
Isabelle/Isar:
from Primitive Natural Deduction

to Structured Mathematical Reasoning

Makarius

27-June-2005

1. Representing Proofs

2. Isabelle/Isar Foundations

3. The Isar Proof Language

4. Advanced Techniques

1. Representing Proofs

Primitive Natural Deduction (1)

A B
A ∧ B (∧I) A ∧ B

A (∧E 1) A ∧ B
B (∧E 2)

A
A ∨ B (∨I 1) B

A ∨ B (∨I 2) A ∨ B

[A]....
C

[B]....
C

C (∨E)

[A]....
B

A −→ B (−→I) A −→ B A
B (−→E)

[x]....
B(x)

∀ x . B(x) (∀ I)
∀ x . B(x)

B(t) (∀E)

1. Representing Proofs 2

Primitive Natural Deduction (2)

Observations:

• nice in theory

• cute in small teaching tools

• cumbersome in realistic applications

• not quite natural after all . . .

B(t)
∃ x . B(x) (∃ I) ∃ x . B(x)

[x , B(x)]....
C

C (∃E)

1. Representing Proofs 3

Mathematical vernacular

Example: [Davey and Priestley, 1990, pages 93–94]

The Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice
and f : L → L an order-preserving map. Then

d
{x ∈ L | f (x) ≤ x} is

a fixpoint of f.
Proof. Let H = {x ∈ L | f (x) ≤ x} and a =

d
H. For all x ∈ H

we have a ≤ x, so f (a) ≤ f (x) ≤ x. Thus f (a) is a lower bound of
H, whence f (a) ≤ a. We now use this inequality to prove the reverse
one (!) and thereby complete the proof that a is a fixpoint. Since f is
order-preserving, f (f (a)) ≤ f (a). This says f (a) ∈ H, so a ≤ f (a).

Question: How can we do actual formalized mathematics?

1. Representing Proofs 4

The Mizar system

Mizar [A. Trybulec et al., since ≈ 1973]

• Original motivation: verification environment for ALGOL programs
(the name MIZAR is a pun on that)

• Large library of formalized mathematics —
”Journal of Formalized Mathematics” [Vol. 1–12, 1990–2004]

• Mathematical proof language (!)

• Logical foundations:

– classical first-order logic
– builtin classical reasoning (decomposition and terminal steps)
– some special support for ”schemes” (e.g. induction)
– typed set-theory (Tarski-Grothendieck)
– builtin concept of abstract mathematical structures

• Main problem: monolithic system (no formal record on derivations, no
interfaces for extensions, program sources not generally available)

1. Representing Proofs 5

The Isabelle/Isar system

Isabelle [L.C. Paulson and T. Nipkow, since ≈ 1986]

• Generic logical framework for higher-order Natural Deduction

• Syntax: simply-typed λ-calculus with αβη-conversion, builtin support for
higher-order unification

• Deduction: minimal higher-order logic with implication A =⇒ B, quantifi-
cation

∧
x . B(x), and equality t ≡ u

Isar [M. Wenzel, since ≈ 1999]

• “Intelligible semi-automated reasoning”

• simple logical foundations, inherited from Isabelle/Pure

• generic – common object-logics may benefit from Isar immediately

• succinct language design, few basic principles, several derived concepts

• incremental proof processing, interactive development and debugging

• final proof texts intelligible without replay on the machine (requires some
care of the author)

1. Representing Proofs 6

Example: Isabelle/Isar proof text

theorem Knaster-Tarski :
assumes mono:

∧
x y. x ≤ y =⇒ f x ≤ f y

shows f (
d
{x . f x ≤ x}) =

d
{x . f x ≤ x} (is f ?a = ?a)

proof −
have ∗: f ?a ≤ ?a (is - ≤

d
?H)

proof
fix x assume H : x ∈ ?H
then have ?a ≤ x ..
also from H have f . . . ≤ x ..
moreover note mono finally show f ?a ≤ x .

qed
also have ?a ≤ f ?a
proof
from mono and ∗ have f (f ?a) ≤ f ?a .
then show f ?a ∈ ?H ..

qed
finally show f ?a = ?a .

qed

1. Representing Proofs 7

Example: Isabelle/Pure proof term

Knaster-Tarski ≡
λH : -.
order-antisym · - · - ·
(Inter-greatest · - · - ·

(λX Ha: -.
order-subst2 · - · - · f · - · (Inter-lower · - · - · Ha) ·
(iffD1 · - · - · (mem-Collect-eq · - · (λx . f x ≤ x)) · Ha) ·
H)) ·

(Inter-lower · - · - ·
(iffD2 · - · - · (mem-Collect-eq · - · (λu. f u ≤ u)) ·

(H · f (
d
{x . f x ≤ x}) ·

d
{x . f x ≤ x} ·

(Inter-greatest · - · - ·
(λX Ha: -.

order-subst2 · - · - · f · - · (Inter-lower · - · - · Ha) ·
(iffD1 · - · - · (mem-Collect-eq · - · (λx . f x ≤ x)) · Ha) ·
H)))))

1. Representing Proofs 8

2. Isabelle/Isar Foundations

Isabelle/Pure syntax and rules

prop type of propositions
=⇒ :: prop ⇒ prop ⇒ prop implication (right-associative infix)∧

:: (α ⇒ prop) ⇒ prop universal quantifier (binder)
≡ :: α ⇒ α ⇒ prop equality relation (infix)

[A]....
B

A =⇒ B (=⇒I) A =⇒ B A
B (=⇒E)

[x]....
B(x)∧
x . B(x) (

∧
I)

∧
x . B(x)
B(t) (

∧
E)

Axioms for t ≡ u: α, β, η, refl , subst , ext , iff

2. Isabelle/Isar Foundations 10

Pure formulae vs. inferences (1)

Define the following sets:

x variables
A atomic formulae, i.e. no outermost =⇒/

∧∧
x∗. A∗ =⇒ A Horn Clauses

H
def=

∧
x∗. H∗ =⇒ A Harrop Formulas

G
def= H ∪ #H Goal Clauses (# ≡ λA. A)

Notes:

• Outermost quantification
∧

x . B x is always represented via schematic
variables B ?x

• (A =⇒ (
∧

x . B x)) ≡ (
∧

x . A =⇒ B x) holds, i.e. every Pure formula may
be put into Harrop Form

• the goal marker # makes any Harrop Formula appear atomic

2. Isabelle/Isar Foundations 11

Pure formulae vs. inferences (2)

Examples:

Horn: A =⇒ B =⇒ A ∧ B
A B
A ∧ B

Harrop: (A =⇒ B) =⇒ A −→ B

[A]....
B

A −→ B

Harrop: P 0 =⇒ (
∧

n. P n =⇒ P (Suc n)) =⇒ P n
P 0

[n, P n]....
P (Suc n)
P n

Goal: (A =⇒ B =⇒ B) =⇒ (A =⇒ B =⇒ A) =⇒ #(A ∧ B −→ B ∧ A)

2. Isabelle/Isar Foundations 12

Rules for goal directed proof (1)

A =⇒ #A (init) #A
A (conclude)

rule: ~A ~a =⇒ B ~a

goal : (
∧

~x. ~H ~x =⇒ B ′ ~x) =⇒ C
goal unifier : (λ~x. B (~a ~x)) θ = B ′θ

(
∧

~x. ~H ~x =⇒ ~A (~a ~x)) θ =⇒ C θ
(resolve)

goal : (
∧

~x. ~H ~x =⇒ A ~x) =⇒ C
assm unifier : A θ = H i θ (for some H i)

C θ
(assumption)

2. Isabelle/Isar Foundations 13

Example: tactical proving in Isabelle

lemma A ∧ B −→ B ∧ A
apply (rule impI)
apply (erule conjE)

apply (rule conjI)
apply assumption
apply assumption
done

lemma (∃ x . ∀ y. R x y) −→ (∀ y. ∃ x . R x y)

apply (rule impI)
apply (erule exE)

apply (rule allI)
apply (erule allE)

apply (rule exI)
apply assumption
done

2. Isabelle/Isar Foundations 14

Rules for goal directed proof (2)

The key rule for Isar:

subproof : ~G ~a =⇒ B ~a

goal : (
∧

~x. ~H ~x =⇒ B ′ ~x) =⇒ C
goal unifier : (λ~x. B (~a ~x)) θ = B ′θ

assm unifiers: (λ~x. G j (~a ~x)) θ = #H i θ (for marked G j some #H i)

(
∧

~x. ~H ~x =⇒ ~G ′ (~a ~x)) θ =⇒ C θ
(refine)

Corresponds to canonical proof decomposition:

have
∧

x . A x =⇒ B x
proof −
fix x
assume A x
show B x 〈proof 〉

qed

2. Isabelle/Isar Foundations 15

3. The Isar Proof Language

Isar primitives

apply meth unstructured refinement
done unstructured ending

proof meth? structured refinement
qed meth? structured ending
{ open block
} close block
next switch block
let pat = t term abbreviation
note a = bs reconsidered facts
fix ~x universal parameters

assm �rule� a: ~A generic assumptions
then indicate forward-chaining of facts
have a: A local claim
show a: A local claim, result refines goal

3. The Isar Proof Language 17

Derived elements

assume = assm �discharge#�

presume = assm �discharge�
def x ≡ t = fix x assm �expand� x ≡ t

hence = then have
thus = then show

from a = note a then
with a = from a and this

by meth1 meth2 = proof meth1 qed meth2

.. = by rule
. = by this

Γ ∪ ~A ` C
Γ ` # ~A =⇒ C

(discharge#)
Γ ∪ ~A ` C

Γ ` ~A =⇒ C
(discharge)

Γ ∪ x ≡ t ` C t
Γ ` C x (expand)

3. The Isar Proof Language 18

The Isar/VM interpretation process

Isar/VM = much book-keeping + some Isabelle/Pure inferences

Important fields in the machine state (block-structured):

fixes context of locally fixed variables
assms context of local assumptions, each with discharge rule
facts environment of local facts
goal (optional) enclosing problem to be worked on

Some notable facts:
“prems” current assumptions
“this” most recently established fact
“calculation” scratch-pad for calculational reasoning

3. The Isar Proof Language 19

Example: structured proofs in Isar

lemma A ∧ B −→ B ∧ A
proof
assume A ∧ B
then show B ∧ A
proof
assume B and A
then show B ∧ A ..

qed
qed

lemma (∃ x . ∀ y. R x y) −→ (∀ y. ∃ x . R x y)

proof
assume ∃ x . ∀ y. R x y
then show ∀ y. ∃ x . R x y
proof
fix a
assume ∗: ∀ y. R a y
show ∀ y. ∃ x . R x y
proof
fix y
show ∃ x . R x y
proof
fix b
from ∗ show R a b ..

qed
qed

qed
qed

3. The Isar Proof Language 20

4. Advanced Techniques

Generalized elimination

obtain ~x where ~B ~x 〈proof 〉 def=

have reduction:
∧

thesis. (
∧

~x. ~B ~x =⇒ thesis) =⇒ thesis 〈proof 〉
fix ~x assm �eliminate reduction� ~B ~x

Γ `
∧

thesis. (
∧

~x. ~B ~x =⇒ thesis) =⇒ thesis
Γ ∪ ~B ~y ` C

Γ ` C (eliminate)

Canonical proof patterns:

assume ∃ x . B x
then obtain x where B x ..

assume A ∧ B
then obtain A and B ..

4. Advanced Techniques 22

Example: forward elimination

lemma A ∧ B −→ B ∧ A
proof
assume A ∧ B
then obtain B and A ..
then show B ∧ A ..

qed

lemma (∃ x . ∀ y. R x y) −→ (∀ y. ∃ x . R x y)

proof
assume ∃ x . ∀ y. R x y
then obtain a where ∗: ∀ y. R a y ..
{ fix b from ∗ have R a b ..
then have ∃ x . R x b .. }

then show ∀ y. ∃ x . R x y ..
qed

4. Advanced Techniques 23

Calculational reasoning

also = note calculation = this initially
also = note calculation = r · (calculation @ this) for r ∈ T

finally = also from calculation
moreover = note calculation = calculation @ this
ultimately = moreover from calculation

T
def= {x = y =⇒ y = z =⇒ x = z , x ≤ y =⇒ y ≤ z =⇒ x ≤ z , . . .}

Canonical proof pattern:

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

Note: term “. . .” abbreviates right-hand side of last statement

4. Advanced Techniques 24

Mathematical structures as structured proof contexts

Idea: expressions for Isar proof contexts

Concrete syntax:

locale name = expr + elem∗

expr ::= name | expr + expr | expr name∗

elem ::= fixes vars | assumes props | defines terms | notes facts

• locale activation turns fixes into fix, and assumes into assume etc.

• special form theorem (in a) augments the context dynamically by further
notes (no change of logical content)

4. Advanced Techniques 25

Example: locales and calculational reasoning

locale group =

fixes prod (infixl · 70)

and inv ((-−1) [1000] 999)

and one (1)

assumes assoc: (x · y) · z = x · (y · z)
and left-inv : x−1 · x = 1

and left-one: 1 · x = x

theorem (in group) right-inv : x · x−1 = 1 〈proof 〉

theorem (in group) right-one: x · 1 = x
proof −
have x · 1 = x · (x−1 · x) by (simp only: left-inv)
also have . . . = (x · x−1) · x by (simp only: assoc)
also have . . . = 1 · x by (simp only: right-inv)
also have . . . = x by (simp only: left-one)
finally show x · 1 = x .

qed

4. Advanced Techniques 26

Isar statements

(1) allow logical statements to express their context using Isar locale elements:

theorem elem∗ shows props

Example:

lemma
fixes x and y and z
defines x ≡ y + z
assumes A and B
shows C

(2) introduce the following abbreviation:

obtains ~x where ~B ~x or . . .
def=

fixes thesis
assumes

∧
~x. ~B ~x =⇒ thesis and . . .

shows thesis

4. Advanced Techniques 27

Natural Deduction rules as Isar statements

conjI : assumes A and B shows A ∧ B
conjE : assumes A ∧ B obtains A and B

disjI 1: assumes A shows A ∨ B
disjI 2: assumes B shows A ∨ B
disjE : assumes A ∨ B obtains A or B

impI : assumes A =⇒ B shows A −→ B
impE : assumes A −→ B and A obtains B

allI : assumes
∧

x . B x shows ∀ x . B x
allE : assumes ∀ x . B x obtains B t

exI : assumes B t shows ∃ x . B x
exE : assumes ∃ x . B x obtains x where B x

−→ Towards logic-free reasoning?

4. Advanced Techniques 28

Conclusion

Isabelle/Isar applications

Present state:

• 2000–2005: considerable amounts of Isabelle/Isar theories have emerged,
see also “The Archive of Formal Proofs” http://afp.sourceforge.net/

• Everybody uses the Isabelle/Isar toplevel — with Proof General

• Some people do actual structured proof development

Future work:

• More tool support for quick composition of formal proof sketches

• More documentation

• More instructions

• . . .

Conclusion 30

http://afp.sourceforge.net/

