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The Chinese remainder theorem is a number theoretical result about the
solution of simultaneous congruences in the case of coprime modules. The earli-
est known formulation of the theorem dates back to the Chinese mathematician
Sun-tzu in the third century. In the following we present a formalization of a
generalization of the theorem in terms of ideals in an integral domain.

1 Integral domain axioms

We assume that our universe is a fixed integral domain. We call elements of our
universe simply “elements“. In particular, we have two special elements, 0 and
1. Moreover, there is a unary operation, −, and two binary operations, + and
·.

[synonym element/-s]
Let a, b, c, x, y, z, u, v, w denote elements.

Signature 1. (SortsC) 0 is an element.

Signature 2. (SortsC) 1 is an element.

Signature 3. (Sortsu) −x is an element.

Signature 4. (SortsB) x + y is an element.

Signature 5. (SortsB) x · y is an element.

Let x is nonzero stand for x 6= 0. Let x− y stand for x + (−y).

To ensure that our operations form a commutative ring we have to state
the appropriate axioms. First we make sure that the addition yields an abelian
group.

Axiom 6. (AddComm) x + y = y + x.

Axiom 7. (AddAsso) (x + y) + z = x + (y + z).

Axiom 8. (AddBubble) x + (y + z) = y + (x + z).

Axiom 9. (AddZero) x + 0 = x = 0 + x.

Axiom 10. (AddInvr) x + (−x) = 0 = −x + x.
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In fact axiom AddBubble is redundant. We can easily prove it from Ad-
dComm and AddAsso:

x + (y + z)
AddComm

= (y + z) + x
AddAsso

= y + (z + x)
AddComm

= y + (x + z).

Let us continue with the axioms that ensure that the multiplication yields a
commutative monoid.

Axiom 11. (MulComm) x · y = y · x.

Axiom 12. (MulAsso) x · (y · z) = (x · y) · z.

Axiom 13. (MulBubble) x · (y · z) = y · (x · z).

Axiom 14. (MulUnit) x · 1 = x = 1 · x.

As above we can prove MulBubble from MulComm and MulAsso. Now we
ensure that the distribution laws hold.

Axiom 15. (AMDistr1) x · (y + z) = (x · y) + (x · z).

Axiom 16. (AMDistr2) (y + z) · x = (y · x) + (z · x).

The next two statements are some simple computation rules. The first one
concerning multiplication with −1 can be derived from our previous laws to-
gether with MulZero, even if we state it as an axiom here. We leave the proof
of this claim as an exercise for the reader.

Axiom 17. (MulMnOne) (−1) · x = −x = x · (−1).

Lemma 18. (MulZero) x · 0 = 0 = 0 · x.

Proof. Let us show that x · 0 = 0. x · 0. = x · (0 + 0) (by AddZero)
. = (x · 0) + (x · 0) (by AMDistr1). End.

Let us show that 0 ·x = 0. 0 ·x. = (0+0) ·x (by AddZero) . = (0 ·x)+(0 ·x)
(by AMDistr2). End.

There are two axioms remaining to ensure that our universe is not just a
commutative ring but an integral domain: There must be no non-trivial zero-
divisors and our ring must not be trivial.

Axiom 19. (Cancel) x 6= 0 ∧ y 6= 0 =⇒ x · y 6= 0.

Axiom 20. (UnNeZr) 1 6= 0.

2 Sets

Next we consider subsets of our universe. To keep our notion of sets as easy as
possible we state that every set is a subset of our universe.
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[synonym set/-s] [synonym belong/-s]
Let X,Y, Z, U, V,W denote sets.

Axiom 21. Every element of X is an object.

Let x belongs to W denote x is an element of W .

Axiom 22. (SetEq) If every element of X belongs to Y and every
element of Y belongs to X then X = Y .

Definition 23. (DefSum) X ⊕ Y is a set such that for every element
z (z ∈ X ⊕ Y ) iff there exist x ∈ X, y ∈ Y such that z = x + y.

Definition 24. (DefSInt) X ∩ Y is a set such that for every element
z (z ∈ X ∩ Y ) iff z ∈ X and z ∈ Y .

3 Ideals and the Chinese Remainder Theorem

Now we can define ideals as sets which are closed under certain operations.

[synonym ideal/-s]

Definition 25. (DefIdeal) An ideal is a set X such that for every
x ∈ X we have ∀y ∈ X(x + y ∈ X) and ∀z(z · x ∈ X).

Let I, J denote ideals.

We can show that the sum and the intersection of two ideals is again an
ideal.

Lemma 26. (IdeSum) I ⊕ J is an ideal.

Proof. Let x belong to (I ⊕ J).

∀y ∈ (I ⊕ J)(x + y) ∈ (I ⊕ J).
Proof. Let y ∈ (I ⊕ J). (1) Take k ∈ I and l ∈ J such that x = k + l.
(2) Take m ∈ I and n ∈ J such that y = m + n. k + m belongs to
I and l + n belongs to J . x + y. = (k + m) + (l + n) (by 1, 2, Ad-
dComm,AddAsso,AddBubble). Therefore the thesis. Qed.

For every element z (z · x) ∈ (I ⊕ J).
Proof. Let z be an element. (1) Take k ∈ I and l ∈ J such that x = k + l.
z ·k belongs to I and z · l belongs to J . z ·x. = (z ·k)+(z · l) (by AMDistr1,
1). Therefore the thesis. Qed.

Lemma 27. (IdeInt) I ∩ J is an ideal (by DefIdeal).

Proof. Let x belong to I ∩ J . ∀y ∈ (I ∩ J)(x + y) ∈ (I ∩ J). For every
element z (z · x) ∈ (I ∩ J).

Now we can state the Chinese remainder theorem in terms of congruence
modulo some ideal.
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Definition 28. (DefMod) x = y (mod I) iff x− y ∈ I.

Theorem 29. (ChineseRemainder) Suppose that every element
belongs to I ⊕ J . Let x, y be elements. There exists an element w such
that w = x (mod I) and w = y (mod J).

Proof. Take a ∈ I and b ∈ J such that a + b = 1 (by DefSum). (1) Take
w = (y · a) + (x · b).
Let us show that w = x (mod I) and w = y (mod J).

w − x belongs to I.
Proof. w−x = (y·a)+((x·b)−x). x·(b−1) belongs to I. x·(b−1) = (x·b)−x.
Qed.

w − y belongs to J .
Proof. w−y = (x·b)+((y·a)−y). y·(a−1) belongs to J . y·(a−1) = (y·a)−y.
Qed. End.

4 Greatest common divisors and principal ideals

In this section we extend our integral domain to a Euclidean domain. To be
able to do this we first have to establish a notion of natural numbers.

[synonym number/-s]

Signature 30. (NatSort) A natural number is an object.

Now we can equip our domain with a Euclidean function | · |.

Signature 31. (EucSort) Let x be a nonzero element. |x| is a natural
number.

Axiom 32. (Division) Let x, y be elements and y 6= 0. There exist
elements q, r such that x = (q · y) + r and (r 6= 0 =⇒ |r| ≺ |y|).

The Division axiom makes use of Naproche’s built-in induction scheme: For
any statement ϕ(x) (with one free variable x) and any element r the following
is true:

(∀r′(|r′| ≺ |r| → ϕ(r′)))→ ϕ(r)

This allows us to prove certain statements about r by induction on |r|.

Next let us have a look at the notion of divisors and, in particular, greatest
common divisors (gcds).

[synonym divisor/-s] [synonym divide/-s]

Definition 33. (DefDiv) x divides y iff for some z (x · z = y).

Let x | y stand for x divides y. Let x is divided by y stand for y | x.
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Definition 34. (DefDvs) A divisor of x is an element that divides x.

Definition 35. (DefGCD) A gcd of x and y is a common divisor c of
x and y such that any common divisor of x and y divides c.

Definition 36. (DefRel) x, y are relatively prime iff 1 is a gcd of x
and y.

If we have two elements, say a and b, we will see that the ideal generated by
a and b also contains the gcd of a and b (as long as a or b is non-zero). An ideal
which is generated by a single element, a so-called principal ideal, is defined as
follows.

Definition 37. (DefPrIdeal) 〈c〉 is a set such that for every z z is an
element of 〈c〉 iff there exists an element x such that z = c · x.

Lemma 38. (PrIdeal) 〈c〉 is an ideal.

Proof. Let x belong to 〈c〉.
∀y ∈ 〈c〉x + y ∈ 〈c〉.
Proof. Let y ∈ 〈c〉. (1) Take an element u such that c · u = x. (2) Take
an element v such that c · v = y. x + y. = c · (u + v) (by 1, 2, AMDistr1).
Therefore the thesis. Qed.

∀zz · x ∈ 〈c〉.
Proof. Let z be an element. (1) Take an element u such that c · u = x.
z · x. = c · (u · z) (by 1,MulComm,MulAsso, MulBubble). Therefore the
thesis. Qed.

The notion of a principal ideal allows us write the ideal which is generated
by two elements a and b as 〈a〉 ⊕ 〈b〉. As mentioned before if not both a and b
are zero, 〈a〉 ⊕ 〈b〉 contains the gcd of a and b. That means that if c is the gcd
of a and b then c is of the form x · a + y · b for certain elements x and y. For
example if we take Z as our Euclidean domain we get Bézout’s identity : For two
integers n,m with a gcd d there exist integers x, y such that d = x · n + y ·m.
For instance

gcd(8, 14) = 2 = 2 · 8 + (−1) · 14

and
gcd(9, 25) = 1 = −11 · 9 + 4 · 25.

Theorem 39. (GCDin) Let a, b be elements. Assume that a is nonzero
or b is nonzero. Let c be a gcd of a and b. Then c belongs to 〈a〉 ⊕ 〈b〉.

Proof. Take an ideal I equal to 〈a〉⊕ 〈b〉. We have 0, a ∈ 〈a〉 and 0, b ∈ 〈b〉
(by MulZero, MulUnit). Hence there exists a nonzero element of 〈a〉⊕ 〈b〉.
Indeed a ∈ 〈a〉 ⊕ 〈b〉 and b ∈ 〈a〉 ⊕ 〈b〉 (by AddZero).

Take a nonzero u ∈ I such that for no nonzero v ∈ I (|v| ≺ |u|).
Proof. We can show by induction on |w| that for every nonzero w ∈ I there

5



exists nonzero u ∈ I such that for no nonzero v ∈ I (|v| ≺ |u|). Obvious.
Qed.

u is a common divisor of a and b.
Proof by contradiction. Assume the contrary.

For some elements x, y u = (a · x) + (b · y).
Proof. Take k ∈ 〈a〉 and l ∈ 〈b〉 such that u = k + l. Take elements x, y
such that (k = a · x and l = b · y). Hence the thesis. Qed.

Case u does not divide a. Take elements q, r such that a = (q · u) + r and
(r = 0 ∨ |r| ≺ |u|) (by Division). r is nonzero. −(q · u) belongs to I. a
belongs to I (by AddZero). r = −(q · u) + a. Hence r belongs to I (by
DefIdeal). End.

Case u does not divide b. Take elements q, r such that b = (q · u) + r and
(r = 0 ∨ |r| ≺ |u|) (by Division). r is nonzero. −(q · u) belongs to I. b
belongs to I (by AddZero). r = −(q · u) + b. Hence r belongs to I (by
DefIdeal). End. Qed.

Hence u divides c.

Hence the thesis.
Proof. Take an element z such that c = z · u. Then c ∈ I (by DefIdeal).
Qed.

Bézout’s identity ensures that for any two coprime integers n,m we have
nZ⊕mZ = Z. Because we can take integers x, y such that x ·n+ y ·m = 1 and
thus for every integer z we have zx ·n+ zy ·m = z, hence z ∈ nZ⊕mZ. So as a
special case of the Chinese remainder theorem if n and m are coprime then for
all integers x, y the simultaneous congruence

w = x (mod n)

w = y (mod m)

has a solution.
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