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Let k, l,m, n denote natural numbers.

When we introduced the Peano axioms we came across an induction axiom which
gives us a method to prove universal assertions about the natural numbers. In
this section we will give some reformulations of this induction principle.

1.1 Least natural numbers

As a first example of such a reformulation we will show in this paragraph that
every collection of natural numbers admits a smallest element.

Let P denote a class.

Definition 1.1. A least natural number of P is a natural number n such
that n ∈ P and no natural number that is less than n belongs to P .

Lemma 1.2. Let n,m be least natural numbers of P . Then n = m.

Proof. Assume n 6= m. Then n < m or m < n. If n < m then n /∈ P and
if m < n then m /∈ P . Contradiction. Therefore n = m.

Theorem 1.3. Assume that P contains some natural number. Then P
has a least natural number.

Proof. Assume the contrary. Define

Q = { n ∈ N | n is less than any natural number m such that m ∈ P } .

Let us show that every natural number belongs to Q.

(BASE CASE) Q contains 0.
Proof. If P contains 0 then 0 is the least natural number of P . Hence 0 is
less than any natural number m such that m ∈ P . Therefore Q contains
0. Qed.

For all natural numbers n we have n ∈ Q =⇒ n + 1 ∈ Q.
Proof. Let n be a natural number. Assume n ∈ Q. Then n is less than any
natural number m such that m ∈ P . Assume that Q does not contain n+1.
Then we can take a natural number m such that m ∈ P and n + 1 ≮ m.
Hence n < m ≤ n + 1. Thus m = n + 1. Then n + 1 is the least natural
number of P . Contradiction. Qed. End.

Then every natural number is less than any natural number n such that n ∈
P . Hence there is no natural number n such that n ∈ P . Contradiction.

1



1.2 Induction via predecessors

Next we will see how to merge the base and induction step of a proof by induction
into a single step. This yields a new induction principle.

Theorem 1.4. Assume for all natural numbers n if P contains all prede-
cessors of n then P contains n. Then P contains every natural number.

Proof. Assume the contrary. Take a natural number n such that P does
not contain n. Define Q = { k ∈ N | k /∈ P }. Then Q contains n. Thus
we can take a least natural number m of Q. Hence Q does not contain
any predecessor of m. Therefore P contains all predecessors of m. Thus
P contains m. Contradiction.

1.3 Induction above a certain number

In our induction principle given by the 3rd Peano axiom we considered the
number 0 as the starting point of an inductive proof. But we can as well start at
any arbitrary number k to prove that a statement holds for all natural numbers
from k on.

Theorem 1.5. Let k be a natural number such that k ∈ P . Suppose that
for all natural numbers n such that n ≥ k we have n ∈ P =⇒ n + 1 ∈ P .
Then for every natural number n such that n ≥ k we have n ∈ P .

Proof. Define
Q = { n ∈ N | if n ≥ k then n ∈ P } .

Let us show that every natural number belongs to Q.

(BASE CASE) We have 0 ∈ Q.

(INDUCTION STEP) For all natural numbers n we have n ∈ Q =⇒
n + 1 ∈ Q.
Proof. Let n be a natural number. Assume n ∈ Q.

If n + 1 ≥ k then n + 1 ∈ P .
Proof. Assume n + 1 ≥ k.

Case n < k. Then n + 1 = k. Hence n + 1 ∈ P . End.

Case n ≥ k. Then n ∈ P . Hence n + 1 ∈ P . End. Qed.

Thus we have n + 1 ∈ Q. Qed. End.

Therefore Q contains every natural number. Hence the thesis.
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