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We base our formalization on the notions of classes, sets and objects which are
hardcoded into Naproche.

Let x, y, z denote sets.

Sets are regarded as classes which are also objects, the latter being entities that
are in some sense small enough to be contained in classes.

Axiom 1.1. x is a class.

Axiom 1.2. x is an objects.

Axiom 1.3. Let u be an element of x. Then u is an object.

1.1 Subsets

Let us continue with the notion of subsets, i.e. sets which are included in some
other set.

Definition 1.4. A subset of x is a set y such that every element of y is an
element of x.

Let y ⊆ x stand for y is a subset of x. Let y ⊂ x stand for y ⊆ x. Let a
superset of x stand for a set y such that x ⊆ y. Let y ⊇ x stand for y is a
superset of x. Let y ⊃ x stand for y ⊇ x. Let x includes y stand for y ⊆ x.
Let y is included in x stand for x includes y.

Definition 1.5. A proper subset of x is a subset of x that is not equal to
x.

Let y ( x stand for x is a proper subset of x. Let a proper superset of
x stand for a set y such that x ( y. Let y ) x stand for y is a proper
superset of x.

Proposition 1.6. x ⊆ x.

Proposition 1.7. If x ⊆ y and y ⊆ z then x ⊆ z.

1.2 Set extensionality

Since the only distinguishing feature of a set should be its elements, let us add
the following extensionality axiom to our theory.

Axiom 1.8 (Set extensionality). If x ⊆ y and y ⊆ x then x = y.
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1.3 Separation

Our next axiom ensures that the universe of sets is closed under taking subcol-
lections. This means that any subcollection of a given set is itself a set.

Axiom 1.9 (Separation). Let C be a collection and x be a set. Assume
that every element of C is contained in x. Then C is a set.

1.4 Set existence

Up to now our theory does not admit the existence of a single set. This is
changed by the following axiom.

Axiom 1.10 (Set existence). There exists a set.

1.5 The empty set

The last to axioms allow us now to show that there exists a unique set that does
not contain any element – the empty set.

Definition 1.11. x is empty iff x has no elements.

Let x is nonempty stand for x is not empty.

Lemma 1.12. There exists an empty set.

Proof. Define C = { u | contradiction }. Take a set x (by Set existence).
Then every element of C is contained in x. Hence C is a set (by Separation).
C has no element. Hence the thesis.

Lemma 1.13. If x and y are empty then x = y.

Proof. Assume that x and y are empty. Then every element of x is an
element of y and every element of y is an element of x. Hence x ⊆ y and
y ⊆ x. Thus x = y.

Definition 1.14. ∅ is the empty set.

Let {} stand for ∅. Let the empty set stand for ∅.
Proposition 1.15. ∅ is a subset of every set.

Proof. Let x be a set. Then every element of ∅ is an element of x. Indeed
∅ has no element. Hence ∅ ⊆ x.

1.6 Pairing

Let us now consider an axiom which allows us to collect two given objects into
a set which contains exactly these two ones.
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Axiom 1.16 (Pairing). Let u, v be objects. There exists a set z such
that z = { w | w = u or w = v }.
Definition 1.17. Let u, v be elements. {u, v} is the set z such that z =
{ w | w = u or w = v }.
Let the unordered pair of u and v stand for {u, v}.
Lemma 1.18. Let u be an element. There exists a set z such that z =
{ w | w = u }.

Proof. Take z = {u, u}. Then z = { w | w = u }.

Definition 1.19. Let u be an element. {u} is the set z such that z =
{ w | w = u }.
Let the singleton set of u stand for {u}.
Definition 1.20. A singleton set is a set x such that x = {u} for some
element u.

1.7 Set-systems

Sets whose elements are all sets as well are called set- systems or systems of
sets.

Definition 1.21. A system of sets is a set X such that every element of
X is a set.

Let X,Y, Z denote systems of sets.
Let a set of X stand for an element of X.

Definition 1.22. A system of nonempty sets is a system of sets X such
that every set of X is nonempty.

Proposition 1.23. {x} is a system of sets.

Proposition 1.24. {x, y} is a system of sets.

Definition 1.25. A system of subsets of x is a set X such that every set
of X is a subset of x.

Proposition 1.26. Every system of subsets of x is a system of sets.

1.8 Intersections

Considering a set-system X we can extract all objects which are contained in
every member of X into a new set, called the intersection over X.

Lemma 1.27. Let x be a nonempty system of sets. Then there exists a
set z such that z = { u | u is contained in every member of x }.

Proof. Take an element y of x. Then y is a set. (1) Define z =
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{ u | u is contained in every element of x }. Every element of z is con-
tained in y. Hence z is a set. Therefore the thesis (by 1).

Definition 1.28. Let x be a nonempty system of sets.
⋂
x is the set z

such that z = { u | u is contained in every member of x }.
Let the intersection over x stand for

⋂
x.

The notion of the intersection over a set-system can be used to provide an
operation which maps two sets to the set of all elements they have in common.

Lemma 1.29. Let x, y be sets. Then there exists a set z such that z =
{ u | u ∈ x and u ∈ y }.

Proof. Take z =
⋂
{x, y}. Then

z = { u | u is contained in every element of {x, y} } .

Hence z = { u | u ∈ x and u ∈ y }.

Definition 1.30. x ∩ y is the set z such that z = { u | u ∈ x and u ∈ y }.
Let the intersection of x and y stand for x ∩ y.

Proposition 1.31.
⋂
{x, y} = x ∩ y.

Proof. Let us show that
⋂
{x, y} ⊆ x ∩ y. Let u ∈

⋂
{x, y}. Then u is

an element of every element of {x, y}. Hence u ∈ x and u ∈ y. Thus
u ∈ x ∩ y. End.

Let us show that x ∩ y ⊆
⋂
{x, y}. Let u ∈ x ∩ y. Then u ∈ x and u ∈ y.

Hence u is an element of every element of {x, y}. Thus u ∈
⋂
{x, y}.

End.

Corollary 1.32.
⋂
{x} = x.

Proof.
⋂
{x} =

⋂
{x, x} = x ∩ x = x.

Proposition 1.33. Let x be a nonempty system of sets. Then y ⊆
⋂

x iff
y is a subset of every element of x.

Proof. Case y ⊆
⋂
x. Let z be an element of x. Let u ∈ y. Then u ∈

⋂
x.

Hence u ∈ z. End.

Case y is a subset of every element of x. Let u ∈ y. Then u ∈ z for all sets
z such that z ∈ x. Hence u ∈

⋂
x. End.

An important notion is that of disjoint sets, i.e. sets wich do not have any
elements in common.

Definition 1.34. x and y are disjoint iff x ∩ y = ∅.

Obviously this yields a symmetric relation on the universe of sets.
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Proposition 1.35. If x and y are disjoint then y and x are disjoint.

Proof. Assume that x and y are disjoint. Then x∩y is empty. Hence there
is no element u such that u ∈ x and u ∈ y. Thus y∩x is empty. Therefore
y and x are disjoint.

1.9 Unions

Analogous to the definition of the intersection over a set-system we now want
to consider for a given set-system X the collection of all elements which lie in
some member of X. To ensure that this collection is a set we need an additional
axiom.

Axiom 1.36 (Union). Let x be a system of sets. Then there exists a set
z such that z = { u | u is contained in some element of x }.
Definition 1.37. Let x be a system of sets.

⋃
x is the set z such that

z = { u | u is contained in some element of x }.
Let the union over x stand for

⋃
x.

Lemma 1.38. Let x, y be sets. Then there exists a set z such that z =
{ u | u ∈ x or u ∈ y }.

Proof. Take z =
⋃
{x, y}. Then

z = { u | u is contained in some element of {x, y} } .

Hence z = { u | u ∈ x or u ∈ y }.

Definition 1.39. x ∪ y is the set z such that z = { w | w ∈ x or w ∈ y }.
Let the union of x and y stand for x ∪ y.

Proposition 1.40.
⋃
{x, y} = x ∪ y.

Proof. Let us show that
⋃
{x, y} ⊆ x ∪ y. Let u ∈

⋃
{x, y}. Then u is an

element of some element of {x, y}. Hence u ∈ x or u ∈ y. Thus u ∈ x ∪ y.
End.

Let us show that x ∪ y ⊆
⋃
{x, y}. Let u ∈ x ∪ y. Then u ∈ x or u ∈ y.

Hence u is an element of some element of {x, y}. Thus u ∈
⋃
{x, y}.

End.

Corollary 1.41.
⋃
{x} = x.

Proof.
⋃
{x} =

⋃
{x, x} = x ∪ x = x.

Proposition 1.42. Let x be a system of sets. Then
⋃
x ⊆ y iff every

element of x is a subset of y.
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Proof. Case
⋃
x ⊆ y. Let z be an element of x. Let u ∈ z. Then u is an

element of some element of x. Hence u ∈
⋃
x. Thus u ∈ y. End.

Case every element of x is a subset of y. Let u ∈
⋃

x. Take a set z such
that z ∈ x and u ∈ z. Then z is a subset of y. Hence u ∈ y. End.

Proposition 1.43.
⋃
∅ = ∅.

Proof. ∅ has no elements. Hence there is no x ∈ ∅ that has an element.
Thus

⋃
∅ is empty. Therefore

⋃
∅ = ∅.

1.10 Partitions

Another important notion is that of a partition of a set x. i.e. a set which splits
x into pairwise disjoint subsets.

Definition 1.44. A partition of x is a system of sets P such that every
element of P is a subset of x and every element of x is contained in some
member of P and all distinct sets A,B of P are pairwise disjoint.

Proposition 1.45. Let P be a partition of x. Then x =
⋃

P .

Proof. Let us show that x ⊆
⋃
P . Let u ∈ x. Take a set A of P such that

u ∈ A. Then we have u ∈
⋃
P . End.

Let us show that
⋃
P ⊆ x. Let u ∈

⋃
P . Then we can take a set A of P

such that u ∈ A. A is a subset of x. Hence u ∈ x. End.

1.11 Complements

Let us define another operation on sets: The (relative) complement.

Lemma 1.46. Let x, y be sets. There exists a set z such that z =
{ w | w ∈ x and w /∈ y }.

Proof. Define z = { w | w ∈ x and w /∈ y }. Then every element of z is
contained in x. Hence z is a set (by Separation).

Definition 1.47. x\y is the set such that x\y = { w | w ∈ x and w /∈ y }.
Let the complement of y in x stand for x \ y.

1.12 Computation laws

Now that we are provided with the most common operations on sets let us have
a look on their algebraic properties.
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Commutativity of union and intersection:

Proposition 1.48.
x ∪ y = y ∪ x.

Proof. Let us show that x∪ y ⊆ y∪x. Let u ∈ x∪ y. Then u ∈ x or u ∈ y.
Hence u ∈ y or u ∈ x. Thus u ∈ y ∪ x. End.

Let us show that y∪x ⊆ x∪ y. Let u ∈ y∪x. Then u ∈ y or u ∈ x. Hence
u ∈ x or u ∈ y. Thus u ∈ x ∪ y. End.

Proposition 1.49.
x ∩ y = y ∩ x.

Proof. Let us show that x ∩ y ⊆ y ∩ x. Let u ∈ x ∩ y. Then u ∈ x and
u ∈ y. Hence u ∈ y and u ∈ x. Thus u ∈ y ∩ x. End.

Let us show that y ∩ x ⊆ x ∩ y. Let u ∈ y ∩ x. Then u ∈ y and u ∈ x.
Hence u ∈ x and u ∈ y. Thus u ∈ x ∩ y. End.

Associativity of union and intersection:

Proposition 1.50.

((x ∪ y) ∪ z) = x ∪ (y ∪ z).

Proof. Let us show that ((x ∪ y) ∪ z) ⊆ x ∪ (y ∪ z). Let u ∈ (x ∪ y) ∪ z.
Then u ∈ x ∪ y or u ∈ z. Hence u ∈ x or u ∈ y or u ∈ z. Thus u ∈ x or
u ∈ (y ∪ z). Therefore u ∈ x ∪ (y ∪ z). End.

Let us show that x∪ (y ∪ z) ⊆ (x∪ y)∪ z. Let u ∈ x∪ (y ∪ z). Then u ∈ x
or u ∈ y ∪ z. Hence u ∈ x or u ∈ y or u ∈ z. Thus u ∈ x ∪ y or u ∈ z.
Therefore u ∈ (x ∪ y) ∪ z. End.

Proposition 1.51.

((x ∩ y) ∩ z) = x ∩ (y ∩ z).

Proof. Let us show that ((x ∩ y) ∩ z) ⊆ x ∩ (y ∩ z). Let u ∈ (x ∩ y) ∩ z.
Then u ∈ x ∩ y and u ∈ z. Hence u ∈ x and u ∈ y and u ∈ z. Thus u ∈ x
and u ∈ (y ∩ z). Thereforeu ∈ x ∩ (y ∩ z). End.

Let us show that x∩ (y ∩ z) ⊆ (x∩ y)∩ z. Let u ∈ x∩ (y ∩ z). Then u ∈ x
and u ∈ y ∩ z. Hence u ∈ x and u ∈ y and u ∈ z. Thus u ∈ x ∩ y and
u ∈ z. Thereforeu ∈ (x ∩ y) ∩ z. End.
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Distributivity of union and intersection:

Proposition 1.52.

x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).

Proof. Let us show that x∩ (y ∪ z) ⊆ (x∩ y)∪ (x∩ z). Let u ∈ x∩ (y ∪ z).
Then u ∈ x and u ∈ y ∪ z. Hence u ∈ x and (u ∈ y or u ∈ z). Thus (u ∈ x
and u ∈ y) or (u ∈ x and u ∈ z). Therefore u ∈ x ∩ y or u ∈ x ∩ z. Hence
u ∈ (x ∩ y) ∪ (x ∩ z). End.

Let us show that ((x∩ y)∪ (x∩ z)) ⊆ x∩ (y ∪ z). Let u ∈ (x∩ y)∪ (x∩ z).
Then u ∈ x ∩ y or u ∈ x ∩ z. Hence (u ∈ x and u ∈ y) or (u ∈ x and
u ∈ z). Thus u ∈ x and (u ∈ y or u ∈ z). Therefore u ∈ x and u ∈ y ∪ z.
Henceu ∈ x ∩ (y ∪ z). End.

Proposition 1.53.

x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z).

Proof. Let us show that x∪ (y ∩ z) ⊆ (x∪ y)∩ (x∪ z). Let u ∈ x∪ (y ∩ z).
Then u ∈ x or u ∈ y ∩ z. Hence u ∈ x or (u ∈ y and u ∈ z). Thus (u ∈ x
or u ∈ y) and (u ∈ x or u ∈ z). Therefore u ∈ x ∪ y and u ∈ x ∪ z. Hence
u ∈ (x ∪ y) ∩ (x ∪ z). End.

Let us show that ((x∪ y)∩ (x∪ z)) ⊆ x∪ (y ∩ z). Let u ∈ (x∪ y)∩ (x∪ z).
Then u ∈ x ∪ y and u ∈ x ∪ z. Hence (u ∈ x or u ∈ y) and (u ∈ x or
u ∈ z). Thus u ∈ x or (u ∈ y and u ∈ z). Therefore u ∈ x or u ∈ y ∩ z.
Hence u ∈ x ∪ (y ∩ z). End.

Idempocy laws for union and intersection:

Proposition 1.54.
x ∪ x = x.

Proof. x ∪ x = { u | u ∈ x or u ∈ x }. Hence x ∪ x = { u | u ∈ x }. Thus
x ∪ x = x.

Proposition 1.55.
x ∩ x = x.

Proof. x ∩ x = { u | u ∈ x and u ∈ x }. Hence x ∩ x = { u | u ∈ x }. Thus
x ∩ x = x.
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Distributivity of complement wrt. union and intersection:

Proposition 1.56.

x \ (y ∩ z) = (x \ y) ∪ (x \ z).

Proof. Let us show that x \ (y ∩ z) ⊆ (x \ y) ∪ (x \ z). Let u ∈ x \ (y ∩ z).
Then u ∈ x and u /∈ y ∩ z. Hence it is wrong that (u ∈ y and u ∈ z).
Thus u /∈ y or u /∈ z. Therefore u ∈ x and (u /∈ y or u /∈ z). Then (u ∈ x
and u /∈ y) or (u ∈ x and u /∈ z). Hence u ∈ x \ y or u ∈ x \ z. Thus
u ∈ (x \ y) ∪ (x \ z). End.

Let us show that ((x \ y) ∪ (x \ z)) ⊆ x \ (y ∩ z). Let u ∈ (x \ y) ∪ (x \ z).
Then u ∈ x \ y or u ∈ x \ z. Hence (u ∈ x and u /∈ y) or (u ∈ x and u /∈ z).
Thus u ∈ x and (u /∈ y or u /∈ z). Therefore u ∈ x and not (u ∈ y and
u ∈ z). Then u ∈ x and not u ∈ y ∩ z. Hence u ∈ x \ (y ∩ z). End.

Proposition 1.57.

x \ (y ∪ z) = (x \ y) ∩ (x \ z).

Proof. Let us show that x \ (y ∪ z) ⊆ (x \ y) ∩ (x \ z). Let u ∈ x \ (y ∪ z).
Then u ∈ x and u /∈ y ∪ z. Hence it is wrong that (u ∈ y or u ∈ z). Thus
u /∈ y and u /∈ z. Therefore u ∈ x and (u /∈ y and u /∈ z). Then (u ∈ x
and u /∈ y) and (u ∈ x and u /∈ z). Hence u ∈ x \ y and u ∈ x \ z. Thus
u ∈ (x \ y) ∩ (x \ z). End.

Let us show that ((x \ y) ∩ (x \ z)) ⊆ x \ (y ∪ z). Let u ∈ (x \ y) ∩ (x \ z).
Then u ∈ x \ y and u ∈ x \ z. Hence (u ∈ x and u /∈ y) and (u ∈ x and
u /∈ z). Thus u ∈ x and (u /∈ y and u /∈ z). Therefore u ∈ x and not (u ∈ y
or u ∈ z). Then u ∈ x and not u ∈ y ∪ z. Hence u ∈ x \ (y ∪ z). End.

Subset laws:

Proposition 1.58.
x ⊆ x ∪ y.

Proof. Let u ∈ x. Then u ∈ x or u ∈ y. Hence u ∈ x ∪ y.

Proposition 1.59.
x ∩ y ⊆ x.

Proof. Let u ∈ x ∩ y. Then u ∈ x and u ∈ y. Hence u ∈ x.

Proposition 1.60.
x ⊆ y ⇐⇒ x ∪ y = y.

Proof. Case x ⊆ y.
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Let us show that x ∪ y ⊆ y. Let u ∈ x ∪ y. Then u ∈ x or u ∈ y. If u ∈ x
then u ∈ y. Hence u ∈ y. End.

Let us show that y ⊆ x ∪ y. Let u ∈ y. Then u ∈ x or u ∈ y. Hence
u ∈ x ∪ y. End. End.

Case x ∪ y = y. Let u ∈ x. Then u ∈ x or u ∈ y. Hence u ∈ x ∪ y = y.
End.

Proposition 1.61.
x ⊆ y ⇐⇒ x ∩ y = x.

Proof. Case x ⊆ y.

Let us show that x ∩ y ⊆ x. Let u ∈ x ∩ y. Then u ∈ x and u ∈ y. Hence
u ∈ x. End.

Let us show that x ⊆ x ∩ y. Let u ∈ x. Then u ∈ y. Hence u ∈ x and
u ∈ y. Thus u ∈ x ∩ y. End. End.

Case x ∩ y = x. Let u ∈ x. Then u ∈ x ∩ y. Hence u ∈ x and u ∈ y. Thus
u ∈ y. End.

Complement laws:

Proposition 1.62.
x \ x = ∅.

Proof. x\x has no elements. Indeed x\x = { u | u ∈ x and u /∈ x }. Hence
the thesis.

Proposition 1.63.
x \ ∅ = x.

Proof. x \ ∅ = { u | u ∈ x and u /∈ ∅ }. No element is an element of ∅.
Hence x \ ∅ = { u | u ∈ x }. Then we have the thesis.

Proposition 1.64.
x \ (x \ y) = x ∩ y.

Proof. Let us show that x \ (x \ y) ⊆ x∩ y. Let u ∈ x \ (x \ y). Then u ∈ x
and u /∈ x \ y. Hence u /∈ x or u ∈ y. Thus u ∈ y. Therefore u ∈ x ∩ y.
End.

Let us show that x∩ y ⊆ x \ (x \ y). Let u ∈ x∩ y. Then u ∈ x and u ∈ y.
Hence u /∈ x or u ∈ y. Thus u /∈ x \ y. Therefore u ∈ x \ (x \ y). End.

Proposition 1.65.

y ⊆ x ⇐⇒ x \ (x \ y) = y.
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Proof. Case y ⊆ x. Obvious.

Case x \ (x \ y) = y. Then every element of y is an element of x \ (x \ y).
Thus every element of y is an element of x. Then we have the thesis.
End.

Proposition 1.66.

x ∩ (y \ z) = (x ∩ y) \ (x ∩ z).

Proof. Let us show that x ∩ (y \ z) ⊆ (x ∩ y) \ (x ∩ z). Let u ∈ x ∩ (y \ z).
Then u ∈ x and u ∈ y \ z. Hence u ∈ x and u ∈ y. Thus u ∈ x ∩ y and
u /∈ z. Therefore u /∈ x ∩ z. Then we have u ∈ (x ∩ y) \ (x ∩ z). End.

Let us show that ((x∩ y) \ (x∩ z)) ⊆ x∩ (y \ z). Let u ∈ (x∩ y) \ (x∩ z).
Then u ∈ x and u ∈ y. u /∈ x ∩ z. Hence u /∈ z. Thus u ∈ y \ z. Therefore
u ∈ x ∩ (y \ z). End.
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