src/ZF/simpdata.ML
author paulson
Wed Jan 15 16:45:32 2003 +0100 (2003-01-15 ago)
changeset 13780 af7b79271364
parent 13462 56610e2ba220
child 15092 7fe7f022476c
permissions -rw-r--r--
more new-style theories
     1 (*  Title:      ZF/simpdata
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1991  University of Cambridge
     5 
     6 Rewriting for ZF set theory: specialized extraction of rewrites from theorems
     7 *)
     8 
     9 (*** New version of mk_rew_rules ***)
    10 
    11 (*Should False yield False<->True, or should it solve goals some other way?*)
    12 
    13 (*Analyse a theorem to atomic rewrite rules*)
    14 fun atomize (conn_pairs, mem_pairs) th =
    15   let fun tryrules pairs t =
    16           case head_of t of
    17               Const(a,_) =>
    18                 (case assoc(pairs,a) of
    19                      Some rls => flat (map (atomize (conn_pairs, mem_pairs))
    20                                        ([th] RL rls))
    21                    | None     => [th])
    22             | _ => [th]
    23   in case concl_of th of
    24          Const("Trueprop",_) $ P =>
    25             (case P of
    26                  Const("op :",_) $ a $ b => tryrules mem_pairs b
    27                | Const("True",_)         => []
    28                | Const("False",_)        => []
    29                | A => tryrules conn_pairs A)
    30        | _                       => [th]
    31   end;
    32 
    33 (*Analyse a rigid formula*)
    34 val ZF_conn_pairs =
    35   [("Ball",     [bspec]),
    36    ("All",      [spec]),
    37    ("op -->",   [mp]),
    38    ("op &",     [conjunct1,conjunct2])];
    39 
    40 (*Analyse a:b, where b is rigid*)
    41 val ZF_mem_pairs =
    42   [("Collect",  [CollectD1,CollectD2]),
    43    ("op -",     [DiffD1,DiffD2]),
    44    ("op Int",   [IntD1,IntD2])];
    45 
    46 val ZF_atomize = atomize (ZF_conn_pairs, ZF_mem_pairs);
    47 
    48 simpset_ref() :=
    49   simpset() setmksimps (map mk_eq o ZF_atomize o gen_all)
    50   addcongs [if_weak_cong]
    51   setSolver (mk_solver "types" (fn prems => TCSET' (fn tcset => type_solver_tac tcset prems)));
    52 
    53 
    54 
    55 local
    56 
    57 val prove_bex_tac = rewtac Bex_def THEN Quantifier1.prove_one_point_ex_tac;
    58 val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
    59 
    60 val prove_ball_tac = rewtac Ball_def THEN Quantifier1.prove_one_point_all_tac;
    61 val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
    62 
    63 in
    64 
    65 val defBEX_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
    66   "defined BEX" ["EX x:A. P(x) & Q(x)"] rearrange_bex;
    67 
    68 val defBALL_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
    69   "defined BALL" ["ALL x:A. P(x) --> Q(x)"] rearrange_ball;
    70 
    71 end;
    72 
    73 Addsimprocs [defBALL_regroup, defBEX_regroup];
    74 
    75 
    76 val ZF_ss = simpset();