
722 |
|
wenzelm@12297
|
723 |
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
|
wenzelm@12297
|
724 |
|
wenzelm@12297
|
725 |
val remdups_rl =
|
wenzelm@12297
|
726 |
let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
|
wenzelm@12297
|
727 |
in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
|
wenzelm@12297
|
728 |
|
wenzelm@12297
|
729 |
|
wenzelm@9554
|
730 |
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
|
wenzelm@12297
|
731 |
Rewrite rule for HHF normalization.*)
|
wenzelm@9554
|
732 |
|
wenzelm@9554
|
733 |
val norm_hhf_eq =
|
wenzelm@9554
|
734 |
let
|
wenzelm@9554
|
735 |
val cert = Thm.cterm_of proto_sign;
|
wenzelm@14854
|
736 |
val aT = TFree ("'a", []);
|
wenzelm@9554
|
737 |
val all = Term.all aT;
|
wenzelm@9554
|
738 |
val x = Free ("x", aT);
|
wenzelm@9554
|
739 |
val phi = Free ("phi", propT);
|
wenzelm@9554
|
740 |
val psi = Free ("psi", aT --> propT);
|
wenzelm@9554
|
741 |
|
wenzelm@9554
|
742 |
val cx = cert x;
|
wenzelm@9554
|
743 |
val cphi = cert phi;
|
wenzelm@9554
|
744 |
val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
|
wenzelm@9554
|
745 |
val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
|
wenzelm@9554
|
746 |
in
|
wenzelm@9554
|
747 |
Thm.equal_intr
|
wenzelm@9554
|
748 |
(Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
|
wenzelm@9554
|
749 |
|> Thm.forall_elim cx
|
wenzelm@9554
|
750 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
751 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
752 |
|> Thm.implies_intr lhs)
|
wenzelm@9554
|
753 |
(Thm.implies_elim
|
wenzelm@9554
|
754 |
(Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
|
wenzelm@9554
|
755 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
756 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
757 |
|> Thm.implies_intr rhs)
|
wenzelm@12135
|
758 |
|> store_standard_thm_open "norm_hhf_eq"
|
wenzelm@9554
|
759 |
end;
|
wenzelm@9554
|
760 |
|
wenzelm@12800
|
761 |
fun is_norm_hhf tm =
|
wenzelm@12800
|
762 |
let
|
wenzelm@12800
|
763 |
fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
|
wenzelm@12800
|
764 |
| is_norm (t $ u) = is_norm t andalso is_norm u
|
wenzelm@12800
|
765 |
| is_norm (Abs (_, _, t)) = is_norm t
|
wenzelm@12800
|
766 |
| is_norm _ = true;
|
wenzelm@12800
|
767 |
in is_norm (Pattern.beta_eta_contract tm) end;
|
wenzelm@12800
|
768 |
|
wenzelm@12800
|
769 |
fun norm_hhf sg t =
|
wenzelm@12800
|
770 |
if is_norm_hhf t then t
|
berghofe@13198
|
771 |
else Pattern.rewrite_term (Sign.tsig_of sg) [Logic.dest_equals (prop_of norm_hhf_eq)] [] t;
|
wenzelm@12800
|
772 |
|
wenzelm@9554
|
773 |
|
paulson@8129
|
774 |
(*** Instantiate theorem th, reading instantiations under signature sg ****)
|
paulson@8129
|
775 |
|
paulson@8129
|
776 |
(*Version that normalizes the result: Thm.instantiate no longer does that*)
|
paulson@8129
|
777 |
fun instantiate instpair th = Thm.instantiate instpair th COMP asm_rl;
|
paulson@8129
|
778 |
|
paulson@8129
|
779 |
fun read_instantiate_sg sg sinsts th =
|
paulson@8129
|
780 |
let val ts = types_sorts th;
|
wenzelm@12800
|
781 |
val used = add_term_tvarnames (prop_of th, []);
|
paulson@8129
|
782 |
in instantiate (read_insts sg ts ts used sinsts) th end;
|
paulson@8129
|
783 |
|
paulson@8129
|
784 |
(*Instantiate theorem th, reading instantiations under theory of th*)
|
paulson@8129
|
785 |
fun read_instantiate sinsts th =
|
wenzelm@14643
|
786 |
read_instantiate_sg (Thm.sign_of_thm th) sinsts th;
|
paulson@8129
|
787 |
|
paulson@8129
|
788 |
|
paulson@8129
|
789 |
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
|
paulson@8129
|
790 |
Instantiates distinct Vars by terms, inferring type instantiations. *)
|
paulson@8129
|
791 |
local
|
paulson@8129
|
792 |
fun add_types ((ct,cu), (sign,tye,maxidx)) =
|
paulson@8129
|
793 |
let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
|
paulson@8129
|
794 |
and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
|
paulson@8129
|
795 |
val maxi = Int.max(maxidx, Int.max(maxt, maxu));
|
paulson@8129
|
796 |
val sign' = Sign.merge(sign, Sign.merge(signt, signu))
|
wenzelm@14643
|
797 |
val (tye',maxi') = Type.unify (Sign.tsig_of sign') (tye, maxi) (T, U)
|
wenzelm@10403
|
798 |
handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
|
paulson@8129
|
799 |
in (sign', tye', maxi') end;
|
paulson@8129
|
800 |
in
|
paulson@8129
|
801 |
fun cterm_instantiate ctpairs0 th =
|
wenzelm@14643
|
802 |
let val (sign,tye,_) = foldr add_types (ctpairs0, (Thm.sign_of_thm th, Vartab.empty, 0))
|
paulson@14340
|
803 |
fun instT(ct,cu) =
|
paulson@14340
|
804 |
let val inst = cterm_of sign o subst_TVars_Vartab tye o term_of
|
paulson@14340
|
805 |
in (inst ct, inst cu) end
|
paulson@8129
|
806 |
fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
|
berghofe@8406
|
807 |
in instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th end
|
paulson@8129
|
808 |
handle TERM _ =>
|
paulson@8129
|
809 |
raise THM("cterm_instantiate: incompatible signatures",0,[th])
|
paulson@8129
|
810 |
| TYPE (msg, _, _) => raise THM(msg, 0, [th])
|
paulson@8129
|
811 |
end;
|
paulson@8129
|
812 |
|
paulson@8129
|
813 |
|
paulson@8129
|
814 |
(** Derived rules mainly for METAHYPS **)
|
paulson@8129
|
815 |
|
paulson@8129
|
816 |
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
|
paulson@8129
|
817 |
fun equal_abs_elim ca eqth =
|
paulson@8129
|
818 |
let val {sign=signa, t=a, ...} = rep_cterm ca
|
paulson@8129
|
819 |
and combth = combination eqth (reflexive ca)
|
paulson@8129
|
820 |
val {sign,prop,...} = rep_thm eqth
|
paulson@8129
|
821 |
val (abst,absu) = Logic.dest_equals prop
|
paulson@8129
|
822 |
val cterm = cterm_of (Sign.merge (sign,signa))
|
berghofe@10414
|
823 |
in transitive (symmetric (beta_conversion false (cterm (abst$a))))
|
berghofe@10414
|
824 |
(transitive combth (beta_conversion false (cterm (absu$a))))
|
paulson@8129
|
825 |
end
|
paulson@8129
|
826 |
handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
|
paulson@8129
|
827 |
|
paulson@8129
|
828 |
(*Calling equal_abs_elim with multiple terms*)
|
paulson@8129
|
829 |
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
|
paulson@8129
|
830 |
|
paulson@8129
|
831 |
|
wenzelm@10667
|
832 |
(*** Goal (PROP A) <==> PROP A ***)
|
wenzelm@4789
|
833 |
|
wenzelm@4789
|
834 |
local
|
wenzelm@10667
|
835 |
val cert = Thm.cterm_of proto_sign;
|
wenzelm@10667
|
836 |
val A = Free ("A", propT);
|
wenzelm@10667
|
837 |
val G = Logic.mk_goal A;
|
wenzelm@4789
|
838 |
val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
|
wenzelm@4789
|
839 |
in
|
wenzelm@11741
|
840 |
val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
|
wenzelm@10667
|
841 |
(Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
|
wenzelm@11741
|
842 |
val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
|
wenzelm@10667
|
843 |
(Thm.equal_elim G_def (Thm.assume (cert G)))));
|
wenzelm@4789
|
844 |
end;
|
wenzelm@4789
|
845 |
|
wenzelm@9460
|
846 |
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
|
wenzelm@6995
|
847 |
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
|
wenzelm@6995
|
848 |
|
wenzelm@11815
|
849 |
fun implies_intr_goals cprops thm =
|
wenzelm@11815
|
850 |
implies_elim_list (implies_intr_list cprops thm) (map assume_goal cprops)
|
wenzelm@11815
|
851 |
|> implies_intr_list (map mk_cgoal cprops);
|
wenzelm@11815
|
852 |
|
wenzelm@4789
|
853 |
|
wenzelm@4285
|
854 |
|
wenzelm@5688
|
855 |
(** variations on instantiate **)
|
wenzelm@4285
|
856 |
|
paulson@8550
|
857 |
(*shorthand for instantiating just one variable in the current theory*)
|
paulson@8550
|
858 |
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
|
paulson@8550
|
859 |
|
paulson@8550
|
860 |
|
wenzelm@12495
|
861 |
(* collect vars in left-to-right order *)
|
wenzelm@4285
|
862 |
|
wenzelm@12495
|
863 |
fun tvars_of_terms ts = rev (foldl Term.add_tvars ([], ts));
|
wenzelm@12495
|
864 |
fun vars_of_terms ts = rev (foldl Term.add_vars ([], ts));
|
wenzelm@5903
|
865 |
|
wenzelm@12800
|
866 |
fun tvars_of thm = tvars_of_terms [prop_of thm];
|
wenzelm@12800
|
867 |
fun vars_of thm = vars_of_terms [prop_of thm];
|
wenzelm@4285
|
868 |
|
wenzelm@4285
|
869 |
|
wenzelm@4285
|
870 |
(* instantiate by left-to-right occurrence of variables *)
|
wenzelm@4285
|
871 |
|
wenzelm@4285
|
872 |
fun instantiate' cTs cts thm =
|
wenzelm@4285
|
873 |
let
|
wenzelm@4285
|
874 |
fun err msg =
|
wenzelm@4285
|
875 |
raise TYPE ("instantiate': " ^ msg,
|
wenzelm@4285
|
876 |
mapfilter (apsome Thm.typ_of) cTs,
|
wenzelm@4285
|
877 |
mapfilter (apsome Thm.term_of) cts);
|
wenzelm@4285
|
878 |
|
wenzelm@4285
|
879 |
fun inst_of (v, ct) =
|
wenzelm@4285
|
880 |
(Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
|
wenzelm@4285
|
881 |
handle TYPE (msg, _, _) => err msg;
|
wenzelm@4285
|
882 |
|
wenzelm@4285
|
883 |
fun zip_vars _ [] = []
|
wenzelm@4285
|
884 |
| zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
|
wenzelm@4285
|
885 |
| zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
|
wenzelm@4285
|
886 |
| zip_vars [] _ = err "more instantiations than variables in thm";
|
wenzelm@4285
|
887 |
|
wenzelm@4285
|
888 |
(*instantiate types first!*)
|
wenzelm@4285
|
889 |
val thm' =
|
wenzelm@4285
|
890 |
if forall is_none cTs then thm
|
wenzelm@4285
|
891 |
else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
|
wenzelm@4285
|
892 |
in
|
wenzelm@4285
|
893 |
if forall is_none cts then thm'
|
wenzelm@4285
|
894 |
else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
|
wenzelm@4285
|
895 |
end;
|
wenzelm@4285
|
896 |
|
wenzelm@4285
|
897 |
|
berghofe@14081
|
898 |
|
berghofe@14081
|
899 |
(** renaming of bound variables **)
|
berghofe@14081
|
900 |
|
berghofe@14081
|
901 |
(* replace bound variables x_i in thm by y_i *)
|
berghofe@14081
|
902 |
(* where vs = [(x_1, y_1), ..., (x_n, y_n)] *)
|
berghofe@14081
|
903 |
|
berghofe@14081
|
904 |
fun rename_bvars [] thm = thm
|
berghofe@14081
|
905 |
| rename_bvars vs thm =
|
berghofe@14081
|
906 |
let
|
berghofe@14081
|
907 |
val {sign, prop, ...} = rep_thm thm;
|
berghofe@14081
|
908 |
fun ren (Abs (x, T, t)) = Abs (if_none (assoc (vs, x)) x, T, ren t)
|
berghofe@14081
|
909 |
| ren (t $ u) = ren t $ ren u
|
berghofe@14081
|
910 |
| ren t = t;
|
berghofe@14081
|
911 |
in equal_elim (reflexive (cterm_of sign (ren prop))) thm end;
|
berghofe@14081
|
912 |
|
berghofe@14081
|
913 |
|
berghofe@14081
|
914 |
(* renaming in left-to-right order *)
|
berghofe@14081
|
915 |
|
berghofe@14081
|
916 |
fun rename_bvars' xs thm =
|
berghofe@14081
|
917 |
let
|
berghofe@14081
|
918 |
val {sign, prop, ...} = rep_thm thm;
|
berghofe@14081
|
919 |
fun rename [] t = ([], t)
|
berghofe@14081
|
920 |
| rename (x' :: xs) (Abs (x, T, t)) =
|
berghofe@14081
|
921 |
let val (xs', t') = rename xs t
|
berghofe@14081
|
922 |
in (xs', Abs (if_none x' x, T, t')) end
|
berghofe@14081
|
923 |
| rename xs (t $ u) =
|
berghofe@14081
|
924 |
let
|
berghofe@14081
|
925 |
val (xs', t') = rename xs t;
|
berghofe@14081
|
926 |
val (xs'', u') = rename xs' u
|
berghofe@14081
|
927 |
in (xs'', t' $ u') end
|
berghofe@14081
|
928 |
| rename xs t = (xs, t);
|
berghofe@14081
|
929 |
in case rename xs prop of
|
berghofe@14081
|
930 |
([], prop') => equal_elim (reflexive (cterm_of sign prop')) thm
|
berghofe@14081
|
931 |
| _ => error "More names than abstractions in theorem"
|
berghofe@14081
|
932 |
end;
|
berghofe@14081
|
933 |
|
berghofe@14081
|
934 |
|
berghofe@14081
|
935 |
|
wenzelm@5688
|
936 |
(* unvarify(T) *)
|
wenzelm@5688
|
937 |
|
wenzelm@5688
|
938 |
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
|
wenzelm@5688
|
939 |
|
wenzelm@5688
|
940 |
fun unvarifyT thm =
|
wenzelm@5688
|
941 |
let
|
wenzelm@5688
|
942 |
val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
|
wenzelm@5688
|
943 |
val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
|
wenzelm@5688
|
944 |
in instantiate' tfrees [] thm end;
|
wenzelm@5688
|
945 |
|
wenzelm@5688
|
946 |
fun unvarify raw_thm =
|
wenzelm@5688
|
947 |
let
|
wenzelm@5688
|
948 |
val thm = unvarifyT raw_thm;
|
wenzelm@5688
|
949 |
val ct = Thm.cterm_of (Thm.sign_of_thm thm);
|
wenzelm@5688
|
950 |
val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
|
wenzelm@5688
|
951 |
in instantiate' [] frees thm end;
|
wenzelm@5688
|
952 |
|
wenzelm@5688
|
953 |
|
wenzelm@8605
|
954 |
(* tvars_intr_list *)
|
wenzelm@8605
|
955 |
|
wenzelm@8605
|
956 |
fun tfrees_of thm =
|
wenzelm@8605
|
957 |
let val {hyps, prop, ...} = Thm.rep_thm thm
|
wenzelm@8605
|
958 |
in foldr Term.add_term_tfree_names (prop :: hyps, []) end;
|
wenzelm@8605
|
959 |
|
wenzelm@8605
|
960 |
fun tvars_intr_list tfrees thm =
|
wenzelm@8605
|
961 |
Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
|
wenzelm@8605
|
962 |
|
wenzelm@8605
|
963 |
|
wenzelm@6435
|
964 |
(* increment var indexes *)
|
wenzelm@6435
|
965 |
|
wenzelm@6435
|
966 |
fun incr_indexes_wrt is cTs cts thms =
|
wenzelm@6435
|
967 |
let
|
wenzelm@6435
|
968 |
val maxidx =
|
wenzelm@6435
|
969 |
foldl Int.max (~1, is @
|
wenzelm@6435
|
970 |
map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
|
wenzelm@6435
|
971 |
map (#maxidx o Thm.rep_cterm) cts @
|
wenzelm@6435
|
972 |
map (#maxidx o Thm.rep_thm) thms);
|
berghofe@10414
|
973 |
in Thm.incr_indexes (maxidx + 1) end;
|
wenzelm@6435
|
974 |
|
wenzelm@6435
|
975 |
|
wenzelm@8328
|
976 |
(* freeze_all *)
|
wenzelm@8328
|
977 |
|
wenzelm@8328
|
978 |
(*freeze all (T)Vars; assumes thm in standard form*)
|
wenzelm@8328
|
979 |
|
wenzelm@8328
|
980 |
fun freeze_all_TVars thm =
|
wenzelm@8328
|
981 |
(case tvars_of thm of
|
wenzelm@8328
|
982 |
[] => thm
|
wenzelm@8328
|
983 |
| tvars =>
|
wenzelm@8328
|
984 |
let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
|
wenzelm@8328
|
985 |
in instantiate' (map (fn ((x, _), S) => Some (cert (TFree (x, S)))) tvars) [] thm end);
|
wenzelm@8328
|
986 |
|
wenzelm@8328
|
987 |
fun freeze_all_Vars thm =
|
wenzelm@8328
|
988 |
(case vars_of thm of
|
wenzelm@8328
|
989 |
[] => thm
|
wenzelm@8328
|
990 |
| vars =>
|
wenzelm@8328
|
991 |
let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
|
wenzelm@8328
|
992 |
in instantiate' [] (map (fn ((x, _), T) => Some (cert (Free (x, T)))) vars) thm end);
|
wenzelm@8328
|
993 |
|
wenzelm@8328
|
994 |
val freeze_all = freeze_all_Vars o freeze_all_TVars;
|
wenzelm@8328
|
995 |
|
wenzelm@8328
|
996 |
|
wenzelm@5688
|
997 |
(* mk_triv_goal *)
|
wenzelm@5688
|
998 |
|
wenzelm@5688
|
999 |
(*make an initial proof state, "PROP A ==> (PROP A)" *)
|
paulson@5311
|
1000 |
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
|
paulson@5311
|
1001 |
|
wenzelm@11975
|
1002 |
|
wenzelm@11975
|
1003 |
|
wenzelm@11975
|
1004 |
(** meta-level conjunction **)
|
wenzelm@11975
|
1005 |
|
wenzelm@11975
|
1006 |
local
|
wenzelm@11975
|
1007 |
val A = read_prop "PROP A";
|
wenzelm@11975
|
1008 |
val B = read_prop "PROP B";
|
wenzelm@11975
|
1009 |
val C = read_prop "PROP C";
|
wenzelm@11975
|
1010 |
val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
|
wenzelm@11975
|
1011 |
|
wenzelm@11975
|
1012 |
val proj1 =
|
wenzelm@11975
|
1013 |
forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
|
wenzelm@11975
|
1014 |
|> forall_elim_vars 0;
|
wenzelm@11975
|
1015 |
|
wenzelm@11975
|
1016 |
val proj2 =
|
wenzelm@11975
|
1017 |
forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
|
wenzelm@11975
|
1018 |
|> forall_elim_vars 0;
|
wenzelm@11975
|
1019 |
|
wenzelm@11975
|
1020 |
val conj_intr_rule =
|
wenzelm@11975
|
1021 |
forall_intr_list [A, B] (implies_intr_list [A, B]
|
wenzelm@11975
|
1022 |
(Thm.forall_intr C (Thm.implies_intr ABC
|
wenzelm@11975
|
1023 |
(implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
|
wenzelm@11975
|
1024 |
|> forall_elim_vars 0;
|
wenzelm@11975
|
1025 |
|
wenzelm@11975
|
1026 |
val incr = incr_indexes_wrt [] [] [];
|
wenzelm@11975
|
1027 |
in
|
wenzelm@11975
|
1028 |
|
wenzelm@11975
|
1029 |
fun conj_intr tha thb = thb COMP (tha COMP incr [tha, thb] conj_intr_rule);
|
wenzelm@12756
|
1030 |
|
wenzelm@12756
|
1031 |
fun conj_intr_list [] = asm_rl
|
wenzelm@12756
|
1032 |
| conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
|
wenzelm@11975
|
1033 |
|
wenzelm@11975
|
1034 |
fun conj_elim th =
|
wenzelm@11975
|
1035 |
let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
|
wenzelm@11975
|
1036 |
in (incr [th'] proj1 COMP th', incr [th'] proj2 COMP th') end;
|
wenzelm@11975
|
1037 |
|
wenzelm@11975
|
1038 |
fun conj_elim_list th =
|
wenzelm@11975
|
1039 |
let val (th1, th2) = conj_elim th
|
wenzelm@11975
|
1040 |
in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
|
wenzelm@11975
|
1041 |
|
wenzelm@12756
|
1042 |
fun conj_elim_precise 0 _ = []
|
wenzelm@12756
|
1043 |
| conj_elim_precise 1 th = [th]
|
wenzelm@12135
|
1044 |
| conj_elim_precise n th =
|
wenzelm@12135
|
1045 |
let val (th1, th2) = conj_elim th
|
wenzelm@12135
|
1046 |
in th1 :: conj_elim_precise (n - 1) th2 end;
|
wenzelm@12135
|
1047 |
|
wenzelm@12135
|
1048 |
val conj_intr_thm = store_standard_thm_open "conjunctionI"
|
wenzelm@12135
|
1049 |
(implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
|
wenzelm@12135
|
1050 |
|
clasohm@0
|
1051 |
end;
|
wenzelm@252
|
1052 |
|
wenzelm@11975
|
1053 |
end;
|
wenzelm@5903
|
1054 |
|
wenzelm@5903
|
1055 |
structure BasicDrule: BASIC_DRULE = Drule;
|
wenzelm@5903
|
1056 |
open BasicDrule;
|