Haskabelle — converting Haskell source files to
[sabelle/HOL theories

Tobias Rittweiler, Florian Haftmann

4 August 2014



Abstract

This document gives an introduction to Haskabelle, an importer from Haskell
source files to Isabelle/HOL theories.



Chapter 1

Haskabelle

1.1 Introduction

1.1.1 What is Haskabelle?

Haskabelle is a converter from Haskell source files to Isabelle/ HOL [1] theories
implemented in Haskell itself.

1.1.2 Motivation

Isabelle/ HOL can be regarded as a combination of a functional programming
language and logic. Just like functional programming languages, it has its
foundation in the typed lambda calculus, but is additionally crafted to al-
low the user to write arbitrary mathematical theorems in a structured and
convenient way.

Haskell is a functional programming language that has succeeded in getting
more and more momentum, not only in academia but increasingly also in
industry. It is used for all kinds of programming tasks despite (or, perhaps,
rather because) of its pureness, that is its complete lack of side-effects.

This pureness makes Haskell relate to Isabelle/ HOL more closely than
other functional languages. In fact, Isabelle/ HOL can be considered a subset
of Haskell.

Writing a converter from the convertible subset of Haskell to Isabelle/ HOL
seems thus like the obvious next step to facilitate machine-aided verification
of Haskell programs. Haskabelle is exactly such a converter.

1.1.3 Implementation

There is one major design decision which users have to keep in mind. Hask-
abelle works on the Abstract Syntax Tree (AST) representation of Haskell
programs exclusively. As a result, it is very restricted on what it knows about
the validity of the program; for example, it does not perform type inference.

In fact, input source files are not checked at all beyond syntactic validity
that is performed by the parser. Users are supposed to first run their Haskell

1



CHAPTER 1. HASKABELLE 2

implementation of choice on the files to catch programming mistakes. In
practice, this is not an impediment as it matches the putative workflow:
Haskabelle is supposed to help the verification of already-written, or just-
written programs.

Also, no proof checking is involved; that work is delegated to Isabelle.
This means that only because the conversion seemingly succeeded, does not
necessarily mean that Isabelle won’t complain. A common example is that
a Haskell function could be syntactically transformed to a corresponding
Isabelle/ HOL function, but Isabelle will refuse to accept it as it’s not able to
determine termination by itself.

Haskabelle performs its work in the following 5 phases.

Parsing

Each Haskell input file is parsed into an Haskell Abstract Syntax Tree repre-
sentation. Additionally, module resolution is performed, i.e. the source files
of the modules that the input files depend on are also read and parsed. So
the actual output of this phase is a forest of Haskell ASTs.

Preprocessing

Each Haskell AST is normalised to a semantically equivalent but canoni-
calised form to simplify the subsequent converting phase. At the moment,
the following transformations are performed:

e identifiers that would clash with reserved keywords or constants in
Isabelle/ HOL are renamed.

e pattern guards are transformed into nested if expressions.
e where clauses are transformed into let expressions.

e local function definitions are made global by renaming then uniquely.

Converting

After preprocessing, each Haskell AST consists entirely of toplevel defini-
tions. Before the actual conversion, a dependency graph is generated for
these toplevel definitions for two purposes: first to ensure that definitions ap-
pear textually before their uses; second to group mutually-recursive function



CHAPTER 1. HASKABELLE 3

together. Both points are necessary to comply with requirements imposed
by Isabelle/ HOL.

Furthermore, a global environment is built in this phase that contains
information about all identifiers, e.g. what they represent, in which module
they belong to, whether they're exported, etc.

What Haskell language features are translated to which Isabelle / HOL con-
structs, is explained in section 1.3.

The output of this phase is a forest of Isabelle/ HOL ASTs.

Adapting

While the previous phase converted the Haskell ASTs into their syntacti-
cally equivalent Isabelle/ HOL ASTs, it has not attempted to map functions,
operators, or algebraic data types, that preexist in Haskell, to their pedants
in Isabelle/ HOL. Such a mapping (or adaption) is performed in this phase.

Printing

The Isabelle/ HOL ASTs are pretty-printed into an human-readable format so
users can subsequently work with the resulting definitions, supply additional
theorems, and verify their work.

1.2 Setup and usage

1.2.1 Prerequisites

We assume that the reader of this tutorial has some basic experience with
UNIX, Haskell, and Isabelle/ HOL.

Haskabelle is shipped in source code; this means you have to provide a
working Haskell environment yourself, including some libraries. In order
to make use of the theories generated by Haskabelle, you will also need an
Isabelle release.

Haskell environment

The given version numbers just indicate which constellation has been tested
— others might work, too.
First, the Haskell suite itself:

GHC Glasgow Haskell Compiler http://www.haskell.org/ghc/ (version 7.6.3)


http://www.haskell.org/ghc/

CHAPTER 1. HASKABELLE 4

The following libraries are required:

mtl Monad transformer library.
http://hackage.haskell.org/cgi-bin /hackage-scripts/package/mtl-2.1.1

xml A simple XML library.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package /xml-1.3.12

uniplate Uniform type generic traversals.
http://hackage.haskell.org/cgi-bin /hackage-scripts/package /uniplate-1.
6.7

cpphs A liberalised re-implementation of cpp, the C pre-processor.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/cpphs-1.13.
3

Happy Happy is a parser generator for Haskell.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/happy-1.18.
9

The installation process provides a binary happy which must be acces-
sible on your PATH to proceed!

haskell-src-exts Manipulating Haskell source: abstract syntax, lexer, parser,
and pretty-printer.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package /haskell-src-exts-0.
4.8 (newer versions won’t work)

Isabelle release

The latest Isabelle release is available from http://isabelle.in.tum.de/download.
html.

Haskabelle distribution

The current Haskabelle release as available from http://isabelle.in.tum.de/
haskabelle.html is tailored to the latest Isabelle release.


http://hackage.haskell.org/cgi-bin/hackage-scripts/package/mtl-2.1.1
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/xml-1.3.12
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/uniplate-1.6.7
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/uniplate-1.6.7
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/cpphs-1.13.3
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/cpphs-1.13.3
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/happy-1.18.9
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/happy-1.18.9
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/haskell-src-exts-0.4.8
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/haskell-src-exts-0.4.8
http://isabelle.in.tum.de/download.html
http://isabelle.in.tum.de/download.html
http://isabelle.in.tum.de/haskabelle.html
http://isabelle.in.tum.de/haskabelle.html

CHAPTER 1. HASKABELLE 5

1.2.2 Basic usage
Understanding the distribution structure

Throughout this manual, qualified paths of executables on the shell prompt
are relative to the root directory of the Haskabelle distribution.
Therein, among others, the following directories can be found:

doc/ Documentation
default/ Default adaption files (see §1.4)
ex/ Examples (see §1.5)

Installing and configuring Haskabelle

If you are using the Haskabelle component shipping with Isabelle, you only
need to make sure that ISABELLE_GHC is set in your Isabelle settings file and
points to your GHC binary. Also the right GHC libraries must be installed.

Converting theories

Haskabelle is invoked using the following command line (isabelle is the
binary of your isabelle distribution):

isabelle haskabelle <SRC1> .. <SRCn> <DST>

where <SRC1> ... <SRCn> is a list of Haskell source files to convert and <DST>
is a directory to put the generated Isabelle/ HOL theory files inside.

The Prelude theory the generated theory files depend on can be found in
default/Prelude. thy.

1.3 A bluffer’s glance at Haskabelle

In this section we want to provide a few examples to give the reader an
impression of Haskabelle’s capabilities.

The following Haskell code represents a very simple interpreter:

module Example where

evalExp :: Exp -> Int
evalExp (Plus el e2)

evalExp (Times el e2)
evalExp (Cond b el e2)

evalExp el + evalExp e2
evalExp el * evalExp e2



CHAPTER 1. HASKABELLE 6

| evalBexp b
| otherwise
evalExp (Val i)

evalExp el
evalExp e2
i

evalBexp :: Bexp -> Bool
evalBexp (Equal el e2)

evalExp el == evalExp e2
evalBexp (Greater el e2)

evalExp el > evalExp e2

data Exp = Plus Exp Exp
| Times Exp Exp

| Cond Bexp Exp Exp
|

Val Int

data Bexp = Equal Exp Exp
| Greater Exp Exp

Haskabelle will transform the above into the following:

theory Example
imports Prelude
begin

datatype Exp = Plus Exp Exp
| Times Exp Exp
| Cond Bexp Exp Exp
| Val int
and Bexp = Equal Exp Exp
| Greater Exp Exp

fun evalExp :: "Exp => int" and
evalBexp :: "Bexp => bool"
where

"evalExp (Plus el e2) = (evalExp el + evalExp e2)"
| "evalExp (Times el e2) = (evalExp el * evalExp e2)"
| "evalExp (Cond b el e2) = (if evalBexp b then evalExp el
else evalExp e2)"
| "evalExp (Val i) = i"
| "evalBexp (Equal el e2)

= heq (evalExp el) (evalExp e2)"
| "evalBexp (Greater el e2) = (

evalExp el > evalExp e2)"

end

We can note a couple of things at this point:

e The data type definitions have been moved before their uses.

e The two data type definitions have been chained together by an explicit
and keyword. Likewise the function definitions have been grouped to-
gether. This stems from the mutual recursion inherent in the defini-
tions.

o We use Isabelle’s function package.



CHAPTER 1. HASKABELLE 7

e The pattern guards in evalExp have been transformed to an if expres-
sion.

e Preexisting Haskell functions and operators have been mapped to Isabelle/ HOL
counterparts.

e Haskell modules inherit from an implicit module Prelude; Haskabelle
comes with a Prelude.thy which provides necessary context to cope
with some Haskell features. We can see that an import of this the
Prelude module is explicitly added by Haskabelle.

e The Haskell comparison operator == has been transformed to isatype-
writer heq which is not defined by with Isabelle/ HOL itself but within
the Prelude. thy file. It names both an operator and a type class which
has been constructed to match ==, and Haskell’s type class Eq.

The next example illustrates a simple use of type classes.

module Classes where
class Monoid a where
nothing :: a
plus :: a -> a > a

instance Monoid Integer where
nothing = 0
plus = (+)

-- prevent name clash with Prelude.sum
summ :: (Momoid a) => [a] -> a

summ [] = nothing

summ (x:xs) = plus x (summ xs)

class (Monoid a) => Group a where
inverse :: a -> a

instance Group Integer where
inverse = negate

sub :: (Group a) => a -> a -> a
sub a b = plus a (inverse b)

Haskabelle will transform this into the following:

theory Classes
imports Nats Prelude
begin
class Monoid = type +
fixes nothing :: ’a
fixes plus :: "’a => ’a => ’a"

instantiation int :: Momoid
begin
definition nothing_int :: "int"



CHAPTER 1. HASKABELLE 8

where
"nothing_int = 0"
definition plus-int :: "int => int => int"
where
"plus_int = (op +)"
instance ..
end

fun summ :: "(’a :: Monoid) list => (’a :: Monoid)"
where

"summ Nil = nothing"
| "summ (x # xs) = plus x (summ xs)"

class Group = Monoid +

fixes inverse :: "’a => ’a"
instantiation int :: Group
begin

definition inverse_int :: "int => int"

where

"inverse_int = uminus"

instance ..
end
fun sub :: "(’a :: Group) => (’a :: Group) => (’a :: Group)"
where

"sub a b = plus a (inverse b)"

end

1.4 Adaption

1.4.1 The concept

Adaption allows to identify functions, types etc. from the Haskell source files
with pre-existing counterparts in Isabelle/ HOL by means of two mechanisms:

e An adaption table in a simple domain-specific language which specifies
a table between identifiers of classes, types and functions in Haskell to
their corresponding identifiers in Isabelle/ HOL.

e A prelude theory containing a Isabelle/ HOL base environment where
Haskabelle’s output is supposed to be run implicitly within. By ex-
tending this, it is possible to adapt even more complex features of the
Haskell programming language.

1.4.2 Setting up your own adaption

Haskabelle provides some default adaptions already in directory default.
You can setup your own adaption according to the following steps:



CHAPTER 1. HASKABELLE 9

Copy default

Typically you will want to use the default adaption as a starting point, so
copy the default directory to a directory of your choice (which we will refer
to as <ADAPT>).

Adapt the prelude theory
If desired, adapt the prelude theory <ADAPT>/Prelude.thy.

Edit adaption table

The adaptions themselves reside in <ADAPT>/adapt.txt and can be edited
there.

Process adaptions

To make the adaptions accessible to Haskabelle, execute the following:
isabelle haskabelle -r -a <ADAPT>

This also includes some basic consistency checking.

Use this adaption during conversion

A particular adaption other than default is selected using the -a command
line switch:

isabelle haskabelle -a <ADAPT> <SRC1> .. <SRCn> <DST>

1.5 Examples

Examples for Haskabelle can be found in the ex/src_hs directory in the
distribution. They can be converted at a glance using the following command:

isabelle haskabelle -e

Each generated theory then is re-imported into Isabelle.



Bibliography

[1] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

10



	Haskabelle
	Introduction
	What is Haskabelle?
	Motivation
	Implementation

	Setup and usage
	Prerequisites
	Basic usage

	A bluffer's glance at Haskabelle 
	Adaption 
	The concept
	Setting up your own adaption

	Examples 


