src/HOL/Library/Efficient_Nat.thy
 author haftmann Fri Aug 27 19:34:23 2010 +0200 (2010-08-27 ago) changeset 38857 97775f3e8722 parent 38774 567b94f8bb6e child 38968 e55deaa22fff permissions -rw-r--r--
renamed class/constant eq to equal; tuned some instantiations
```     1 (*  Title:      HOL/Library/Efficient_Nat.thy
```
```     2     Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
```
```     3 *)
```
```     4
```
```     5 header {* Implementation of natural numbers by target-language integers *}
```
```     6
```
```     7 theory Efficient_Nat
```
```     8 imports Code_Integer Main
```
```     9 begin
```
```    10
```
```    11 text {*
```
```    12   When generating code for functions on natural numbers, the
```
```    13   canonical representation using @{term "0::nat"} and
```
```    14   @{term Suc} is unsuitable for computations involving large
```
```    15   numbers.  The efficiency of the generated code can be improved
```
```    16   drastically by implementing natural numbers by target-language
```
```    17   integers.  To do this, just include this theory.
```
```    18 *}
```
```    19
```
```    20 subsection {* Basic arithmetic *}
```
```    21
```
```    22 text {*
```
```    23   Most standard arithmetic functions on natural numbers are implemented
```
```    24   using their counterparts on the integers:
```
```    25 *}
```
```    26
```
```    27 code_datatype number_nat_inst.number_of_nat
```
```    28
```
```    29 lemma zero_nat_code [code, code_unfold_post]:
```
```    30   "0 = (Numeral0 :: nat)"
```
```    31   by simp
```
```    32
```
```    33 lemma one_nat_code [code, code_unfold_post]:
```
```    34   "1 = (Numeral1 :: nat)"
```
```    35   by simp
```
```    36
```
```    37 lemma Suc_code [code]:
```
```    38   "Suc n = n + 1"
```
```    39   by simp
```
```    40
```
```    41 lemma plus_nat_code [code]:
```
```    42   "n + m = nat (of_nat n + of_nat m)"
```
```    43   by simp
```
```    44
```
```    45 lemma minus_nat_code [code]:
```
```    46   "n - m = nat (of_nat n - of_nat m)"
```
```    47   by simp
```
```    48
```
```    49 lemma times_nat_code [code]:
```
```    50   "n * m = nat (of_nat n * of_nat m)"
```
```    51   unfolding of_nat_mult [symmetric] by simp
```
```    52
```
```    53 lemma divmod_nat_code [code]:
```
```    54   "divmod_nat n m = prod_fun nat nat (pdivmod (of_nat n) (of_nat m))"
```
```    55   by (simp add: prod_fun_def split_def pdivmod_def nat_div_distrib nat_mod_distrib divmod_nat_div_mod)
```
```    56
```
```    57 lemma eq_nat_code [code]:
```
```    58   "HOL.equal n m \<longleftrightarrow> HOL.equal (of_nat n \<Colon> int) (of_nat m)"
```
```    59   by (simp add: equal)
```
```    60
```
```    61 lemma eq_nat_refl [code nbe]:
```
```    62   "HOL.equal (n::nat) n \<longleftrightarrow> True"
```
```    63   by (rule equal_refl)
```
```    64
```
```    65 lemma less_eq_nat_code [code]:
```
```    66   "n \<le> m \<longleftrightarrow> (of_nat n \<Colon> int) \<le> of_nat m"
```
```    67   by simp
```
```    68
```
```    69 lemma less_nat_code [code]:
```
```    70   "n < m \<longleftrightarrow> (of_nat n \<Colon> int) < of_nat m"
```
```    71   by simp
```
```    72
```
```    73 subsection {* Case analysis *}
```
```    74
```
```    75 text {*
```
```    76   Case analysis on natural numbers is rephrased using a conditional
```
```    77   expression:
```
```    78 *}
```
```    79
```
```    80 lemma [code, code_unfold]:
```
```    81   "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
```
```    82   by (auto simp add: expand_fun_eq dest!: gr0_implies_Suc)
```
```    83
```
```    84
```
```    85 subsection {* Preprocessors *}
```
```    86
```
```    87 text {*
```
```    88   In contrast to @{term "Suc n"}, the term @{term "n + (1::nat)"} is no longer
```
```    89   a constructor term. Therefore, all occurrences of this term in a position
```
```    90   where a pattern is expected (i.e.\ on the left-hand side of a recursion
```
```    91   equation or in the arguments of an inductive relation in an introduction
```
```    92   rule) must be eliminated.
```
```    93   This can be accomplished by applying the following transformation rules:
```
```    94 *}
```
```    95
```
```    96 lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
```
```    97   f n \<equiv> if n = 0 then g else h (n - 1)"
```
```    98   by (rule eq_reflection) (cases n, simp_all)
```
```    99
```
```   100 lemma Suc_clause: "(\<And>n. P n (Suc n)) \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> P (n - 1) n"
```
```   101   by (cases n) simp_all
```
```   102
```
```   103 text {*
```
```   104   The rules above are built into a preprocessor that is plugged into
```
```   105   the code generator. Since the preprocessor for introduction rules
```
```   106   does not know anything about modes, some of the modes that worked
```
```   107   for the canonical representation of natural numbers may no longer work.
```
```   108 *}
```
```   109
```
```   110 (*<*)
```
```   111 setup {*
```
```   112 let
```
```   113
```
```   114 fun remove_suc thy thms =
```
```   115   let
```
```   116     val vname = Name.variant (map fst
```
```   117       (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "n";
```
```   118     val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
```
```   119     fun lhs_of th = snd (Thm.dest_comb
```
```   120       (fst (Thm.dest_comb (cprop_of th))));
```
```   121     fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
```
```   122     fun find_vars ct = (case term_of ct of
```
```   123         (Const (@{const_name Suc}, _) \$ Var _) => [(cv, snd (Thm.dest_comb ct))]
```
```   124       | _ \$ _ =>
```
```   125         let val (ct1, ct2) = Thm.dest_comb ct
```
```   126         in
```
```   127           map (apfst (fn ct => Thm.capply ct ct2)) (find_vars ct1) @
```
```   128           map (apfst (Thm.capply ct1)) (find_vars ct2)
```
```   129         end
```
```   130       | _ => []);
```
```   131     val eqs = maps
```
```   132       (fn th => map (pair th) (find_vars (lhs_of th))) thms;
```
```   133     fun mk_thms (th, (ct, cv')) =
```
```   134       let
```
```   135         val th' =
```
```   136           Thm.implies_elim
```
```   137            (Conv.fconv_rule (Thm.beta_conversion true)
```
```   138              (Drule.instantiate'
```
```   139                [SOME (ctyp_of_term ct)] [SOME (Thm.cabs cv ct),
```
```   140                  SOME (Thm.cabs cv' (rhs_of th)), NONE, SOME cv']
```
```   141                @{thm Suc_if_eq})) (Thm.forall_intr cv' th)
```
```   142       in
```
```   143         case map_filter (fn th'' =>
```
```   144             SOME (th'', singleton
```
```   145               (Variable.trade (K (fn [th'''] => [th''' RS th']))
```
```   146                 (Variable.global_thm_context th'')) th'')
```
```   147           handle THM _ => NONE) thms of
```
```   148             [] => NONE
```
```   149           | thps =>
```
```   150               let val (ths1, ths2) = split_list thps
```
```   151               in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
```
```   152       end
```
```   153   in get_first mk_thms eqs end;
```
```   154
```
```   155 fun eqn_suc_base_preproc thy thms =
```
```   156   let
```
```   157     val dest = fst o Logic.dest_equals o prop_of;
```
```   158     val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
```
```   159   in
```
```   160     if forall (can dest) thms andalso exists (contains_suc o dest) thms
```
```   161       then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes
```
```   162        else NONE
```
```   163   end;
```
```   164
```
```   165 val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;
```
```   166
```
```   167 fun remove_suc_clause thy thms =
```
```   168   let
```
```   169     val vname = Name.variant (map fst
```
```   170       (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "x";
```
```   171     fun find_var (t as Const (@{const_name Suc}, _) \$ (v as Var _)) = SOME (t, v)
```
```   172       | find_var (t \$ u) = (case find_var t of NONE => find_var u | x => x)
```
```   173       | find_var _ = NONE;
```
```   174     fun find_thm th =
```
```   175       let val th' = Conv.fconv_rule Object_Logic.atomize th
```
```   176       in Option.map (pair (th, th')) (find_var (prop_of th')) end
```
```   177   in
```
```   178     case get_first find_thm thms of
```
```   179       NONE => thms
```
```   180     | SOME ((th, th'), (Sucv, v)) =>
```
```   181         let
```
```   182           val cert = cterm_of (Thm.theory_of_thm th);
```
```   183           val th'' = Object_Logic.rulify (Thm.implies_elim
```
```   184             (Conv.fconv_rule (Thm.beta_conversion true)
```
```   185               (Drule.instantiate' []
```
```   186                 [SOME (cert (lambda v (Abs ("x", HOLogic.natT,
```
```   187                    abstract_over (Sucv,
```
```   188                      HOLogic.dest_Trueprop (prop_of th')))))),
```
```   189                  SOME (cert v)] @{thm Suc_clause}))
```
```   190             (Thm.forall_intr (cert v) th'))
```
```   191         in
```
```   192           remove_suc_clause thy (map (fn th''' =>
```
```   193             if (op = o pairself prop_of) (th''', th) then th'' else th''') thms)
```
```   194         end
```
```   195   end;
```
```   196
```
```   197 fun clause_suc_preproc thy ths =
```
```   198   let
```
```   199     val dest = fst o HOLogic.dest_mem o HOLogic.dest_Trueprop
```
```   200   in
```
```   201     if forall (can (dest o concl_of)) ths andalso
```
```   202       exists (fn th => exists (exists_Const (fn (c, _) => c = @{const_name Suc}))
```
```   203         (map_filter (try dest) (concl_of th :: prems_of th))) ths
```
```   204     then remove_suc_clause thy ths else ths
```
```   205   end;
```
```   206 in
```
```   207
```
```   208   Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
```
```   209   #> Codegen.add_preprocessor clause_suc_preproc
```
```   210
```
```   211 end;
```
```   212 *}
```
```   213 (*>*)
```
```   214
```
```   215
```
```   216 subsection {* Target language setup *}
```
```   217
```
```   218 text {*
```
```   219   For ML, we map @{typ nat} to target language integers, where we
```
```   220   ensure that values are always non-negative.
```
```   221 *}
```
```   222
```
```   223 code_type nat
```
```   224   (SML "IntInf.int")
```
```   225   (OCaml "Big'_int.big'_int")
```
```   226   (Eval "int")
```
```   227
```
```   228 types_code
```
```   229   nat ("int")
```
```   230 attach (term_of) {*
```
```   231 val term_of_nat = HOLogic.mk_number HOLogic.natT;
```
```   232 *}
```
```   233 attach (test) {*
```
```   234 fun gen_nat i =
```
```   235   let val n = random_range 0 i
```
```   236   in (n, fn () => term_of_nat n) end;
```
```   237 *}
```
```   238
```
```   239 text {*
```
```   240   For Haskell ans Scala we define our own @{typ nat} type.  The reason
```
```   241   is that we have to distinguish type class instances for @{typ nat}
```
```   242   and @{typ int}.
```
```   243 *}
```
```   244
```
```   245 code_include Haskell "Nat"
```
```   246 {*newtype Nat = Nat Integer deriving (Eq, Show, Read);
```
```   247
```
```   248 instance Num Nat where {
```
```   249   fromInteger k = Nat (if k >= 0 then k else 0);
```
```   250   Nat n + Nat m = Nat (n + m);
```
```   251   Nat n - Nat m = fromInteger (n - m);
```
```   252   Nat n * Nat m = Nat (n * m);
```
```   253   abs n = n;
```
```   254   signum _ = 1;
```
```   255   negate n = error "negate Nat";
```
```   256 };
```
```   257
```
```   258 instance Ord Nat where {
```
```   259   Nat n <= Nat m = n <= m;
```
```   260   Nat n < Nat m = n < m;
```
```   261 };
```
```   262
```
```   263 instance Real Nat where {
```
```   264   toRational (Nat n) = toRational n;
```
```   265 };
```
```   266
```
```   267 instance Enum Nat where {
```
```   268   toEnum k = fromInteger (toEnum k);
```
```   269   fromEnum (Nat n) = fromEnum n;
```
```   270 };
```
```   271
```
```   272 instance Integral Nat where {
```
```   273   toInteger (Nat n) = n;
```
```   274   divMod n m = quotRem n m;
```
```   275   quotRem (Nat n) (Nat m)
```
```   276     | (m == 0) = (0, Nat n)
```
```   277     | otherwise = (Nat k, Nat l) where (k, l) = quotRem n m;
```
```   278 };
```
```   279 *}
```
```   280
```
```   281 code_reserved Haskell Nat
```
```   282
```
```   283 code_include Scala "Nat"
```
```   284 {*import scala.Math
```
```   285
```
```   286 object Nat {
```
```   287
```
```   288   def apply(numeral: BigInt): Nat = new Nat(numeral max 0)
```
```   289   def apply(numeral: Int): Nat = Nat(BigInt(numeral))
```
```   290   def apply(numeral: String): Nat = Nat(BigInt(numeral))
```
```   291
```
```   292 }
```
```   293
```
```   294 class Nat private(private val value: BigInt) {
```
```   295
```
```   296   override def hashCode(): Int = this.value.hashCode()
```
```   297
```
```   298   override def equals(that: Any): Boolean = that match {
```
```   299     case that: Nat => this equals that
```
```   300     case _ => false
```
```   301   }
```
```   302
```
```   303   override def toString(): String = this.value.toString
```
```   304
```
```   305   def equals(that: Nat): Boolean = this.value == that.value
```
```   306
```
```   307   def as_BigInt: BigInt = this.value
```
```   308   def as_Int: Int = if (this.value >= Int.MinValue && this.value <= Int.MaxValue)
```
```   309       this.value.intValue
```
```   310     else error("Int value out of range: " + this.value.toString)
```
```   311
```
```   312   def +(that: Nat): Nat = new Nat(this.value + that.value)
```
```   313   def -(that: Nat): Nat = Nat(this.value - that.value)
```
```   314   def *(that: Nat): Nat = new Nat(this.value * that.value)
```
```   315
```
```   316   def /%(that: Nat): (Nat, Nat) = if (that.value == 0) (new Nat(0), this)
```
```   317     else {
```
```   318       val (k, l) = this.value /% that.value
```
```   319       (new Nat(k), new Nat(l))
```
```   320     }
```
```   321
```
```   322   def <=(that: Nat): Boolean = this.value <= that.value
```
```   323
```
```   324   def <(that: Nat): Boolean = this.value < that.value
```
```   325
```
```   326 }
```
```   327 *}
```
```   328
```
```   329 code_reserved Scala Nat
```
```   330
```
```   331 code_type nat
```
```   332   (Haskell "Nat.Nat")
```
```   333   (Scala "Nat.Nat")
```
```   334
```
```   335 code_instance nat :: equal
```
```   336   (Haskell -)
```
```   337
```
```   338 text {*
```
```   339   Natural numerals.
```
```   340 *}
```
```   341
```
```   342 lemma [code_unfold_post]:
```
```   343   "nat (number_of i) = number_nat_inst.number_of_nat i"
```
```   344   -- {* this interacts as desired with @{thm nat_number_of_def} *}
```
```   345   by (simp add: number_nat_inst.number_of_nat)
```
```   346
```
```   347 setup {*
```
```   348   fold (Numeral.add_code @{const_name number_nat_inst.number_of_nat}
```
```   349     false Code_Printer.literal_positive_numeral) ["SML", "OCaml", "Haskell", "Scala"]
```
```   350 *}
```
```   351
```
```   352 text {*
```
```   353   Since natural numbers are implemented
```
```   354   using integers in ML, the coercion function @{const "of_nat"} of type
```
```   355   @{typ "nat \<Rightarrow> int"} is simply implemented by the identity function.
```
```   356   For the @{const nat} function for converting an integer to a natural
```
```   357   number, we give a specific implementation using an ML function that
```
```   358   returns its input value, provided that it is non-negative, and otherwise
```
```   359   returns @{text "0"}.
```
```   360 *}
```
```   361
```
```   362 definition int :: "nat \<Rightarrow> int" where
```
```   363   [code del]: "int = of_nat"
```
```   364
```
```   365 lemma int_code' [code]:
```
```   366   "int (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
```
```   367   unfolding int_nat_number_of [folded int_def] ..
```
```   368
```
```   369 lemma nat_code' [code]:
```
```   370   "nat (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
```
```   371   unfolding nat_number_of_def number_of_is_id neg_def by simp
```
```   372
```
```   373 lemma of_nat_int [code_unfold_post]:
```
```   374   "of_nat = int" by (simp add: int_def)
```
```   375
```
```   376 lemma of_nat_aux_int [code_unfold]:
```
```   377   "of_nat_aux (\<lambda>i. i + 1) k 0 = int k"
```
```   378   by (simp add: int_def Nat.of_nat_code)
```
```   379
```
```   380 code_const int
```
```   381   (SML "_")
```
```   382   (OCaml "_")
```
```   383
```
```   384 consts_code
```
```   385   int ("(_)")
```
```   386   nat ("\<module>nat")
```
```   387 attach {*
```
```   388 fun nat i = if i < 0 then 0 else i;
```
```   389 *}
```
```   390
```
```   391 code_const nat
```
```   392   (SML "IntInf.max/ (/0,/ _)")
```
```   393   (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int")
```
```   394   (Eval "Integer.max/ _/ 0")
```
```   395
```
```   396 text {* For Haskell and Scala, things are slightly different again. *}
```
```   397
```
```   398 code_const int and nat
```
```   399   (Haskell "toInteger" and "fromInteger")
```
```   400   (Scala "!_.as'_BigInt" and "Nat.Nat")
```
```   401
```
```   402 text {* Conversion from and to code numerals. *}
```
```   403
```
```   404 code_const Code_Numeral.of_nat
```
```   405   (SML "IntInf.toInt")
```
```   406   (OCaml "_")
```
```   407   (Haskell "!(fromInteger/ ./ toInteger)")
```
```   408   (Scala "!Natural.Nat(_.as'_BigInt)")
```
```   409   (Eval "_")
```
```   410
```
```   411 code_const Code_Numeral.nat_of
```
```   412   (SML "IntInf.fromInt")
```
```   413   (OCaml "_")
```
```   414   (Haskell "!(fromInteger/ ./ toInteger)")
```
```   415   (Scala "!Nat.Nat(_.as'_BigInt)")
```
```   416   (Eval "_")
```
```   417
```
```   418 text {* Using target language arithmetic operations whenever appropriate *}
```
```   419
```
```   420 code_const "op + \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
```
```   421   (SML "IntInf.+ ((_), (_))")
```
```   422   (OCaml "Big'_int.add'_big'_int")
```
```   423   (Haskell infixl 6 "+")
```
```   424   (Scala infixl 7 "+")
```
```   425   (Eval infixl 8 "+")
```
```   426
```
```   427 code_const "op - \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
```
```   428   (Haskell infixl 6 "-")
```
```   429   (Scala infixl 7 "-")
```
```   430
```
```   431 code_const "op * \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
```
```   432   (SML "IntInf.* ((_), (_))")
```
```   433   (OCaml "Big'_int.mult'_big'_int")
```
```   434   (Haskell infixl 7 "*")
```
```   435   (Scala infixl 8 "*")
```
```   436   (Eval infixl 9 "*")
```
```   437
```
```   438 code_const divmod_nat
```
```   439   (SML "IntInf.divMod/ ((_),/ (_))")
```
```   440   (OCaml "Big'_int.quomod'_big'_int")
```
```   441   (Haskell "divMod")
```
```   442   (Scala infixl 8 "/%")
```
```   443   (Eval "Integer.div'_mod")
```
```   444
```
```   445 code_const "HOL.equal \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
```
```   446   (SML "!((_ : IntInf.int) = _)")
```
```   447   (OCaml "Big'_int.eq'_big'_int")
```
```   448   (Haskell infixl 4 "==")
```
```   449   (Scala infixl 5 "==")
```
```   450   (Eval infixl 6 "=")
```
```   451
```
```   452 code_const "op \<le> \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
```
```   453   (SML "IntInf.<= ((_), (_))")
```
```   454   (OCaml "Big'_int.le'_big'_int")
```
```   455   (Haskell infix 4 "<=")
```
```   456   (Scala infixl 4 "<=")
```
```   457   (Eval infixl 6 "<=")
```
```   458
```
```   459 code_const "op < \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
```
```   460   (SML "IntInf.< ((_), (_))")
```
```   461   (OCaml "Big'_int.lt'_big'_int")
```
```   462   (Haskell infix 4 "<")
```
```   463   (Scala infixl 4 "<")
```
```   464   (Eval infixl 6 "<")
```
```   465
```
```   466 consts_code
```
```   467   "0::nat"                     ("0")
```
```   468   "1::nat"                     ("1")
```
```   469   Suc                          ("(_ +/ 1)")
```
```   470   "op + \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ +/ _)")
```
```   471   "op * \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ */ _)")
```
```   472   "op \<le> \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ <=/ _)")
```
```   473   "op < \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ </ _)")
```
```   474
```
```   475
```
```   476 text {* Evaluation *}
```
```   477
```
```   478 lemma [code, code del]:
```
```   479   "(Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term) = Code_Evaluation.term_of" ..
```
```   480
```
```   481 code_const "Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term"
```
```   482   (SML "HOLogic.mk'_number/ HOLogic.natT")
```
```   483
```
```   484
```
```   485 text {* Module names *}
```
```   486
```
```   487 code_modulename SML
```
```   488   Efficient_Nat Arith
```
```   489
```
```   490 code_modulename OCaml
```
```   491   Efficient_Nat Arith
```
```   492
```
```   493 code_modulename Haskell
```
```   494   Efficient_Nat Arith
```
```   495
```
```   496 hide_const int
```
```   497
```
```   498 end
```