src/Pure/drule.ML
author paulson
Thu Oct 05 10:40:12 2006 +0200 (2006-10-05 ago)
changeset 20861 fd0e33caeb3b
parent 20669 52ba40872033
child 20881 54481abec257
permissions -rw-r--r--
a few new functions on thms and cterms
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val dest_implies: cterm -> cterm * cterm
wenzelm@18179
    16
  val dest_equals: cterm -> cterm * cterm
wenzelm@20669
    17
  val dest_equals_rhs: cterm -> cterm
wenzelm@18179
    18
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    19
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    20
  val cprems_of: thm -> cterm list
wenzelm@18179
    21
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    22
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    23
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    24
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    25
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    26
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    27
  val strip_shyps_warning: thm -> thm
wenzelm@18179
    28
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    29
  val forall_intr_frees: thm -> thm
wenzelm@18179
    30
  val forall_intr_vars: thm -> thm
wenzelm@18179
    31
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    32
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    33
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    34
  val gen_all: thm -> thm
wenzelm@18179
    35
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    36
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    37
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    38
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    39
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    40
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@18179
    41
  val zero_var_indexes: thm -> thm
wenzelm@18179
    42
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    43
  val standard: thm -> thm
wenzelm@18179
    44
  val standard': thm -> thm
wenzelm@18179
    45
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    46
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    47
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    48
  val RS: thm * thm -> thm
wenzelm@18179
    49
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    50
  val RL: thm list * thm list -> thm list
wenzelm@18179
    51
  val MRS: thm list * thm -> thm
wenzelm@18179
    52
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    53
  val OF: thm * thm list -> thm
wenzelm@18179
    54
  val compose: thm * int * thm -> thm list
wenzelm@18179
    55
  val COMP: thm * thm -> thm
wenzelm@16425
    56
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    57
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    58
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    59
  val eq_thm_thy: thm * thm -> bool
wenzelm@18179
    60
  val eq_thm_prop: thm * thm -> bool
wenzelm@19878
    61
  val equiv_thm: thm * thm -> bool
wenzelm@18179
    62
  val size_of_thm: thm -> int
wenzelm@18179
    63
  val reflexive_thm: thm
wenzelm@18179
    64
  val symmetric_thm: thm
wenzelm@18179
    65
  val transitive_thm: thm
wenzelm@18179
    66
  val symmetric_fun: thm -> thm
wenzelm@18179
    67
  val extensional: thm -> thm
wenzelm@18820
    68
  val equals_cong: thm
wenzelm@18179
    69
  val imp_cong: thm
wenzelm@18179
    70
  val swap_prems_eq: thm
wenzelm@18179
    71
  val asm_rl: thm
wenzelm@18179
    72
  val cut_rl: thm
wenzelm@18179
    73
  val revcut_rl: thm
wenzelm@18179
    74
  val thin_rl: thm
wenzelm@4285
    75
  val triv_forall_equality: thm
wenzelm@19051
    76
  val distinct_prems_rl: thm
wenzelm@18179
    77
  val swap_prems_rl: thm
wenzelm@18179
    78
  val equal_intr_rule: thm
wenzelm@18179
    79
  val equal_elim_rule1: thm
wenzelm@19421
    80
  val equal_elim_rule2: thm
wenzelm@18179
    81
  val inst: string -> string -> thm -> thm
wenzelm@18179
    82
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    83
end;
wenzelm@5903
    84
wenzelm@5903
    85
signature DRULE =
wenzelm@5903
    86
sig
wenzelm@5903
    87
  include BASIC_DRULE
wenzelm@19999
    88
  val generalize: string list * string list -> thm -> thm
paulson@15949
    89
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    90
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    91
  val strip_type: ctyp -> ctyp list * ctyp
paulson@20861
    92
  val clhs_of: thm -> cterm
paulson@20861
    93
  val crhs_of: thm -> cterm
paulson@15949
    94
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15875
    95
  val plain_prop_of: thm -> term
wenzelm@20298
    96
  val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
wenzelm@15669
    97
  val add_used: thm -> string list -> string list
berghofe@17713
    98
  val flexflex_unique: thm -> thm
wenzelm@11975
    99
  val close_derivation: thm -> thm
wenzelm@12005
   100
  val local_standard: thm -> thm
wenzelm@19421
   101
  val store_thm: bstring -> thm -> thm
wenzelm@19421
   102
  val store_standard_thm: bstring -> thm -> thm
wenzelm@19421
   103
  val store_thm_open: bstring -> thm -> thm
wenzelm@19421
   104
  val store_standard_thm_open: bstring -> thm -> thm
wenzelm@11975
   105
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   106
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   107
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   108
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
   109
  val imp_cong_rule: thm -> thm -> thm
skalberg@15001
   110
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   111
  val eta_long_conversion: cterm -> thm
paulson@20861
   112
  val eta_contraction_rule: thm -> thm
wenzelm@18468
   113
  val forall_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   114
  val concl_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   115
  val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18179
   116
  val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
wenzelm@18179
   117
  val fconv_rule: (cterm -> thm) -> thm -> thm
wenzelm@11975
   118
  val norm_hhf_eq: thm
wenzelm@12800
   119
  val is_norm_hhf: term -> bool
wenzelm@16425
   120
  val norm_hhf: theory -> term -> term
wenzelm@20298
   121
  val norm_hhf_cterm: cterm -> cterm
wenzelm@19878
   122
  val unvarify: thm -> thm
wenzelm@18025
   123
  val protect: cterm -> cterm
wenzelm@18025
   124
  val protectI: thm
wenzelm@18025
   125
  val protectD: thm
wenzelm@18179
   126
  val protect_cong: thm
wenzelm@18025
   127
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   128
  val termI: thm
wenzelm@19775
   129
  val mk_term: cterm -> thm
wenzelm@19775
   130
  val dest_term: thm -> cterm
wenzelm@19523
   131
  val sort_triv: theory -> typ * sort -> thm list
wenzelm@19504
   132
  val unconstrainTs: thm -> thm
berghofe@14081
   133
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   134
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   135
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   136
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   137
  val remdups_rl: thm
wenzelm@18225
   138
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   139
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   140
  val abs_def: thm -> thm
wenzelm@16425
   141
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   142
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   143
end;
clasohm@0
   144
wenzelm@5903
   145
structure Drule: DRULE =
clasohm@0
   146
struct
clasohm@0
   147
wenzelm@3991
   148
wenzelm@16682
   149
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   150
paulson@2004
   151
fun dest_implies ct =
wenzelm@16682
   152
  (case Thm.term_of ct of
wenzelm@20669
   153
    Const ("==>", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   154
  | _ => raise TERM ("dest_implies", [Thm.term_of ct]));
clasohm@1703
   155
berghofe@10414
   156
fun dest_equals ct =
wenzelm@16682
   157
  (case Thm.term_of ct of
wenzelm@20669
   158
    Const ("==", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   159
  | _ => raise TERM ("dest_equals", [Thm.term_of ct]));
wenzelm@20669
   160
wenzelm@20669
   161
fun dest_equals_rhs ct =
wenzelm@20669
   162
  (case Thm.term_of ct of
wenzelm@20669
   163
    Const ("==", _) $ _ $ _ => Thm.dest_arg ct
wenzelm@20669
   164
  | _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
berghofe@10414
   165
lcp@708
   166
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   167
fun strip_imp_prems ct =
wenzelm@20579
   168
  let val (cA, cB) = dest_implies ct
wenzelm@20579
   169
  in cA :: strip_imp_prems cB end
wenzelm@20579
   170
  handle TERM _ => [];
lcp@708
   171
paulson@2004
   172
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   173
fun strip_imp_concl ct =
wenzelm@20579
   174
  (case Thm.term_of ct of
wenzelm@20579
   175
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   176
  | _ => ct);
paulson@2004
   177
lcp@708
   178
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   179
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   180
berghofe@15797
   181
fun cterm_fun f ct =
wenzelm@16425
   182
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   183
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   184
berghofe@15797
   185
fun ctyp_fun f cT =
wenzelm@16425
   186
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   187
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   188
wenzelm@19421
   189
val cert = cterm_of ProtoPure.thy;
paulson@9547
   190
wenzelm@19421
   191
val implies = cert Term.implies;
wenzelm@19183
   192
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   193
paulson@9547
   194
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   195
fun list_implies([], B) = B
paulson@9547
   196
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   197
paulson@15949
   198
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   199
fun list_comb (f, []) = f
paulson@15949
   200
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   201
berghofe@12908
   202
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   203
fun strip_comb ct =
berghofe@12908
   204
  let
berghofe@12908
   205
    fun stripc (p as (ct, cts)) =
berghofe@12908
   206
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   207
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   208
  in stripc (ct, []) end;
berghofe@12908
   209
berghofe@15262
   210
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   211
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   212
    Type ("fun", _) =>
berghofe@15262
   213
      let
berghofe@15262
   214
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   215
        val (cTs, cT') = strip_type cT2
berghofe@15262
   216
      in (cT1 :: cTs, cT') end
berghofe@15262
   217
  | _ => ([], cT));
berghofe@15262
   218
paulson@20861
   219
fun clhs_of th =
paulson@20861
   220
  case strip_comb (cprop_of th) of
paulson@20861
   221
      (f, [x, _]) =>
paulson@20861
   222
          (case term_of f of Const ("==", _) => x | _ => raise THM ("clhs_of", 0, [th]))
paulson@20861
   223
    | _ => raise THM ("clhs_of", 1, [th]);
paulson@20861
   224
paulson@20861
   225
fun crhs_of th =
paulson@20861
   226
  case strip_comb (cprop_of th) of
paulson@20861
   227
      (f, [_, x]) =>
paulson@20861
   228
          (case term_of f of Const ("==", _) => x | _ => raise THM ("crhs_of", 0, [th]))
paulson@20861
   229
    | _ => raise THM ("crhs_of", 1, [th]);
paulson@20861
   230
paulson@15949
   231
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   232
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   233
fun beta_conv x y =
wenzelm@20579
   234
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   235
wenzelm@15875
   236
fun plain_prop_of raw_thm =
wenzelm@15875
   237
  let
wenzelm@15875
   238
    val thm = Thm.strip_shyps raw_thm;
wenzelm@15875
   239
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
wenzelm@15875
   240
    val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15875
   241
  in
wenzelm@15875
   242
    if not (null hyps) then
wenzelm@15875
   243
      err "theorem may not contain hypotheses"
wenzelm@15875
   244
    else if not (null (Thm.extra_shyps thm)) then
wenzelm@15875
   245
      err "theorem may not contain sort hypotheses"
wenzelm@15875
   246
    else if not (null tpairs) then
wenzelm@15875
   247
      err "theorem may not contain flex-flex pairs"
wenzelm@15875
   248
    else prop
wenzelm@15875
   249
  end;
wenzelm@15875
   250
wenzelm@20298
   251
fun fold_terms f th =
wenzelm@20298
   252
  let val {tpairs, prop, hyps, ...} = Thm.rep_thm th
wenzelm@20298
   253
  in fold (fn (t, u) => f t #> f u) tpairs #> f prop #> fold f hyps end;
wenzelm@20298
   254
wenzelm@15875
   255
lcp@708
   256
lcp@229
   257
(** reading of instantiations **)
lcp@229
   258
lcp@229
   259
fun absent ixn =
lcp@229
   260
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   261
lcp@229
   262
fun inst_failure ixn =
lcp@229
   263
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   264
wenzelm@16425
   265
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   266
let
berghofe@15442
   267
    fun is_tv ((a, _), _) =
berghofe@15442
   268
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   269
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   270
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   271
    fun readT (ixn, st) =
berghofe@15797
   272
        let val S = sort_of ixn;
wenzelm@16425
   273
            val T = Sign.read_typ (thy,sorts) st;
wenzelm@16425
   274
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   275
           else inst_failure ixn
nipkow@4281
   276
        end
nipkow@4281
   277
    val tye = map readT tvs;
nipkow@4281
   278
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   279
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   280
                        | NONE => absent ixn);
nipkow@4281
   281
    val ixnsTs = map mkty vs;
nipkow@4281
   282
    val ixns = map fst ixnsTs
nipkow@4281
   283
    and sTs  = map snd ixnsTs
wenzelm@16425
   284
    val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   285
    fun mkcVar(ixn,T) =
nipkow@4281
   286
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   287
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   288
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   289
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   290
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   291
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   292
end;
lcp@229
   293
lcp@229
   294
wenzelm@252
   295
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   296
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   297
     type variables) when reading another term.
clasohm@0
   298
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   299
***)
clasohm@0
   300
clasohm@0
   301
fun types_sorts thm =
wenzelm@20329
   302
  let
wenzelm@20329
   303
    val vars = fold_terms Term.add_vars thm [];
wenzelm@20329
   304
    val frees = fold_terms Term.add_frees thm [];
wenzelm@20329
   305
    val tvars = fold_terms Term.add_tvars thm [];
wenzelm@20329
   306
    val tfrees = fold_terms Term.add_tfrees thm [];
wenzelm@20329
   307
    fun types (a, i) =
wenzelm@20329
   308
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   309
    fun sorts (a, i) =
wenzelm@20329
   310
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   311
  in (types, sorts) end;
clasohm@0
   312
wenzelm@20329
   313
val add_used =
wenzelm@20329
   314
  (fold_terms o fold_types o fold_atyps)
wenzelm@20329
   315
    (fn TFree (a, _) => insert (op =) a
wenzelm@20329
   316
      | TVar ((a, _), _) => insert (op =) a
wenzelm@20329
   317
      | _ => I);
wenzelm@15669
   318
wenzelm@7636
   319
wenzelm@9455
   320
clasohm@0
   321
(** Standardization of rules **)
clasohm@0
   322
wenzelm@19523
   323
(* type classes and sorts *)
wenzelm@19523
   324
wenzelm@19523
   325
fun sort_triv thy (T, S) =
wenzelm@19523
   326
  let
wenzelm@19523
   327
    val certT = Thm.ctyp_of thy;
wenzelm@19523
   328
    val cT = certT T;
wenzelm@19523
   329
    fun class_triv c =
wenzelm@19523
   330
      Thm.class_triv thy c
wenzelm@19523
   331
      |> Thm.instantiate ([(certT (TVar (("'a", 0), [c])), cT)], []);
wenzelm@19523
   332
  in map class_triv S end;
wenzelm@19523
   333
wenzelm@19504
   334
fun unconstrainTs th =
wenzelm@20298
   335
  fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
wenzelm@20298
   336
    (fold_terms Term.add_tvars th []) th;
wenzelm@19504
   337
wenzelm@7636
   338
fun strip_shyps_warning thm =
wenzelm@7636
   339
  let
wenzelm@16425
   340
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.theory_of_thm thm);
wenzelm@7636
   341
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   342
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   343
  in
wenzelm@7636
   344
    if null xshyps then ()
wenzelm@7636
   345
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   346
    thm'
wenzelm@7636
   347
  end;
wenzelm@7636
   348
wenzelm@19730
   349
(*Generalization over a list of variables*)
wenzelm@19730
   350
val forall_intr_list = fold_rev forall_intr;
clasohm@0
   351
clasohm@0
   352
(*Generalization over all suitable Free variables*)
clasohm@0
   353
fun forall_intr_frees th =
wenzelm@19730
   354
    let
wenzelm@19730
   355
      val {prop, hyps, tpairs, thy,...} = rep_thm th;
wenzelm@19730
   356
      val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
wenzelm@19730
   357
      val frees = Term.fold_aterms (fn Free v =>
wenzelm@19730
   358
        if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
wenzelm@19730
   359
    in fold (forall_intr o cterm_of thy o Free) frees th end;
clasohm@0
   360
wenzelm@18535
   361
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   362
fun forall_intr_vars th =
wenzelm@20298
   363
  fold forall_intr
wenzelm@20298
   364
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (fold_terms Term.add_vars th [])) th;
wenzelm@18535
   365
wenzelm@7898
   366
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   367
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   368
wenzelm@18025
   369
fun outer_params t =
wenzelm@20077
   370
  let val vs = Term.strip_all_vars t
wenzelm@20077
   371
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   372
wenzelm@18025
   373
(*generalize outermost parameters*)
wenzelm@18025
   374
fun gen_all th =
wenzelm@12719
   375
  let
wenzelm@18025
   376
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   377
    val cert = Thm.cterm_of thy;
wenzelm@18025
   378
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   379
  in fold elim (outer_params prop) th end;
wenzelm@18025
   380
wenzelm@18025
   381
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   382
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   383
fun lift_all goal th =
wenzelm@18025
   384
  let
wenzelm@18025
   385
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   386
    val cert = Thm.cterm_of thy;
wenzelm@19421
   387
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   388
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   389
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   390
    val Ts = map Term.fastype_of ps;
wenzelm@20298
   391
    val inst = fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   392
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   393
  in
wenzelm@18025
   394
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   395
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   396
  end;
wenzelm@18025
   397
wenzelm@19999
   398
(*direct generalization*)
wenzelm@19999
   399
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   400
wenzelm@16949
   401
(*specialization over a list of cterms*)
wenzelm@16949
   402
val forall_elim_list = fold forall_elim;
clasohm@0
   403
wenzelm@16949
   404
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   405
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   406
wenzelm@16949
   407
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   408
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   409
clasohm@0
   410
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   411
fun zero_var_indexes th =
wenzelm@16949
   412
  let
wenzelm@16949
   413
    val thy = Thm.theory_of_thm th;
wenzelm@16949
   414
    val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@20509
   415
    val (instT, inst) = TermSubst.zero_var_indexes_inst (Thm.full_prop_of th);
wenzelm@16949
   416
    val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@16949
   417
    val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@20260
   418
  in Thm.adjust_maxidx_thm ~1 (Thm.instantiate (cinstT, cinst) th) end;
clasohm@0
   419
clasohm@0
   420
paulson@14394
   421
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   422
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   423
wenzelm@16595
   424
(*Discharge all hypotheses.*)
wenzelm@16595
   425
fun implies_intr_hyps th =
wenzelm@16595
   426
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   427
paulson@14394
   428
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   429
  This step can lose information.*)
paulson@14387
   430
fun flexflex_unique th =
berghofe@17713
   431
  if null (tpairs_of th) then th else
wenzelm@19861
   432
    case Seq.chop 2 (flexflex_rule th) of
paulson@14387
   433
      ([th],_) => th
paulson@14387
   434
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   435
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   436
wenzelm@10515
   437
fun close_derivation thm =
wenzelm@10515
   438
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   439
  else thm;
wenzelm@10515
   440
wenzelm@16949
   441
val standard' =
wenzelm@16949
   442
  implies_intr_hyps
wenzelm@16949
   443
  #> forall_intr_frees
wenzelm@19421
   444
  #> `Thm.maxidx_of
wenzelm@16949
   445
  #-> (fn maxidx =>
wenzelm@16949
   446
    forall_elim_vars (maxidx + 1)
wenzelm@16949
   447
    #> strip_shyps_warning
wenzelm@16949
   448
    #> zero_var_indexes
wenzelm@16949
   449
    #> Thm.varifyT
wenzelm@16949
   450
    #> Thm.compress);
wenzelm@1218
   451
wenzelm@16949
   452
val standard =
wenzelm@16949
   453
  flexflex_unique
wenzelm@16949
   454
  #> standard'
wenzelm@16949
   455
  #> close_derivation;
berghofe@11512
   456
wenzelm@16949
   457
val local_standard =
wenzelm@16949
   458
  strip_shyps
wenzelm@16949
   459
  #> zero_var_indexes
wenzelm@16949
   460
  #> Thm.compress
wenzelm@16949
   461
  #> close_derivation;
wenzelm@12005
   462
clasohm@0
   463
wenzelm@8328
   464
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   465
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   466
  Similar code in type/freeze_thaw*)
paulson@15495
   467
paulson@15495
   468
fun freeze_thaw_robust th =
wenzelm@19878
   469
 let val fth = Thm.freezeT th
wenzelm@16425
   470
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   471
 in
skalberg@15574
   472
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   473
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   474
     | vars =>
paulson@19753
   475
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   476
             val alist = map newName vars
paulson@15495
   477
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   478
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   479
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   480
             val insts = map mk_inst vars
paulson@15495
   481
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   482
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   483
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   484
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   485
 end;
paulson@15495
   486
paulson@15495
   487
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@19999
   488
  The Frees created from Vars have nice names. FIXME: does not check for
paulson@19753
   489
  clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
paulson@4610
   490
fun freeze_thaw th =
wenzelm@19878
   491
 let val fth = Thm.freezeT th
wenzelm@16425
   492
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   493
 in
skalberg@15574
   494
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   495
       [] => (fth, fn x => x)
paulson@7248
   496
     | vars =>
wenzelm@8328
   497
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   498
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   499
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   500
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   501
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   502
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   503
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   504
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   505
             val insts = map mk_inst vars
wenzelm@8328
   506
             fun thaw th' =
wenzelm@8328
   507
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   508
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   509
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   510
 end;
paulson@4610
   511
paulson@7248
   512
(*Rotates a rule's premises to the left by k*)
paulson@7248
   513
val rotate_prems = permute_prems 0;
paulson@4610
   514
oheimb@11163
   515
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   516
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   517
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   518
val rearrange_prems = let
oheimb@11163
   519
  fun rearr new []      thm = thm
wenzelm@11815
   520
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   521
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   522
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   523
  in rearr 0 end;
paulson@4610
   524
wenzelm@252
   525
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   526
fun tha RSN (i,thb) =
wenzelm@19861
   527
  case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
clasohm@0
   528
      ([th],_) => th
clasohm@0
   529
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   530
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   531
clasohm@0
   532
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   533
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   534
clasohm@0
   535
(*For joining lists of rules*)
wenzelm@252
   536
fun thas RLN (i,thbs) =
clasohm@0
   537
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   538
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   539
  in maps resb thbs end;
clasohm@0
   540
clasohm@0
   541
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   542
lcp@11
   543
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   544
  makes proof trees*)
wenzelm@252
   545
fun rls MRS bottom_rl =
lcp@11
   546
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   547
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   548
  in  rs_aux 1 rls  end;
lcp@11
   549
lcp@11
   550
(*As above, but for rule lists*)
wenzelm@252
   551
fun rlss MRL bottom_rls =
lcp@11
   552
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   553
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   554
  in  rs_aux 1 rlss  end;
lcp@11
   555
wenzelm@9288
   556
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   557
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   558
wenzelm@252
   559
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   560
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   561
  ALWAYS deletes premise i *)
wenzelm@252
   562
fun compose(tha,i,thb) =
wenzelm@4270
   563
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   564
wenzelm@6946
   565
fun compose_single (tha,i,thb) =
wenzelm@6946
   566
  (case compose (tha,i,thb) of
wenzelm@6946
   567
    [th] => th
wenzelm@6946
   568
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   569
clasohm@0
   570
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   571
fun tha COMP thb =
clasohm@0
   572
    case compose(tha,1,thb) of
wenzelm@252
   573
        [th] => th
clasohm@0
   574
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   575
wenzelm@13105
   576
wenzelm@4016
   577
(** theorem equality **)
clasohm@0
   578
wenzelm@16425
   579
(*True if the two theorems have the same theory.*)
wenzelm@16425
   580
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
paulson@13650
   581
paulson@13650
   582
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@16720
   583
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
clasohm@0
   584
clasohm@0
   585
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   586
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   587
wenzelm@9829
   588
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@18922
   589
val del_rule = remove eq_thm_prop;
wenzelm@18922
   590
fun add_rule th = cons th o del_rule th;
wenzelm@18922
   591
val merge_rules = Library.merge eq_thm_prop;
wenzelm@9829
   592
wenzelm@19878
   593
(*pattern equivalence*)
wenzelm@19878
   594
fun equiv_thm ths =
wenzelm@19878
   595
  Pattern.equiv (Theory.merge (pairself Thm.theory_of_thm ths)) (pairself Thm.full_prop_of ths);
lcp@1194
   596
lcp@1194
   597
clasohm@0
   598
(*** Meta-Rewriting Rules ***)
clasohm@0
   599
wenzelm@16425
   600
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
paulson@4610
   601
wenzelm@9455
   602
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   603
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   604
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   605
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   606
clasohm@0
   607
val reflexive_thm =
wenzelm@19421
   608
  let val cx = cert (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   609
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   610
clasohm@0
   611
val symmetric_thm =
wenzelm@14854
   612
  let val xy = read_prop "x == y"
wenzelm@16595
   613
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   614
clasohm@0
   615
val transitive_thm =
wenzelm@14854
   616
  let val xy = read_prop "x == y"
wenzelm@14854
   617
      val yz = read_prop "y == z"
clasohm@0
   618
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   619
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   620
nipkow@4679
   621
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   622
berghofe@11512
   623
fun extensional eq =
berghofe@11512
   624
  let val eq' =
wenzelm@20579
   625
    abstract_rule "x" (Thm.dest_arg (fst (dest_equals (cprop_of eq)))) eq
berghofe@11512
   626
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   627
wenzelm@18820
   628
val equals_cong =
wenzelm@18820
   629
  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x == y"));
wenzelm@18820
   630
berghofe@10414
   631
val imp_cong =
berghofe@10414
   632
  let
berghofe@10414
   633
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   634
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   635
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   636
    val A = read_prop "PROP A"
berghofe@10414
   637
  in
wenzelm@12135
   638
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   639
      (implies_intr AB (implies_intr A
berghofe@10414
   640
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   641
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   642
      (implies_intr AC (implies_intr A
berghofe@10414
   643
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   644
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   645
  end;
berghofe@10414
   646
berghofe@10414
   647
val swap_prems_eq =
berghofe@10414
   648
  let
berghofe@10414
   649
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   650
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   651
    val A = read_prop "PROP A"
berghofe@10414
   652
    val B = read_prop "PROP B"
berghofe@10414
   653
  in
wenzelm@12135
   654
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   655
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   656
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   657
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   658
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   659
  end;
lcp@229
   660
wenzelm@18468
   661
val imp_cong_rule = combination o combination (reflexive implies);
clasohm@0
   662
skalberg@15001
   663
local
skalberg@15001
   664
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   665
  val rhs_of = snd o dest_eq
skalberg@15001
   666
in
skalberg@15001
   667
fun beta_eta_conversion t =
skalberg@15001
   668
  let val thm = beta_conversion true t
skalberg@15001
   669
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   670
end;
skalberg@15001
   671
berghofe@15925
   672
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   673
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   674
paulson@20861
   675
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   676
fun eta_contraction_rule th =
paulson@20861
   677
  equal_elim (eta_conversion (cprop_of th)) th;
paulson@20861
   678
wenzelm@18337
   679
val abs_def =
wenzelm@18337
   680
  let
wenzelm@18337
   681
    fun contract_lhs th =
wenzelm@18337
   682
      Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
wenzelm@18777
   683
    fun abstract cx th = Thm.abstract_rule
wenzelm@18777
   684
        (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
wenzelm@18777
   685
      handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
wenzelm@18337
   686
  in
wenzelm@18337
   687
    contract_lhs
wenzelm@18337
   688
    #> `(snd o strip_comb o fst o dest_equals o cprop_of)
wenzelm@18337
   689
    #-> fold_rev abstract
wenzelm@18337
   690
    #> contract_lhs
wenzelm@18337
   691
  end;
wenzelm@18337
   692
wenzelm@18468
   693
(*rewrite B in !!x1 ... xn. B*)
wenzelm@18251
   694
fun forall_conv 0 cv ct = cv ct
wenzelm@18251
   695
  | forall_conv n cv ct =
wenzelm@18468
   696
      (case try Thm.dest_comb ct of
wenzelm@18468
   697
        NONE => cv ct
wenzelm@18468
   698
      | SOME (A, B) =>
wenzelm@18468
   699
          (case (term_of A, term_of B) of
wenzelm@18468
   700
            (Const ("all", _), Abs (x, _, _)) =>
wenzelm@18468
   701
              let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
wenzelm@18468
   702
                Thm.combination (Thm.reflexive A)
wenzelm@18468
   703
                  (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
wenzelm@18468
   704
              end
wenzelm@18468
   705
          | _ => cv ct));
wenzelm@18468
   706
wenzelm@18468
   707
(*rewrite B in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   708
fun concl_conv 0 cv ct = cv ct
wenzelm@18468
   709
  | concl_conv n cv ct =
wenzelm@18468
   710
      (case try dest_implies ct of
wenzelm@18468
   711
        NONE => cv ct
wenzelm@18468
   712
      | SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
skalberg@15001
   713
wenzelm@18468
   714
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   715
fun prems_conv 0 _ = reflexive
wenzelm@18468
   716
  | prems_conv n cv =
wenzelm@18468
   717
      let
wenzelm@18468
   718
        fun conv i ct =
wenzelm@18468
   719
          if i = n + 1 then reflexive ct
wenzelm@18468
   720
          else
wenzelm@18468
   721
            (case try dest_implies ct of
wenzelm@18468
   722
              NONE => reflexive ct
wenzelm@18468
   723
            | SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
wenzelm@18468
   724
  in conv 1 end;
wenzelm@18468
   725
wenzelm@18468
   726
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
skalberg@15001
   727
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   728
wenzelm@18468
   729
wenzelm@15669
   730
(*** Some useful meta-theorems ***)
clasohm@0
   731
clasohm@0
   732
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   733
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   734
val _ = store_thm "_" asm_rl;
clasohm@0
   735
clasohm@0
   736
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   737
val cut_rl =
wenzelm@12135
   738
  store_standard_thm_open "cut_rl"
wenzelm@9455
   739
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   740
wenzelm@252
   741
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   742
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   743
val revcut_rl =
paulson@4610
   744
  let val V = read_prop "PROP V"
paulson@4610
   745
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   746
  in
wenzelm@12135
   747
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   748
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   749
  end;
clasohm@0
   750
lcp@668
   751
(*for deleting an unwanted assumption*)
lcp@668
   752
val thin_rl =
paulson@4610
   753
  let val V = read_prop "PROP V"
paulson@4610
   754
      and W = read_prop "PROP W";
wenzelm@12135
   755
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   756
clasohm@0
   757
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   758
val triv_forall_equality =
paulson@4610
   759
  let val V  = read_prop "PROP V"
paulson@4610
   760
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@19421
   761
      and x  = cert (Free ("x", Term.aT []));
wenzelm@4016
   762
  in
wenzelm@12135
   763
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   764
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   765
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   766
  end;
clasohm@0
   767
wenzelm@19051
   768
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   769
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   770
*)
wenzelm@19051
   771
val distinct_prems_rl =
wenzelm@19051
   772
  let
wenzelm@19051
   773
    val AAB = read_prop "PROP Phi ==> PROP Phi ==> PROP Psi"
wenzelm@19051
   774
    val A = read_prop "PROP Phi";
wenzelm@19051
   775
  in
wenzelm@19051
   776
    store_standard_thm_open "distinct_prems_rl"
wenzelm@19051
   777
      (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
wenzelm@19051
   778
  end;
wenzelm@19051
   779
nipkow@1756
   780
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   781
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   782
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   783
*)
nipkow@1756
   784
val swap_prems_rl =
paulson@4610
   785
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   786
      val major = assume cmajor;
paulson@4610
   787
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   788
      val minor1 = assume cminor1;
paulson@4610
   789
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   790
      val minor2 = assume cminor2;
wenzelm@12135
   791
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   792
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   793
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   794
  end;
nipkow@1756
   795
nipkow@3653
   796
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   797
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   798
   Introduction rule for == as a meta-theorem.
nipkow@3653
   799
*)
nipkow@3653
   800
val equal_intr_rule =
paulson@4610
   801
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   802
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   803
  in
wenzelm@12135
   804
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   805
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   806
  end;
nipkow@3653
   807
wenzelm@19421
   808
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   809
val equal_elim_rule1 =
wenzelm@13368
   810
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   811
      and P = read_prop "PROP phi"
wenzelm@13368
   812
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   813
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   814
  end;
wenzelm@4285
   815
wenzelm@19421
   816
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   817
val equal_elim_rule2 =
wenzelm@19421
   818
  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   819
wenzelm@12297
   820
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   821
val remdups_rl =
wenzelm@12297
   822
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   823
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   824
wenzelm@12297
   825
wenzelm@9554
   826
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   827
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   828
wenzelm@9554
   829
val norm_hhf_eq =
wenzelm@9554
   830
  let
wenzelm@14854
   831
    val aT = TFree ("'a", []);
wenzelm@9554
   832
    val all = Term.all aT;
wenzelm@9554
   833
    val x = Free ("x", aT);
wenzelm@9554
   834
    val phi = Free ("phi", propT);
wenzelm@9554
   835
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   836
wenzelm@9554
   837
    val cx = cert x;
wenzelm@9554
   838
    val cphi = cert phi;
wenzelm@9554
   839
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   840
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   841
  in
wenzelm@9554
   842
    Thm.equal_intr
wenzelm@9554
   843
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   844
        |> Thm.forall_elim cx
wenzelm@9554
   845
        |> Thm.implies_intr cphi
wenzelm@9554
   846
        |> Thm.forall_intr cx
wenzelm@9554
   847
        |> Thm.implies_intr lhs)
wenzelm@9554
   848
      (Thm.implies_elim
wenzelm@9554
   849
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   850
        |> Thm.forall_intr cx
wenzelm@9554
   851
        |> Thm.implies_intr cphi
wenzelm@9554
   852
        |> Thm.implies_intr rhs)
wenzelm@12135
   853
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   854
  end;
wenzelm@9554
   855
wenzelm@18179
   856
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   857
wenzelm@12800
   858
fun is_norm_hhf tm =
wenzelm@12800
   859
  let
wenzelm@12800
   860
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   861
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   862
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   863
      | is_norm _ = true;
wenzelm@18929
   864
  in is_norm (Envir.beta_eta_contract tm) end;
wenzelm@12800
   865
wenzelm@16425
   866
fun norm_hhf thy t =
wenzelm@12800
   867
  if is_norm_hhf t then t
wenzelm@18179
   868
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   869
wenzelm@20298
   870
fun norm_hhf_cterm ct =
wenzelm@20298
   871
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   872
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   873
wenzelm@12800
   874
wenzelm@9554
   875
wenzelm@16425
   876
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   877
paulson@8129
   878
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   879
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   880
wenzelm@16425
   881
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   882
    let val ts = types_sorts th;
wenzelm@15669
   883
        val used = add_used th [];
wenzelm@16425
   884
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   885
wenzelm@16425
   886
fun read_instantiate_sg thy sinsts th =
wenzelm@20298
   887
  read_instantiate_sg' thy (map (apfst Syntax.read_indexname) sinsts) th;
paulson@8129
   888
paulson@8129
   889
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   890
fun read_instantiate sinsts th =
wenzelm@16425
   891
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   892
berghofe@15797
   893
fun read_instantiate' sinsts th =
wenzelm@16425
   894
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   895
paulson@8129
   896
paulson@8129
   897
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   898
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   899
local
wenzelm@16425
   900
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   901
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   902
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   903
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   904
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   905
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   906
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   907
    in  (thy', tye', maxi')  end;
paulson@8129
   908
in
paulson@8129
   909
fun cterm_instantiate ctpairs0 th =
wenzelm@16425
   910
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   911
      fun instT(ct,cu) =
wenzelm@16425
   912
        let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
paulson@14340
   913
        in (inst ct, inst cu) end
wenzelm@16425
   914
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
berghofe@8406
   915
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   916
  handle TERM _ =>
wenzelm@16425
   917
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   918
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   919
end;
paulson@8129
   920
paulson@8129
   921
wenzelm@19878
   922
(* global schematic variables *)
wenzelm@19878
   923
wenzelm@19878
   924
fun unvarify th =
wenzelm@19878
   925
  let
wenzelm@19878
   926
    val thy = Thm.theory_of_thm th;
wenzelm@19878
   927
    val cert = Thm.cterm_of thy;
wenzelm@19878
   928
    val certT = Thm.ctyp_of thy;
wenzelm@19878
   929
wenzelm@19878
   930
    val prop = Thm.full_prop_of th;
wenzelm@19878
   931
    val _ = map Logic.unvarify (prop :: Thm.hyps_of th)
wenzelm@19878
   932
      handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@19878
   933
wenzelm@19878
   934
    val instT0 = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
wenzelm@19878
   935
    val instT = map (fn (v, T) => (certT (TVar v), certT T)) instT0;
wenzelm@19878
   936
    val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
wenzelm@20509
   937
      let val T' = TermSubst.instantiateT instT0 T
wenzelm@19878
   938
      in (cert (Var ((a, i), T')), cert (Free ((a, T')))) end);
wenzelm@19878
   939
  in Thm.instantiate (instT, inst) th end;
wenzelm@19878
   940
wenzelm@19878
   941
wenzelm@19775
   942
(** protected propositions and embedded terms **)
wenzelm@4789
   943
wenzelm@4789
   944
local
wenzelm@18025
   945
  val A = cert (Free ("A", propT));
wenzelm@19878
   946
  val prop_def = unvarify ProtoPure.prop_def;
wenzelm@19878
   947
  val term_def = unvarify ProtoPure.term_def;
wenzelm@4789
   948
in
wenzelm@18025
   949
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@18799
   950
  val protectI = store_thm "protectI" (PureThy.kind_rule PureThy.internalK (standard
wenzelm@18025
   951
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@18799
   952
  val protectD = store_thm "protectD" (PureThy.kind_rule PureThy.internalK (standard
wenzelm@18025
   953
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   954
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@19775
   955
wenzelm@19775
   956
  val termI = store_thm "termI" (PureThy.kind_rule PureThy.internalK (standard
wenzelm@19775
   957
      (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
wenzelm@4789
   958
end;
wenzelm@4789
   959
wenzelm@18025
   960
fun implies_intr_protected asms th =
wenzelm@18118
   961
  let val asms' = map protect asms in
wenzelm@18118
   962
    implies_elim_list
wenzelm@18118
   963
      (implies_intr_list asms th)
wenzelm@18118
   964
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
   965
    |> implies_intr_list asms'
wenzelm@18118
   966
  end;
wenzelm@11815
   967
wenzelm@19775
   968
fun mk_term ct =
wenzelm@19775
   969
  let
wenzelm@19775
   970
    val {thy, T, ...} = Thm.rep_cterm ct;
wenzelm@19775
   971
    val cert = Thm.cterm_of thy;
wenzelm@19775
   972
    val certT = Thm.ctyp_of thy;
wenzelm@19775
   973
    val a = certT (TVar (("'a", 0), []));
wenzelm@19775
   974
    val x = cert (Var (("x", 0), T));
wenzelm@19775
   975
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@19775
   976
wenzelm@19775
   977
fun dest_term th =
wenzelm@19775
   978
  let val cprop = Thm.cprop_of th in
wenzelm@19775
   979
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@20579
   980
      Thm.dest_arg cprop
wenzelm@19775
   981
    else raise THM ("dest_term", 0, [th])
wenzelm@19775
   982
  end;
wenzelm@19775
   983
wenzelm@19775
   984
wenzelm@4789
   985
wenzelm@5688
   986
(** variations on instantiate **)
wenzelm@4285
   987
paulson@8550
   988
(*shorthand for instantiating just one variable in the current theory*)
wenzelm@16425
   989
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
paulson@8550
   990
paulson@8550
   991
wenzelm@4285
   992
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   993
wenzelm@4285
   994
fun instantiate' cTs cts thm =
wenzelm@4285
   995
  let
wenzelm@4285
   996
    fun err msg =
wenzelm@4285
   997
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   998
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   999
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
  1000
wenzelm@4285
  1001
    fun inst_of (v, ct) =
wenzelm@16425
  1002
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
  1003
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
  1004
berghofe@15797
  1005
    fun tyinst_of (v, cT) =
wenzelm@16425
  1006
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
  1007
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
  1008
wenzelm@20298
  1009
    fun zip_vars xs ys =
wenzelm@20298
  1010
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
  1011
        err "more instantiations than variables in thm";
wenzelm@4285
  1012
wenzelm@4285
  1013
    (*instantiate types first!*)
wenzelm@4285
  1014
    val thm' =
wenzelm@4285
  1015
      if forall is_none cTs then thm
wenzelm@20298
  1016
      else Thm.instantiate
wenzelm@20298
  1017
        (map tyinst_of (zip_vars (rev (fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
  1018
    val thm'' =
wenzelm@4285
  1019
      if forall is_none cts then thm'
wenzelm@20298
  1020
      else Thm.instantiate
wenzelm@20298
  1021
        ([], map inst_of (zip_vars (rev (fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
  1022
    in thm'' end;
wenzelm@4285
  1023
wenzelm@4285
  1024
berghofe@14081
  1025
berghofe@14081
  1026
(** renaming of bound variables **)
berghofe@14081
  1027
berghofe@14081
  1028
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
  1029
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
  1030
berghofe@14081
  1031
fun rename_bvars [] thm = thm
berghofe@14081
  1032
  | rename_bvars vs thm =
berghofe@14081
  1033
    let
wenzelm@16425
  1034
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
  1035
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
  1036
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1037
        | ren t = t;
wenzelm@16425
  1038
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1039
berghofe@14081
  1040
berghofe@14081
  1041
(* renaming in left-to-right order *)
berghofe@14081
  1042
berghofe@14081
  1043
fun rename_bvars' xs thm =
berghofe@14081
  1044
  let
wenzelm@16425
  1045
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1046
    fun rename [] t = ([], t)
berghofe@14081
  1047
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1048
          let val (xs', t') = rename xs t
wenzelm@18929
  1049
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
  1050
      | rename xs (t $ u) =
berghofe@14081
  1051
          let
berghofe@14081
  1052
            val (xs', t') = rename xs t;
berghofe@14081
  1053
            val (xs'', u') = rename xs' u
berghofe@14081
  1054
          in (xs'', t' $ u') end
berghofe@14081
  1055
      | rename xs t = (xs, t);
berghofe@14081
  1056
  in case rename xs prop of
wenzelm@16425
  1057
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1058
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1059
  end;
berghofe@14081
  1060
berghofe@14081
  1061
wenzelm@19906
  1062
(* var indexes *)
wenzelm@6435
  1063
wenzelm@19421
  1064
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@18025
  1065
wenzelm@19124
  1066
fun incr_indexes2 th1 th2 =
wenzelm@19421
  1067
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@6435
  1068
wenzelm@6435
  1069
wenzelm@11975
  1070
wenzelm@18225
  1071
(** multi_resolve **)
wenzelm@18225
  1072
wenzelm@18225
  1073
local
wenzelm@18225
  1074
wenzelm@18225
  1075
fun res th i rule =
wenzelm@18225
  1076
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
  1077
wenzelm@18225
  1078
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
  1079
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
  1080
wenzelm@18225
  1081
in
wenzelm@18225
  1082
wenzelm@18225
  1083
val multi_resolve = multi_res 1;
wenzelm@18225
  1084
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
  1085
wenzelm@18225
  1086
end;
wenzelm@18225
  1087
wenzelm@11975
  1088
end;
wenzelm@5903
  1089
wenzelm@5903
  1090
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1091
open BasicDrule;