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Abstract

This is a formalization of some ZF-like set theory. It introduces the
common operations on sets like unions, intersections, complements, pow-
ersets, symmetric differences and Cartesian products and presents de-
tailled proofs of their algebraic properties. Moreover, basic notions con-
cerning functions like images, preimages and invertibility are provided,
again with detailed proofs of their computation laws, up to the definition
of equipollency.

It can either be regarded as an independent collection of contents from
basic undergraduate mathematics or serve as the basis for more sophisti-
cated formalizations.
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Part I

Sets

1 Sets

[readtex vocabulary.ftl.tex]

[readtex macros.ftl.tex]

We base our formalization on the notions of classes, sets and objects which are
hardcoded into Naproche.

Let x, y, z denote sets.

Sets are regarded as classes which are also objects, the latter being entities that
are in some sense small enough to be contained in classes.

Axiom 1.1. x is a class.

Axiom 1.2. x is an objects.

Axiom 1.3. Let u be an element of x. Then u is an object.

1.1 Subsets

Let us continue with the notion of subsets, i.e. sets which are included in some
other set.

Definition 1.4. A subset of x is a set y such that every element of y is an
element of x.

Let y ⊆ x stand for y is a subset of x. Let y ⊂ x stand for y ⊆ x. Let a
superset of x stand for a set y such that x ⊆ y. Let y ⊇ x stand for y is a
superset of x. Let y ⊃ x stand for y ⊇ x. Let x includes y stand for y ⊆ x.
Let y is included in x stand for x includes y.

Definition 1.5. A proper subset of x is a subset of x that is not equal to
x.

Let y ( x stand for x is a proper subset of x. Let a proper superset of
x stand for a set y such that x ( y. Let y ) x stand for y is a proper
superset of x.

Proposition 1.6. x ⊆ x.

Proposition 1.7. If x ⊆ y and y ⊆ z then x ⊆ z.
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1.2 Set extensionality

Since the only distinguishing feature of a set should be its elements, let us add
the following extensionality axiom to our theory.

Axiom 1.8 (Set extensionality). If x ⊆ y and y ⊆ x then x = y.

1.3 Separation

Our next axiom ensures that the universe of sets is closed under taking subcol-
lections. This means that any subcollection of a given set is itself a set.

Axiom 1.9 (Separation). Let C be a collection and x be a set. Assume
that every element of C is contained in x. Then C is a set.

1.4 Set existence

Up to now our theory does not admit the existence of a single set. This is
changed by the following axiom.

Axiom 1.10 (Set existence). There exists a set.

1.5 The empty set

The last to axioms allow us now to show that there exists a unique set that does
not contain any element – the empty set.

Definition 1.11. x is empty iff x has no elements.

Let x is nonempty stand for x is not empty.

Lemma 1.12. There exists an empty set.

Proof. Define C = { u | contradiction }. Take a set x (by Set existence).
Then every element of C is contained in x. Hence C is a set (by Separation).
C has no element. Hence the thesis.

Lemma 1.13. If x and y are empty then x = y.

Proof. Assume that x and y are empty. Then every element of x is an
element of y and every element of y is an element of x. Hence x ⊆ y and
y ⊆ x. Thus x = y.

Definition 1.14. ∅ is the empty set.

Let {} stand for ∅. Let the empty set stand for ∅.
Proposition 1.15. ∅ is a subset of every set.
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Proof. Let x be a set. Then every element of ∅ is an element of x. Indeed
∅ has no element. Hence ∅ ⊆ x.

1.6 Pairing

Let us now consider an axiom which allows us to collect two given objects into
a set which contains exactly these two ones.

Axiom 1.16 (Pairing). Let u, v be objects. There exists a set z such
that z = { w | w = u or w = v }.
Definition 1.17. Let u, v be elements. {u, v} is the set z such that z =
{ w | w = u or w = v }.
Let the unordered pair of u and v stand for {u, v}.
Lemma 1.18. Let u be an element. There exists a set z such that z =
{ w | w = u }.

Proof. Take z = {u, u}. Then z = { w | w = u }.

Definition 1.19. Let u be an element. {u} is the set z such that z =
{ w | w = u }.
Let the singleton set of u stand for {u}.
Definition 1.20. A singleton set is a set x such that x = {u} for some
element u.

1.7 Set-systems

Sets whose elements are all sets as well are called set- systems or systems of
sets.

Definition 1.21. A system of sets is a set X such that every element of
X is a set.

Let X,Y, Z denote systems of sets.
Let a set of X stand for an element of X.

Definition 1.22. A system of nonempty sets is a system of sets X such
that every set of X is nonempty.

Proposition 1.23. {x} is a system of sets.

Proposition 1.24. {x, y} is a system of sets.

Definition 1.25. A system of subsets of x is a set X such that every set
of X is a subset of x.

Proposition 1.26. Every system of subsets of x is a system of sets.

5



1.8 Intersections

Considering a set-system X we can extract all objects which are contained in
every member of X into a new set, called the intersection over X.

Lemma 1.27. Let x be a nonempty system of sets. Then there exists a
set z such that z = { u | u is contained in every member of x }.

Proof. Take an element y of x. Then y is a set. (1) Define z =
{ u | u is contained in every element of x }. Every element of z is con-
tained in y. Hence z is a set. Therefore the thesis (by 1).

Definition 1.28. Let x be a nonempty system of sets.
⋂
x is the set z

such that z = { u | u is contained in every member of x }.
Let the intersection over x stand for

⋂
x.

The notion of the intersection over a set-system can be used to provide an
operation which maps two sets to the set of all elements they have in common.

Lemma 1.29. Let x, y be sets. Then there exists a set z such that z =
{ u | u ∈ x and u ∈ y }.

Proof. Take z =
⋂
{x, y}. Then

z = { u | u is contained in every element of {x, y} } .

Hence z = { u | u ∈ x and u ∈ y }.

Definition 1.30. x ∩ y is the set z such that z = { u | u ∈ x and u ∈ y }.
Let the intersection of x and y stand for x ∩ y.

Proposition 1.31.
⋂
{x, y} = x ∩ y.

Proof. Let us show that
⋂
{x, y} ⊆ x ∩ y. Let u ∈

⋂
{x, y}. Then u is

an element of every element of {x, y}. Hence u ∈ x and u ∈ y. Thus
u ∈ x ∩ y. End.

Let us show that x ∩ y ⊆
⋂
{x, y}. Let u ∈ x ∩ y. Then u ∈ x and u ∈ y.

Hence u is an element of every element of {x, y}. Thus u ∈
⋂
{x, y}.

End.

Corollary 1.32.
⋂
{x} = x.

Proof.
⋂
{x} =

⋂
{x, x} = x ∩ x = x.

Proposition 1.33. Let x be a nonempty system of sets. Then y ⊆
⋂
x iff

y is a subset of every element of x.

Proof. Case y ⊆
⋂
x. Let z be an element of x. Let u ∈ y. Then u ∈

⋂
x.

Hence u ∈ z. End.
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Case y is a subset of every element of x. Let u ∈ y. Then u ∈ z for all sets
z such that z ∈ x. Hence u ∈

⋂
x. End.

An important notion is that of disjoint sets, i.e. sets wich do not have any
elements in common.

Definition 1.34. x and y are disjoint iff x ∩ y = ∅.

Obviously this yields a symmetric relation on the universe of sets.

Proposition 1.35. If x and y are disjoint then y and x are disjoint.

Proof. Assume that x and y are disjoint. Then x∩y is empty. Hence there
is no element u such that u ∈ x and u ∈ y. Thus y∩x is empty. Therefore
y and x are disjoint.

1.9 Unions

Analogous to the definition of the intersection over a set-system we now want
to consider for a given set-system X the collection of all elements which lie in
some member of X. To ensure that this collection is a set we need an additional
axiom.

Axiom 1.36 (Union). Let x be a system of sets. Then there exists a set
z such that z = { u | u is contained in some element of x }.
Definition 1.37. Let x be a system of sets.

⋃
x is the set z such that

z = { u | u is contained in some element of x }.
Let the union over x stand for

⋃
x.

Lemma 1.38. Let x, y be sets. Then there exists a set z such that z =
{ u | u ∈ x or u ∈ y }.

Proof. Take z =
⋃
{x, y}. Then

z = { u | u is contained in some element of {x, y} } .

Hence z = { u | u ∈ x or u ∈ y }.

Definition 1.39. x ∪ y is the set z such that z = { w | w ∈ x or w ∈ y }.
Let the union of x and y stand for x ∪ y.

Proposition 1.40.
⋃
{x, y} = x ∪ y.

Proof. Let us show that
⋃
{x, y} ⊆ x ∪ y. Let u ∈

⋃
{x, y}. Then u is an

element of some element of {x, y}. Hence u ∈ x or u ∈ y. Thus u ∈ x ∪ y.
End.

Let us show that x ∪ y ⊆
⋃
{x, y}. Let u ∈ x ∪ y. Then u ∈ x or u ∈ y.

Hence u is an element of some element of {x, y}. Thus u ∈
⋃
{x, y}.

End.
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Corollary 1.41.
⋃
{x} = x.

Proof.
⋃
{x} =

⋃
{x, x} = x ∪ x = x.

Proposition 1.42. Let x be a system of sets. Then
⋃
x ⊆ y iff every

element of x is a subset of y.

Proof. Case
⋃
x ⊆ y. Let z be an element of x. Let u ∈ z. Then u is an

element of some element of x. Hence u ∈
⋃
x. Thus u ∈ y. End.

Case every element of x is a subset of y. Let u ∈
⋃
x. Take a set z such

that z ∈ x and u ∈ z. Then z is a subset of y. Hence u ∈ y. End.

Proposition 1.43.
⋃
∅ = ∅.

Proof. ∅ has no elements. Hence there is no x ∈ ∅ that has an element.
Thus

⋃
∅ is empty. Therefore

⋃
∅ = ∅.

1.10 Partitions

Another important notion is that of a partition of a set x. i.e. a set which splits
x into pairwise disjoint subsets.

Definition 1.44. A partition of x is a system of sets P such that every
element of P is a subset of x and every element of x is contained in some
member of P and all distinct sets A,B of P are pairwise disjoint.

Proposition 1.45. Let P be a partition of x. Then x =
⋃
P .

Proof. Let us show that x ⊆
⋃
P . Let u ∈ x. Take a set A of P such that

u ∈ A. Then we have u ∈
⋃
P . End.

Let us show that
⋃
P ⊆ x. Let u ∈

⋃
P . Then we can take a set A of P

such that u ∈ A. A is a subset of x. Hence u ∈ x. End.

1.11 Complements

Let us define another operation on sets: The (relative) complement.

Lemma 1.46. Let x, y be sets. There exists a set z such that z =
{ w | w ∈ x and w /∈ y }.

Proof. Define z = { w | w ∈ x and w /∈ y }. Then every element of z is
contained in x. Hence z is a set (by Separation).

Definition 1.47. x\y is the set such that x\y = { w | w ∈ x and w /∈ y }.
Let the complement of y in x stand for x \ y.
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1.12 Computation laws

Now that we are provided with the most common operations on sets let us have
a look on their algebraic properties.

Commutativity of union and intersection:

Proposition 1.48.
x ∪ y = y ∪ x.

Proof. Let us show that x∪ y ⊆ y∪x. Let u ∈ x∪ y. Then u ∈ x or u ∈ y.
Hence u ∈ y or u ∈ x. Thus u ∈ y ∪ x. End.

Let us show that y∪x ⊆ x∪ y. Let u ∈ y∪x. Then u ∈ y or u ∈ x. Hence
u ∈ x or u ∈ y. Thus u ∈ x ∪ y. End.

Proposition 1.49.
x ∩ y = y ∩ x.

Proof. Let us show that x ∩ y ⊆ y ∩ x. Let u ∈ x ∩ y. Then u ∈ x and
u ∈ y. Hence u ∈ y and u ∈ x. Thus u ∈ y ∩ x. End.

Let us show that y ∩ x ⊆ x ∩ y. Let u ∈ y ∩ x. Then u ∈ y and u ∈ x.
Hence u ∈ x and u ∈ y. Thus u ∈ x ∩ y. End.

Associativity of union and intersection:
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Proposition 1.50.

((x ∪ y) ∪ z) = x ∪ (y ∪ z).

Proof. Let us show that ((x ∪ y) ∪ z) ⊆ x ∪ (y ∪ z). Let u ∈ (x ∪ y) ∪ z.
Then u ∈ x ∪ y or u ∈ z. Hence u ∈ x or u ∈ y or u ∈ z. Thus u ∈ x or
u ∈ (y ∪ z). Therefore u ∈ x ∪ (y ∪ z). End.

Let us show that x∪ (y ∪ z) ⊆ (x∪ y)∪ z. Let u ∈ x∪ (y ∪ z). Then u ∈ x
or u ∈ y ∪ z. Hence u ∈ x or u ∈ y or u ∈ z. Thus u ∈ x ∪ y or u ∈ z.
Therefore u ∈ (x ∪ y) ∪ z. End.

Proposition 1.51.

((x ∩ y) ∩ z) = x ∩ (y ∩ z).

Proof. Let us show that ((x ∩ y) ∩ z) ⊆ x ∩ (y ∩ z). Let u ∈ (x ∩ y) ∩ z.
Then u ∈ x ∩ y and u ∈ z. Hence u ∈ x and u ∈ y and u ∈ z. Thus u ∈ x
and u ∈ (y ∩ z). Thereforeu ∈ x ∩ (y ∩ z). End.

Let us show that x∩ (y ∩ z) ⊆ (x∩ y)∩ z. Let u ∈ x∩ (y ∩ z). Then u ∈ x
and u ∈ y ∩ z. Hence u ∈ x and u ∈ y and u ∈ z. Thus u ∈ x ∩ y and
u ∈ z. Thereforeu ∈ (x ∩ y) ∩ z. End.

Distributivity of union and intersection:

Proposition 1.52.

x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).

Proof. Let us show that x∩ (y ∪ z) ⊆ (x∩ y)∪ (x∩ z). Let u ∈ x∩ (y ∪ z).
Then u ∈ x and u ∈ y ∪ z. Hence u ∈ x and (u ∈ y or u ∈ z). Thus (u ∈ x
and u ∈ y) or (u ∈ x and u ∈ z). Therefore u ∈ x ∩ y or u ∈ x ∩ z. Hence
u ∈ (x ∩ y) ∪ (x ∩ z). End.

Let us show that ((x∩ y)∪ (x∩ z)) ⊆ x∩ (y ∪ z). Let u ∈ (x∩ y)∪ (x∩ z).
Then u ∈ x ∩ y or u ∈ x ∩ z. Hence (u ∈ x and u ∈ y) or (u ∈ x and
u ∈ z). Thus u ∈ x and (u ∈ y or u ∈ z). Therefore u ∈ x and u ∈ y ∪ z.
Henceu ∈ x ∩ (y ∪ z). End.

Proposition 1.53.

x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z).

Proof. Let us show that x∪ (y ∩ z) ⊆ (x∪ y)∩ (x∪ z). Let u ∈ x∪ (y ∩ z).
Then u ∈ x or u ∈ y ∩ z. Hence u ∈ x or (u ∈ y and u ∈ z). Thus (u ∈ x
or u ∈ y) and (u ∈ x or u ∈ z). Therefore u ∈ x ∪ y and u ∈ x ∪ z. Hence
u ∈ (x ∪ y) ∩ (x ∪ z). End.
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Let us show that ((x∪ y)∩ (x∪ z)) ⊆ x∪ (y ∩ z). Let u ∈ (x∪ y)∩ (x∪ z).
Then u ∈ x ∪ y and u ∈ x ∪ z. Hence (u ∈ x or u ∈ y) and (u ∈ x or
u ∈ z). Thus u ∈ x or (u ∈ y and u ∈ z). Therefore u ∈ x or u ∈ y ∩ z.
Hence u ∈ x ∪ (y ∩ z). End.

Idempocy laws for union and intersection:

Proposition 1.54.
x ∪ x = x.

Proof. x ∪ x = { u | u ∈ x or u ∈ x }. Hence x ∪ x = { u | u ∈ x }. Thus
x ∪ x = x.

Proposition 1.55.
x ∩ x = x.

Proof. x ∩ x = { u | u ∈ x and u ∈ x }. Hence x ∩ x = { u | u ∈ x }. Thus
x ∩ x = x.

Distributivity of complement wrt. union and intersection:

Proposition 1.56.

x \ (y ∩ z) = (x \ y) ∪ (x \ z).

Proof. Let us show that x \ (y ∩ z) ⊆ (x \ y) ∪ (x \ z). Let u ∈ x \ (y ∩ z).
Then u ∈ x and u /∈ y ∩ z. Hence it is wrong that (u ∈ y and u ∈ z).
Thus u /∈ y or u /∈ z. Therefore u ∈ x and (u /∈ y or u /∈ z). Then (u ∈ x
and u /∈ y) or (u ∈ x and u /∈ z). Hence u ∈ x \ y or u ∈ x \ z. Thus
u ∈ (x \ y) ∪ (x \ z). End.

Let us show that ((x \ y) ∪ (x \ z)) ⊆ x \ (y ∩ z). Let u ∈ (x \ y) ∪ (x \ z).
Then u ∈ x \ y or u ∈ x \ z. Hence (u ∈ x and u /∈ y) or (u ∈ x and u /∈ z).
Thus u ∈ x and (u /∈ y or u /∈ z). Therefore u ∈ x and not (u ∈ y and
u ∈ z). Then u ∈ x and not u ∈ y ∩ z. Hence u ∈ x \ (y ∩ z). End.

Proposition 1.57.

x \ (y ∪ z) = (x \ y) ∩ (x \ z).

Proof. Let us show that x \ (y ∪ z) ⊆ (x \ y) ∩ (x \ z). Let u ∈ x \ (y ∪ z).
Then u ∈ x and u /∈ y ∪ z. Hence it is wrong that (u ∈ y or u ∈ z). Thus
u /∈ y and u /∈ z. Therefore u ∈ x and (u /∈ y and u /∈ z). Then (u ∈ x
and u /∈ y) and (u ∈ x and u /∈ z). Hence u ∈ x \ y and u ∈ x \ z. Thus
u ∈ (x \ y) ∩ (x \ z). End.

Let us show that ((x \ y) ∩ (x \ z)) ⊆ x \ (y ∪ z). Let u ∈ (x \ y) ∩ (x \ z).
Then u ∈ x \ y and u ∈ x \ z. Hence (u ∈ x and u /∈ y) and (u ∈ x and
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u /∈ z). Thus u ∈ x and (u /∈ y and u /∈ z). Therefore u ∈ x and not (u ∈ y
or u ∈ z). Then u ∈ x and not u ∈ y ∪ z. Hence u ∈ x \ (y ∪ z). End.

Subset laws:

Proposition 1.58.
x ⊆ x ∪ y.

Proof. Let u ∈ x. Then u ∈ x or u ∈ y. Hence u ∈ x ∪ y.

Proposition 1.59.
x ∩ y ⊆ x.

Proof. Let u ∈ x ∩ y. Then u ∈ x and u ∈ y. Hence u ∈ x.

Proposition 1.60.
x ⊆ y ⇐⇒ x ∪ y = y.

Proof. Case x ⊆ y.

Let us show that x ∪ y ⊆ y. Let u ∈ x ∪ y. Then u ∈ x or u ∈ y. If u ∈ x
then u ∈ y. Hence u ∈ y. End.

Let us show that y ⊆ x ∪ y. Let u ∈ y. Then u ∈ x or u ∈ y. Hence
u ∈ x ∪ y. End. End.

Case x ∪ y = y. Let u ∈ x. Then u ∈ x or u ∈ y. Hence u ∈ x ∪ y = y.
End.

Proposition 1.61.
x ⊆ y ⇐⇒ x ∩ y = x.

Proof. Case x ⊆ y.

Let us show that x ∩ y ⊆ x. Let u ∈ x ∩ y. Then u ∈ x and u ∈ y. Hence
u ∈ x. End.

Let us show that x ⊆ x ∩ y. Let u ∈ x. Then u ∈ y. Hence u ∈ x and
u ∈ y. Thus u ∈ x ∩ y. End. End.

Case x ∩ y = x. Let u ∈ x. Then u ∈ x ∩ y. Hence u ∈ x and u ∈ y. Thus
u ∈ y. End.

Complement laws:

Proposition 1.62.
x \ x = ∅.

Proof. x\x has no elements. Indeed x\x = { u | u ∈ x and u /∈ x }. Hence
the thesis.
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Proposition 1.63.
x \ ∅ = x.

Proof. x \ ∅ = { u | u ∈ x and u /∈ ∅ }. No element is an element of ∅.
Hence x \ ∅ = { u | u ∈ x }. Then we have the thesis.

Proposition 1.64.
x \ (x \ y) = x ∩ y.

Proof. Let us show that x \ (x \ y) ⊆ x∩ y. Let u ∈ x \ (x \ y). Then u ∈ x
and u /∈ x \ y. Hence u /∈ x or u ∈ y. Thus u ∈ y. Therefore u ∈ x ∩ y.
End.

Let us show that x∩ y ⊆ x \ (x \ y). Let u ∈ x∩ y. Then u ∈ x and u ∈ y.
Hence u /∈ x or u ∈ y. Thus u /∈ x \ y. Therefore u ∈ x \ (x \ y). End.

Proposition 1.65.

y ⊆ x ⇐⇒ x \ (x \ y) = y.

Proof. Case y ⊆ x. Obvious.

Case x \ (x \ y) = y. Then every element of y is an element of x \ (x \ y).
Thus every element of y is an element of x. Then we have the thesis.
End.

Proposition 1.66.

x ∩ (y \ z) = (x ∩ y) \ (x ∩ z).

Proof. Let us show that x ∩ (y \ z) ⊆ (x ∩ y) \ (x ∩ z). Let u ∈ x ∩ (y \ z).
Then u ∈ x and u ∈ y \ z. Hence u ∈ x and u ∈ y. Thus u ∈ x ∩ y and
u /∈ z. Therefore u /∈ x ∩ z. Then we have u ∈ (x ∩ y) \ (x ∩ z). End.

Let us show that ((x∩ y) \ (x∩ z)) ⊆ x∩ (y \ z). Let u ∈ (x∩ y) \ (x∩ z).
Then u ∈ x and u ∈ y. u /∈ x ∩ z. Hence u /∈ z. Thus u ∈ y \ z. Therefore
u ∈ x ∩ (y \ z). End.

2 The powerset

[readtex set-theory/sections/01 sets/01 sets.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets.

In this paragraph we consider collections of subsets of a given set. To ensure
that these are sets themselves, we need another axiom.
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Axiom 2.1 (Powerset). There exists a set z such that z = { y | y ⊆ x }.
Definition 2.2. P(x) is the set z such that z = { y | y ⊆ x }.
Let the powerset of x stand for P(x).

Proposition 2.3. ∅ and x are elements of P(x).

Proof. We have ∅, x ⊆ x. Hence the thesis.

Corollary 2.4. P(x) is nonempty.

Proposition 2.5. P(x) is a system of subsets of x.

Proposition 2.6.
⋃
P(x) = x.

Proof. Every element of P(x) is a subset of x. Hence
⋃
P(x) ⊆ x.

We have x ∈ P(x). Hence every element of x is an element of some
element of P(x). Thus every element of x belongs to

⋃
P(x). Therefore

x ⊆
⋃
P(x).

Then we have the thesis.

Proposition 2.7.
⋂
P(x) = ∅.

Proof. We have ∅ ∈ P(x). Hence every element of
⋂
P(x) is an element of

∅. Thus
⋂
P(x) is empty. Therefore

⋂
P(x) = ∅.

3 The axiom of regularity

[readtex set-theory/sections/01 sets/01 sets.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets.

The axiom of regularity (or axiom of foundation) states that every non-empty
set has a ∈-minimal element.

Axiom 3.1 (Regularity). Every nonempty set x that contains some set
contains some set y such that x and y are disjoint.

As a consequence we get that no set can contain itself. Moreover, this allows
us to show that there exists no universal set, i.e. that “the set of all sets” does
not exist.

Proposition 3.2. No set x is an element of x.

Proof. Assume the contrary. Take a set x such that x ∈ x. We can take
an element y of {x} such that {x} and y are disjoint (by Regularity).
Indeed {x} contains some set. Then y = x. Hence {x} and x are disjoint.
Contradiction. Indeed x ∈ {x} and x ∈ x.
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Corollary 3.3. There is no set that contains every set.

Proof. Assume the contrary. Take a set V that contains every set. Then
V is an element of V . Contradiction.

Proposition 3.4. There exist no sets x, y such that x ∈ y and y ∈ x.

Proof. Assume the contrary. Take sets x, y such that x ∈ y and y ∈ x.
Consider an element z of {x, y} such that {x, y} and z are disjoint (by
Regularity). Indeed {x, y} contains some set. We have z = x or z = y.

Case z = x. Then x and {x, y} are disjoint. Hence y /∈ x. Contradiction.
End.

Case z = y. Then y and {x, y} are disjoint. Hence x /∈ y. Contradiction.
End.

4 The symmetric difference

[readtex set-theory/sections/01 sets/01 sets.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets.

It is time to indroduce a new operation on sets: The symmetric difference.

4.1 Definition

The symmetric difference of two sets is the set of all objects wich are contained
in exactly one of these sets.

Definition 4.1. x4 y = (x ∪ y) \ (x ∩ y).

Let the symmetric difference of x and y stand for x4 y.

Lemma 4.2. x4 y is a set.

Proof. x and y are sets. Hence x∪y and x∩y are sets. Thus (x∪y)\(x∩y)
is a set. Therefore x4 y is a set.

Alternatively, we could have defined the symmetric difference as follows:

Proposition 4.3. x4 y = (x \ y) ∪ (y \ x).

Proof. Let us show that x4 y ⊆ (x \ y) ∪ (y \ x). Let u ∈ x4 y. Then
u ∈ x∪y and u /∈ x∩y. Hence (u ∈ x or u ∈ y) and not (u ∈ x and u ∈ y).
Thus (u ∈ x or u ∈ y) and (u /∈ x or u /∈ y). Therefore if u ∈ x then u /∈ y.
If u ∈ y then u /∈ x. Then we have (u ∈ x and u /∈ y) or (u ∈ y and u /∈ x).
Hence u ∈ x \ y or u ∈ y \ x. Thus u ∈ (x \ y) ∪ (y \ x). End.
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Let us show that ((x \ y)∪ (y \ x)) ⊆ x4 y. Let u ∈ (x \ y)∪ (y \ x). Then
(u ∈ x and u /∈ y) or (u ∈ y and u /∈ x). If u ∈ x and u /∈ y then u ∈ x ∪ y
and u /∈ x ∩ y. If u ∈ y and u /∈ x then u ∈ x ∪ y and u /∈ x ∩ y. Hence
u ∈ x ∪ y and u /∈ x ∩ y. Thus u ∈ (x ∪ y) \ (x ∩ y) = x4 y. End.

4.2 Computation laws

As we did with our previously introduced set operations let us prove some of
the most important algebraic properties of the symmetric difference.

Commutativity:

Proposition 4.4.
x4 y = y4x.

Proof. x4 y = (x ∪ y) \ (x ∩ y) = (y ∪ x) \ (y ∩ x) = y4x.

Associativity:

Proposition 4.5.
((x4 y)4 z) = x4(y4 z).

Proof. Take A = (((x \ y) ∪ (y \ x)) \ z) ∪ (z \ ((x \ y) ∪ (y \ x))).

Take B = (x \ ((y \ z) ∪ (z \ y))) ∪ (((y \ z) ∪ (z \ y)) \ x).

We have x4 y = (x \ y) ∪ (y \ x) and y4 z = (y \ z) ∪ (z \ y). Hence
(x4 y)4 z = A and x4(y4 z) = B.

Let us show that (A) A ⊆ B. Let u ∈ A.

(A 1) Case u ∈ ((x \ y) ∪ (y \ x)) \ z. Then u /∈ z.
(A 1a) Case u ∈ x \ y. Then u /∈ y \ z and u /∈ z \ y. u ∈ x. Hence
u ∈ x \ ((y \ z) ∪ (z \ y)). Thus u ∈ B. End.

(A 1b) Case u ∈ y \ x. Then u ∈ y \ z. Hence u ∈ (y \ z) ∪ (z \ y). u /∈ x.
Thus u ∈ ((y \ z) ∪ (z \ y)) \ x. Therefore u ∈ B. End. End.

(A 2) Case u ∈ z \ ((x \ y) ∪ (y \ x)). Then u ∈ z. u /∈ x \ y and u /∈ y \ x.
Hence not (u ∈ x \ y or u ∈ y \ x). Thus not ((u ∈ x and u /∈ y) or (u ∈ y
and u /∈ x)). Therefore (u /∈ x or u ∈ y) and (u /∈ y or u ∈ x).

(A 2a) Case u ∈ x. Then u ∈ y. Hence u /∈ (y \ z) ∪ (z \ y). Thus
u ∈ x \ ((y \ z) ∪ (z \ y)). Therefore u ∈ B. End.

(A 2b) Case u /∈ x. Then u /∈ y. Hence u ∈ z \ y. Thus u ∈ (y \ z)∪ (z \ y).
Therefore u ∈ ((y \ z)∪ (z \ y)) \x. Then we have u ∈ B. End. End. End.

Let us show that (B) B ⊆ A. Let u ∈ B.
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(B 1) Case u ∈ x \ ((y \ z) ∪ (z \ y)). Then u ∈ x. u /∈ y \ z and u /∈ z \ y.
Hence not (u ∈ y \ z or u ∈ z \ y). Thus not ((u ∈ y and u /∈ z) or (u ∈ z
and u /∈ y)). Therefore (u /∈ y or u ∈ z) and (u /∈ z or u ∈ y).

(B 1a) Case u ∈ y. Then u ∈ z. u /∈ x \ y and u /∈ y \ x. Hence
u /∈ (x \ y)∪ (y \x). Thus u ∈ z \ ((x \ y)∪ (y \x)). Therefore u ∈ A. End.

(B 1b) Case u /∈ y. Then u /∈ z. u ∈ x \ y. Hence u ∈ (x \ y) ∪ (y \ x).
Thus u ∈ ((x \ y) ∪ (y \ x)) \ z. Therefore u ∈ A. End. End.

(B 2) Case u ∈ ((y \ z) ∪ (z \ y)) \ x. Then u /∈ x.

(B 2a) Case u ∈ y \ z. Then u ∈ y \ x. Hence u ∈ (x \ y) ∪ (y \ x). Thus
u ∈ ((x \ y) ∪ (y \ x)) \ z. Therefore u ∈ A. End.

(B 2b) Case u ∈ z \ y. Then u ∈ z. u /∈ x \ y and u /∈ y \ x. Hence
u /∈ (x \ y)∪ (y \x). Thus u ∈ z \ ((x \ y)∪ (y \x)). Therefore u ∈ A. End.
End. End.

Distributivity of intersection and symmetric difference:

Proposition 4.6.

x ∩ (y4 z) = (x ∩ y)4(x ∩ z).

Proof. x ∩ (y4 z) = x ∩ ((y \ z) ∪ (z \ y)) = (x ∩ (y \ z)) ∪ (x ∩ (z \ y)).

x ∩ (y \ z) = (x ∩ y) \ (x ∩ z). x ∩ (z \ y) = (x ∩ z) \ (x ∩ y).

Hence x∩(y4 z) = ((x∩y)\(x∩z))∪((x∩z)\(x∩y)) = (x∩y)4(x∩z).

Miscellaneous rules:

Proposition 4.7.
x ⊆ y ⇐⇒ x4 y = y \ x.

Proof. Case x ⊆ y. Then x∪ y = y and x∩ y = x. Hence the thesis. End.

Case x4 y = y \ x. Let u ∈ x. Then u /∈ y \ x. Hence u /∈ x4 y. Thus
u /∈ x ∪ y or u ∈ x ∩ y. Indeed x4 y = (x ∪ y) \ (x ∩ y). If u /∈ x ∪ y then
we have a contradiction. Therefore u ∈ x ∩ y. Then we have the thesis.
End.

Proposition 4.8.
x4 y = x4 z ⇐⇒ y = z.

Proof. Case x4 y = x4 z.
Let us show that y ⊆ z. Let u ∈ y.
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Case u ∈ x. Then u /∈ x4 y. Hence u /∈ x4 z. Therefore u ∈ x ∩ z.
Indeed x4 z = (x ∪ z) \ (x ∩ z). Hence u ∈ z. End.

Case u /∈ x. Then u ∈ x4 y. Indeed u ∈ x ∪ y and u /∈ x ∩ y. Hence
u ∈ x4 z. Thus u ∈ x ∪ z and u /∈ x ∩ z. Therefore u ∈ x or u ∈ z. Then
we have the thesis. End. End.

Let us show that z ⊆ y. Let u ∈ z.
Case u ∈ x. Then u /∈ x4 z. Hence u /∈ x4 y. Therefore u ∈ x ∩ y.
Indeed u /∈ x ∪ y or u ∈ x ∩ y. Hence u ∈ y. End.

Case u /∈ x. Then u ∈ x4 z. Indeed u ∈ x ∪ z and u /∈ x ∩ z. Hence
u ∈ x4 y. Thus u ∈ x ∪ y and u /∈ x ∩ y. Therefore u ∈ x or u ∈ y. Then
we have the thesis. End. End. End.

Proposition 4.9.
x4x = ∅.

Proof. x4x = (x ∪ x) \ (x ∩ x) = x \ x = ∅.

Proposition 4.10.
x4∅ = x.

Proof. x4∅ = (x ∪ ∅) \ (x ∩ ∅) = x \ ∅ = x.

Proposition 4.11.
x = y ⇐⇒ x4 y = ∅.

Proof. Case x = y. Then x4 y = (x ∪ x) \ (x ∩ x) = x \ x = ∅. Hence the
thesis. End.

Case x4 y = ∅. Then (x ∪ y) \ (x ∩ y) is empty. Hence every element of
x∪ y is an element of x∩ y. Thus for all elements u if u ∈ x or u ∈ y then
u ∈ x and u ∈ y. Therefore every element of x is an element of y. Every
element of y is an element of x. Then we have the thesis. End.

5 Ordered pairs

[readtex set-theory/sections/01 sets/01 sets.ftl.tex]

Let u, v, w, u′, v′, w′ denote objects. Let x, y, z, x′, y′, z′ denote sets.

In this paragraph we introduce the ordered pair of two objects, following the
definition proposed by Kuratowski.

Note that Naproche has ordered pairs already built in. Thus we have to formu-
late the definition of them as an axiom.
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Axiom 5.1. (u, v) = {{u}, {u, v}}.
Proposition 5.2. Let u, v be objects. Then (u, v) is an object.

Proof. {u} and {u, v} are objects. Hence {{u}, {u, v}} is an object. We
have (u, v) = {{u}, {u, v}}. Thus (u, v) is an object.

The central property of ordered pairs is that two of them agree if they agree on
each component.

Proposition 5.3. If (u, v) = (u′, v′) then u = u′ and v = v′.

Proof. Assume (u, v) = (u′, v′). (1) Then {{u}, {u, v}} = {{u′}, {u′, v′}}.
Hence ({u} = {u′} or {u} = {u′, v′}) and ({u, v} = {u′} or {u, v} =
{u′, v′}). Thus ({u} = {u′} and ({u, v} = {u′} or {u, v} = {u′, v′})) or
({u} = {u′, v′} and ({u, v} = {u′} or {u, v} = {u′, v′})).
Case {u} = {u′} and ({u, v} = {u′} or {u, v} = {u′, v′}). We have
{u} = {u′}. Hence u = u′.

Case {u, v} = {u′}. Then u = u′ = v. Hence {{u}, {u, u}} =
{{u}, {u, v′}} (by 1). Thus {{u}} = {{u}, {u, v′}}. Therefore {u} =
{u, v′}. Consequently v′ = u = v. End.

Case {u, v} = {u′, v′}. Then {u, v} = {u, v′}. Hence v = v′. End. End.

Case {u} = {u′, v′} and ({u, v} = {u′} or {u, v} = {u′, v′}). We have
{u} = {u′, v′}. Hence u = u′.

Case {u, v} = {u′}. Then u = v = u′. Hence v = v′. End.

Case {u, v} = {u′, v′}. Then {u, v} = {u, v′}. Hence v = v′. End.
End.

Definition 5.4. A pair is an object x such that x = (u, v) for some objects
u, v.

Let an ordered pair stand for a pair.

Definition 5.5. Let x be a pair. The first component of x is the object u
such that x = (u, v) for some object v.

Let the first entry of x stand for the first component of x.

Definition 5.6. Let x be a pair. The second component of x is the object
v such that x = (u, v) for some object u.

Let the second entry of x stand for the second component of x.

Lemma 5.7. Let x be a pair. Let u be the first component of x and v be
the second component of x. Then x = (u, v).

Lemma 5.8. Let x, y be pairs. Assume that the first component of x
agrees with the first component of y and the second component of x agrees
with the second component of y. Then x = y.
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6 Cartesian products

[readtex set-theory/sections/01 sets/02 powerset.ftl.tex]

[readtex set-theory/sections/01 sets/05 ordered-pairs.ftl.tex]

Let u, v, w, u′, v′, w′ denote objects. Let x, y, z, x′, y′, z′ denote sets.

Let us now consider collections of ordered pairs. We can show that for any given
sets x, y the collection of all pairs whose first component lies in x and whose
second component lies in y is a set. This set is called the Cartesian product of
x and y.

Lemma 6.1. There exists a set z such that

z = { (u, v) | u ∈ x and v ∈ y } .

Proof. (1) Define z = { (u, v) | u ∈ x and v ∈ y }. Take z′ = P(P(x ∪ y)).
Then z′ is a set.

Let us show that every element of z is contained in z′. Let w ∈ z. Take
elements u, v such that w = (u, v). Then u ∈ x and v ∈ y. Hence
{u} and {u, v} are subsets of x ∪ y. Thus {u} and {u, v} are elements
of P(x ∪ y). Therefore w = {{u}, {u, v}} ⊆ P(x ∪ y). Consequently
w ∈ P(P(x ∪ y)) = z′. End.

Hence z is a set (by Separation). Therefore the thesis (by 1).

Definition 6.2. x×y is the set z such that z = { (u, v) | u ∈ x and v ∈ y }.
Let the Cartesian product of x and y stand for x× y.

Proposition 6.3. (u, v) ∈ x× y iff u ∈ x and v ∈ y.

Proof. Case (u, v) ∈ x × y. We can take u′ ∈ x and v′ ∈ y such that
(u, v) = (u′, v′). Then u = u′ and v = v′. Hence u ∈ x and v ∈ y. End.

Case u ∈ x and v ∈ y. u and v are elements. Hence (u, v) is an element.
Therefore (u, v) ∈ x × y. Indeed x × y = { (u′, v′) | u′ ∈ x and v′ ∈ y }.
End.

Proposition 6.4. x× y is empty iff x is empty or y is empty.

Proof. Case x × y is empty. Assume that x and y are nonempty. Thus
we can take an element u of x and an element v of y. Then (u, v) is an
element of x× y. Contradiction. End.

Case x is empty or y is empty. Assume that x× y is nonempty. Then we
can take an element z of x× y. Then z = (u, v) for some u ∈ x and some
v ∈ y. Hence x and y are nonempty. Contradiction. End.
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Proposition 6.5. {u} × {v} = {(u, v)}.

Proof. Let us show that {u} × {v} ⊆ {(u, v)}. Let w ∈ {u} × {v}. Take
a ∈ {u} and b ∈ {v} such that w = (a, b). We have a = u and b = v.
Hence w = (u, v). Thus w ∈ {(u, v)}. End.

Let us show that {(u, v)} ⊆ {u}× {v}. Let w ∈ {(u, v)}. Then w = (u, v).
We have u ∈ {u} and v ∈ {v}. Hence w ∈ {u} × {v}. End.

6.1 Computation laws

As always let us have a look at the algebraic properties of our new operation.

Subset laws:

Proposition 6.6.
x ⊆ y =⇒ x× z ⊆ y × z.

Proof. Assume x ⊆ y. Let w ∈ x × z. Take u ∈ x and v ∈ z such that
w = (u, v). Then u ∈ y. Hence (u, v) ∈ y × z.

Proposition 6.7. Assume that x and x′ are nonempty.

(x× x′) ⊆ (y × y′) ⇐⇒ (x ⊆ y and x′ ⊆ y′).

Proof. Case (x×x′) ⊆ (y×y′). Let us show that for all u ∈ x and all v ∈ x′
we have u ∈ y and v ∈ y′. Let u ∈ x and v ∈ x′. Then (u, v) ∈ x × x′.
Hence (u, v) ∈ y × y′. Thus u ∈ y and v ∈ y′. End. End.

Case x ⊆ y and x′ ⊆ y′. Let w ∈ x× x′. Take u ∈ x and v ∈ x′ such that
w = (u, v). Then u ∈ y and v ∈ y′. Hence (u, v) ∈ y × y′. End.

Distributivity of product and union:

Proposition 6.8.

((x ∪ y)× z) = (x× z) ∪ (y × z).

Proof. Let us show that ((x∪y)×z) ⊆ (x×z)∪(y×z). Let w ∈ (x∪y)×z.
Take u ∈ x ∪ y and v ∈ z such that w = (u, v). Then u ∈ x or u ∈ y. If
u ∈ x then w ∈ x × z and if u ∈ y then w ∈ y × z. Hence w ∈ x × z or
w ∈ y × z. Thus w ∈ (x× z) ∪ (y × z). End.

Let us show that ((x× z)∪ (y× z)) ⊆ (x∪y)× z. Let w ∈ (x× z)∪ (y× z).
Then w ∈ x × z or w ∈ y × z. Take elements u, v such that w = (u, v).
Then (u ∈ x or u ∈ y) and v ∈ z. Hence u ∈ x ∪ y. Thus w ∈ (x ∪ y)× z.
End.
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Proposition 6.9.

x× (y ∪ z) = (x× y) ∪ (x× z).

Proof. Let us show that x× (y∪z) ⊆ (x×y)∪ (x×z). Let w ∈ x× (y∪z).
Take u ∈ x and v ∈ y∪z such that w = (u, v). Then v ∈ y or v ∈ z. Hence
w ∈ x× y or w ∈ x× z. Indeed if v ∈ y then w ∈ x× y and if v ∈ z then
w ∈ x× z. Thus w ∈ (x× y) ∪ (x× z). End.

Let us show that ((x×y)∪ (x×z)) ⊆ x× (y∪z). Let w ∈ (x×y)∪ (x×z).
Then w ∈ x × y or w ∈ x × z. Take elements u, v such that w = (u, v).
Then u ∈ x and (v ∈ y or v ∈ z). Hence w ∈ x× (y ∪ z). End.

Distributivity of product and intersection:

Proposition 6.10.

((x ∩ y)× z) = (x× z) ∩ (y × z).

Proof. Let us show that ((x∩y)×z) ⊆ (x×z)∩(y×z). Let w ∈ (x∩y)×z.
Take u ∈ x ∩ y and v ∈ z such that w = (u, v). Then u ∈ x and u ∈ y.
Hence w ∈ x× z and w ∈ y × z. Thus w ∈ (x× z) ∩ (y × z). End.

Let us show that ((x× z)∩ (y× z)) ⊆ (x∩y)× z. Let w ∈ (x× z)∩ (y× z).
Then w ∈ x × z and w ∈ y × z. Take elements u, v such that w = (u, v).
Then (u ∈ x and u ∈ y) and v ∈ z. Hence u ∈ x∩ y. Thus w ∈ (x∩ y)× z.
End.

Proposition 6.11.

x× (y ∩ z) = (x× y) ∩ (x× z).

Proof. Let us show that x× (y∩z) ⊆ (x×y)∩ (x×z). Let w ∈ x× (y∩z).
Take u ∈ x and v ∈ y ∩ z such that w = (u, v). Then v ∈ y and v ∈ z.
Hence w ∈ x× y and w ∈ x× z. Thus w ∈ (x× y) ∩ (x× z). End.

Let us show that ((x×y)∩ (x×z)) ⊆ x× (y∩z). Let w ∈ (x×y)∩ (x×z).
Then w ∈ x × y and w ∈ x × z. Take elements u, v such that w = (u, v).
Then u ∈ x and (v ∈ y and v ∈ z). Hence w ∈ x× (y ∩ z). End.

Distributivity of product and complement:

Proposition 6.12.

((x \ y)× z) = (x× z) \ (y × z).

Proof. Let us show that ((x\y)×z) ⊆ (x×z)\ (y×z). Let w ∈ (x\y)×z.

22



Take u ∈ x \ y and v ∈ z such that w = (u, v). Then u ∈ x and u /∈ y.
Hence w ∈ x× z and w /∈ y × z. Thus w ∈ (x× z) \ (y × z). End.

Let us show that ((x× z) \ (y× z)) ⊆ (x \ y)× z. Let w ∈ (x× z) \ (y× z).
Then w ∈ x× z and w /∈ y× z. Take u ∈ x and v ∈ z such that w = (u, v).
Then u /∈ y. Indeed if u ∈ y then w ∈ y × z. Hence u ∈ x \ y. Thus
w ∈ (x \ y)× z. End.

Proposition 6.13.

x× (y \ z) = (x× y) \ (x× z).

Proof. Let us show that x× (y \ z) ⊆ (x× y) \ (x× z). Let w ∈ x× (y \ z).
Take u ∈ x and v ∈ y \ z such that w = (u, v). Then v ∈ y and v /∈ z.
Hence w ∈ x× y and w /∈ x× z. Thus w ∈ (x× y) \ (x× z). End.

Let us show that ((x× y) \ (x× z)) ⊆ x× (y \ z). Let w ∈ (x× y) \ (x× z).
Then w ∈ x × y and w /∈ x × z. Take elements u, v such that w = (u, v).
Then u ∈ x and (v ∈ y and v /∈ z). Hence w ∈ x× (y \ z). End.

Equality law:

Proposition 6.14. Assume that x and x′ are nonempty or y and y′ are
nonempty. Then

(x× x′) = (y × y′) ⇐⇒ (x = y and x′ = y′).

Proof. Case x× x′ = y × y′. Then x and x′ are nonempty iff y and y′ are
nonempty.

Let us show that for all u ∈ x and all v ∈ x′ we have u ∈ y and v ∈ y′.
Let u ∈ x and v ∈ x′. Then (u, v) ∈ x× x′. Hence we can take w ∈ y × y′
such that w = (u, v). Thus u ∈ y and v ∈ y′. End.

Therefore x ⊆ y and x′ ⊆ y′. Indeed x and x′ are nonempty.

Let us show that for all u ∈ y and all v ∈ y′ we have u ∈ x and v ∈ x′.
Let u ∈ y and v ∈ y′. Then (u, v) ∈ y × y′. Hence we can take w ∈ x× x′
such that w = (u, v). Thus (u, v) ∈ x× x′. End.

Therefore y ⊆ x and y′ ⊆ x′. Indeed y and y′ are nonempty. End.

Case x = y and x′ = y′. Trivial.
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Intersection of products:

Proposition 6.15.

((x× y) ∩ (x′ × y′)) = (x ∩ x′)× (y ∩ y′).

Proof. Let us show that ((x × y) ∩ (x′ × y′)) ⊆ (x ∩ x′) × (y ∩ y′). Let
w ∈ (x × y) ∩ (x′ × y′). Then w ∈ x × y and w ∈ x′ × y′. Take elements
u, v such that w = (u, v). Then u ∈ x, x′ and v ∈ y, y′. Hence u ∈ x ∩ x′
and v ∈ y ∩ y′. Thus w ∈ (x ∩ x′)× (y ∩ y′). End.

Let us show that (x ∩ x′) × (y ∩ y′) ⊆ (x × y) ∩ (x′ × y′). Let w ∈
(x∩x′)× (y∩y′). Take elements u, v such that w = (u, v). Then u ∈ x∩x′
and v ∈ y ∩ y′ (by 6.3). Hence u ∈ x, x′ and v ∈ y, y′. Thus w ∈ x× y and
w ∈ x′ × y′. Therefore w ∈ (x× y) ∩ (x′ × y′). End.

Union of products:

Proposition 6.16.

((x× y) ∪ (x′ × y′)) ⊆ (x ∪ x′)× (y ∪ y′).

Proof. Let w ∈ (x × y) ∪ (x′ × y′). Then w ∈ x × y or w ∈ x′ × y′. Take
elements u, v such that w = (u, v). Then (u ∈ x or u ∈ x′) and (v ∈ y or
v ∈ y′). Hence u ∈ x ∪ x′ and v ∈ y ∪ y′. Thus w ∈ (x ∪ x′)× (y ∪ y′).

Complement of products:

Proposition 6.17.

((x× y) \ (x′ × y′)) = (x× (y \ y′)) ∪ ((x \ x′)× y).

Proof. Let us show that ((x× y) \ (x′× y′)) ⊆ (x× (y \ y′))∪ ((x \x′)× y).
Let w ∈ (x×y)\(x′×y′). Then w ∈ x×y and w /∈ x′×y′. Take u ∈ x and
v ∈ y such that w = (u, v). Then it is wrong that u ∈ x′ and v ∈ y′. Hence
u /∈ x′ or v /∈ y′. Thus u ∈ x \ x′ or v ∈ y \ y′. Therefore w ∈ x× (y \ y′)
or w ∈ (x \ x′)× y. Hence we have w ∈ (x× (y \ y′))∪ ((x \ x′)× y). End.

Let us show that (x × (y \ y′)) ∪ ((x \ x′) × y) ⊆ (x × y) \ (x′ × y′). Let
w ∈ (x×(y\y′))∪((x\x′)×y). Then w ∈ (x×(y\y′)) or w ∈ ((x\x′)×y).
Take elements u, v such that w = (u, v). Then (u ∈ x and v ∈ y \ y′) or
(u ∈ x \ x′ and v ∈ y) (by 6.3).

Case u ∈ x and v ∈ y \ y′. Then u ∈ x and v ∈ y. Hence w ∈ x × y. We
have v /∈ y′. Thus w /∈ x′ × y′. Therefore w ∈ (x× y) \ (x′ × y′). End.

Case u ∈ x \ x′ and v ∈ y. Then u ∈ x and v ∈ y. Hence w ∈ x × y. We
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have u /∈ x′. Thus w /∈ x′ × y′. Therefore w ∈ (x × y) \ (x′ × y′). End.
End.
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Part II

Functions

7 Functions

[readtex set-theory/sections/01 sets/01 sets.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

In this section we introduce the notion of functions as some kind of “small”
maps, i.e. maps whose domains are sets and whose values are objects.

7.1 Function axioms

Definition 7.1. Let f be a map. A value of f is an object v such that
v = f(u) for some u ∈ dom(f).

Definition 7.2. A fixed point of f is an element u of the domain of f such
that f(u) = u.

As with sets we give an extentionality axiom for functions, which asserts that
two functions are identical if their domains and values agree.

Axiom 7.3 (Function extensionality). Let f, g be functions. If
dom(f) = dom(g) and f(u) = g(u) for all u ∈ dom(f) then f = g.

Since functions are already built-in notions of Naproche we cannot introduce
them via a definition such as the following:

Definition. A function is a map f such that dom(f) is a set and every value
of f is an object.

Instead we have to describe them axiomatically.

Axiom 7.4. Let f be a map. Assume that dom(f) is a set. Assume that
every value of f is an object. Then f is a function.

Axiom 7.5. Let f be a function. Then f is a map.

Axiom 7.6. Let f be a function. Then dom(f) is a set.

Axiom 7.7. Let f be a function. Let x be an element of dom(f). Then
f(x) is an object.

The next axiom we introduce does not just fulfil definitional purposes. Instead
it ensures that the image of any set under an arbitrary mapping is also a set.
It plays an important role in the construction of certain infinite sets.
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Axiom 7.8 (Replacement). Let f be a map and x be a set. There exists
a set y such that y = { f(u) | u ∈ dom(f) and u ∈ x }.
Corollary 7.9. Let f be a function. There exists a set y such that y =
{ f(u) | u ∈ dom(f) }.

Proof. Take x = dom(f). Then x is a set. Hence we can take a set y such
that y = { f(u) | u ∈ dom(f) } (by Replacement). Indeed f is a map.

7.2 The range

Using the replacement axiom we can easily define the range of a function as the
set of all its values.

Definition 7.10. Let f be a function. range(f) is the set y such that
y = { f(u) | u ∈ dom(f) }.
Let the range of f stand for range(f).

Proposition 7.11. v is a value of f iff v ∈ range(f).

Proof. Case v is a value of f . Take u ∈ dom(f) such that v = f(u). v is
an element. Hence v ∈ range(f). End.

Case v ∈ range(f). Then v = f(u) for some u ∈ dom(f). Hence v is a
value of f . End.

7.3 Functions between sets

In the following we mostly want to consider functions between two sets x and y,
i.e. functions whose domain is x and which maps all elements of x into y.

Definition 7.12. A function of x is a function f such that dom(f) = x.

Definition 7.13. A function to y is a function f such that f(u) ∈ y for
all u ∈ dom(f).

Let a function from x to y stand for a function f of x such that f is a
function to y. Let f : x→ y stand for f is a function from x to y.

Proposition 7.14. Let f be a function from x to y. Then range(f) ⊆ y.

Proof. Let v ∈ range(f). Take u ∈ x such that v = f(u). Then v ∈ y.

Definition 7.15. A function on x is a function from x to x.

There are three important types of functions: Functions which are injective, i.e.
one-to-one correspondences between their domain and range, functions which
are surjrective, i.e. whose values match all elements of a given set, and functions
which are bijective, i.e. both injective and surjective.
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Definition 7.16. A function onto y is a function f such that y = range(f).

Let f surjects onto y stand for y = range(f).

Definition 7.17. A function from x onto y is a function f of x such that
f is a function onto y.

Let f : x� y stand for f is a function from x onto y.

Proposition 7.18. f is a function onto range(f).

Proposition 7.19. Let f be a function onto y. Then f is a function to y.

Proof. Let u ∈ dom(f). Then f(u) ∈ range(f). Hence f(u) ∈ y.

Definition 7.20. f is one to one iff for all u, v ∈ dom(f) if f(u) = f(v)
then u = v.

Definition 7.21. A function into y is an one to one function to y.

Definition 7.22. A function from x into y is a function f of x such that
f is a function into y.

Let f : x ↪→ y stand for f is a function from x into y.

Definition 7.23. A bijection between x and y is a one to one function f
from x onto y.

Let a bijection from x to y stand for a bijection between x and y.

Proposition 7.24. Let f be a function from x into y. Then f is a bijection
between x and range(f).

Proof. f is one to one and f is a function from x onto range(f). Hence f
is a bijection between x and range(f).

Definition 7.25. A permutation of x is a bijection between x and x.

7.4 The identity function

Let us consider some special function: The identity function, which just maps
any element of its domain to itself.

Lemma 7.26. There is a function ι of x such that ι(u) = u for all u ∈ x.

Proof. Define ι(u) = u for u ∈ x.

Definition 7.27. idx is the function of x such that idx(u) = u for all
u ∈ x.

Let the identity function on x stand for idx.

Proposition 7.28. idx is a permutation of x.

Proof. (1) idx is a function of x.
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(2) idx is a function onto x. Proof. Let v ∈ x. Then v = idx(v). Hence
v ∈ range(idx). Qed.

(3) idx is a function into x. Proof. Let v, v′ ∈ x. Assume idx(v) = idx(v′).
Then v = v′. Qed.

7.5 Constant functions

Another importat class of functions is that of constant functions. Such functions
map every element of their domain to the same value.

Lemma 7.29. Let x be a set and v be an element. There is a function c
of x such that c(u) = v for all u ∈ x.

Proof. Define c(u) = v for u ∈ x.

Definition 7.30. constx,v is the function of x such that constx,v(u) = v
for all u ∈ x.

Let the constant function on x with value v stand for constx,v.

Proposition 7.31. Assume v ∈ y. Then constx,v is a function from x to
y.

Proof. We have dom(constx,v) = x and constx,v(u) = v for all u ∈ x.
Hence constx,v(u) is an element of y for all u ∈ x. Thus range(constx,v) ⊆
y. Therefore constx,v is a function from x to y.

Definition 7.32. Let f be a function. f is constant iff there exists an
object v such that f(u) = v for all u ∈ dom(f).

Proposition 7.33. constx,v is constant.

Proof. We have constx,v(u) = v for all u ∈ x. Hence the thesis.

7.6 Composition

Let us now consider some operations on functions. The first one, called compo-
sition, allows us to combine two functions to a new one by applying them one
after another.

Lemma 7.34. Assume range(f) ⊆ dom(g). Then there is a function h
such that dom(h) = dom(f) and h(u) = g(f(u)) for all u ∈ dom(h).

Proof. Define h(u) = g(f(u)) for u ∈ dom(f).

Definition 7.35. Assume range(f) ⊆ dom(g). g ◦ f is the function h such
that dom(h) = dom(f) and h(u) = g(f(u)) for all u ∈ dom(h).

Let the composition of g and f stand for g ◦ f .
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Lemma 7.36. Let f be a function from x to y and g be a function from
y to z. Then range(f) ⊆ dom(g).

Proposition 7.37. Let f be a function from x to y and g be a function
from y to z. Then g ◦ f is a function from x to z.

Proof. (1) g ◦ f is a function of x. Indeed dom(g ◦ f) = dom(f) = x.

(2) range(g ◦ f) ⊆ z. Proof. Let w ∈ range(g ◦ f). Take u ∈ x such that
(g ◦ f)(u) = w. Then w = g(f(u)). We have f(u) ∈ y. Hence w ∈ z.
Qed.

Lemma 7.38. Let f be a function from x to y and g be a function from
y to z. Then dom(g ◦ f) = x and range(g ◦ f) ⊆ z.
Proposition 7.39. Let f be a function from x to y. Then f ◦ idx = f =
idy ◦f .

Proof. x is the domain of f ◦ idx and the domain of f and the domain of
idy ◦f . (f ◦ idx)(u) = f(idx(u)) = f(u) = idy(f(u)) = (idy ◦f)(u) for all
u ∈ x. Hence the thesis (by Function extensionality).

Proposition 7.40. Let f be a function from x to y and v be an element.
Then consty,v ◦ f = constx,v.

Proof. We have dom(consty,v ◦ f) = dom(f) = x = dom(constx,v).
(consty,v ◦ f)(u) = consty,v(f(u)) = v = constx,v(u) for all u ∈ x. Hence
the thesis (by Function extensionality).

Proposition 7.41. Let f be a function from y to z and v ∈ y. Then
f ◦ constx,v = constx,f(v).

Proof. We have

dom(f ◦ constx,v) = dom(constx,v) = x = dom(constx,f(v)).

For all u ∈ x we have

(f ◦ constx,v)(u) = f(constx,v(u)) = f(v) = constx,f(v)(u).

Hence the thesis (by Function extensionality).

Proposition 7.42. Let f be a function from x onto y and g be a function
from y onto z. Then g ◦ f is a function from x onto z.

Proof. g ◦ f is a function of x.

Let us show that g◦f is a function onto z. Let w ∈ z. Take v ∈ y such that
w = g(v). Take u ∈ x such that v = f(u). Then w = g(f(u)) = (g ◦ f)(u).
End.
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Proposition 7.43. Let f be a function from x into y and g be a function
from y into z. Then g ◦ f is a function from x into z.

Proof. g ◦ f is a function of x.

Let us show that g ◦ f is one to one. Let u, u′ ∈ x. Assume (g ◦ f)(u) =
(g ◦ f)(u′). Then g(f(u)) = g(f(u′)). Hence f(u) = f(u′). Indeed
f(u), f(u′) ∈ y. Thus u = u′. End.

Corollary 7.44. Let f be a bijection between x and y and g be a bijection
between y and z. Then g ◦ f is a bijection between x and z.

Proof. g ◦ f is a function from x onto z and a function into z. Hence the
thesis.

7.7 Restriction

Another operation on functions is the restriction to a subset of their domain.

Lemma 7.45. Let a ⊆ dom(f). Then there is a function h of a such that
h(u) = f(u) for all u ∈ a.

Proof. Define h(u) = f(u) for u ∈ a.

Definition 7.46. Let a ⊆ dom(f). f � a is the function h of a such that
h(u) = f(u) for all u ∈ a.

Let the restriction of f to a stand for f � a.

Proposition 7.47. Let f be a function from x to y and a ⊆ x. Then f � a
is a function from a to y.

Proof. We have dom(f � a) = a. Then (f � a)(u) = f(u) ∈ y for all u ∈ a.
Hence f � a is a function from a to y.

Proposition 7.48. Let a ⊆ x. Then idx � a = ida.

Proof. We have dom(idx � a) = a = dom(ida). (idx � a)(u) = idx(u) =
u = ida(u) for all u ∈ a. Hence the thesis (by Function extensionality).

Proposition 7.49. Let v be an element and a ⊆ x. Then constx,v � a =
consta,v.

Proof. We have dom(constx,v � a) = a = dom(consta,v). (constx,v �
a)(u) = constx,v(u) = v = consta,v(u) for all u ∈ a. Hence the thesis
(by Function extensionality).

Proposition 7.50. Let f be an one to one function from x to y and a ⊆ x.
Then f � a is one to one.

Proof. Let u, u′ ∈ a. Assume (f � a)(u) = (f � a)(u′). Then f(u) = f(u′).
Hence u = u′.
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8 Image and preimage

[readtex set-theory/sections/02 functions/01 functions.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

8.1 The image

Given an arbitrary set z we can ask ourselves where its elements are mapped to
under a function f . The resulting set of such an application of f to all elements
of z is called the image of z under f .

Lemma 8.1. Let f be a function. There exists a set y such that y =
{ f(u) | u ∈ dom(f) ∩ z }.

Proof. Take y = range(f � (dom(f) ∩ z)). Then

y = { (f � (dom(f) ∩ z))(u) | u ∈ dom(f) ∩ z } .

Hence y = { f(u) | u ∈ dom(f) ∩ z }.

Definition 8.2. Let f be a function. f [z] is the set y such that y =
{ f(u) | u ∈ dom(f) ∩ z }.
Let the image of z under f stand for f [z]. Let the direct image of z under
f stand for f [z].

Proposition 8.3. Let f be a function from x to y and a ⊆ x. Then
f [a] = { f(u) | u ∈ a }.

Proof. f [a] = { f(u) | u ∈ dom(f) ∩ a }. dom(f) ∩ a = x ∩ a = a. Hence
the thesis.

Corollary 8.4. Let f be a function from x to y. Then f [x] = range(f).

Proof. We have f [x] = { f(u) | u ∈ x }. Hence f [x] = range(f).

Corollary 8.5. Let f be a function from x to y and a ⊆ x. Then f [a] =
range(f � a).

Proof. We have f [a] = { f(u) | u ∈ a }. Hence f [a] = range(f � a).

Proposition 8.6. Let a ⊆ x. Then idx[a] = a.

Proof. idx[a] = { idx(u) | u ∈ a }. We have idx(u) = u for all u ∈ a. Hence
idx[a] = { u | u ∈ a }. Thus idx[a] = a.

Proposition 8.7. Let a ⊆ x and v be an element. Assume that a is
nonempty. Then constx,v[a] = {v}.
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Proof. Let us show that constx,v[a] ⊆ {v}. Let w ∈ constx,v[a]. Take u ∈ a
such that w = constx,v(u). Then w = v. Hence w ∈ {v}. End.

Let us show that {v} ⊆ constx,v[a]. Let w ∈ {v}. Then w = v. Take
u ∈ a. Then constx,v(u) = v = w. Hence w ∈ constx,v[a]. End.

Proposition 8.8. Let f be a function from x into y and a ⊆ x. Then
f � a is a bijection between a and f [a].

Proof. (1) f � a is a function of a.

(2) f � a is one to one.

(3) range(f � a) = f [a]. Proof. Let us show that range(f � a) ⊆ f [a]. Let
v ∈ range(f � a). Take u ∈ a such that v = (f � a)(u). Then v = f(u).
Hence v ∈ f [a]. End.

Let us show that f [a] ⊆ range(f � a). Let v ∈ f [a]. Take u ∈ a such that
v = f(u). Then v = (f � a)(u). Hence v ∈ range(f � a). End. Qed.

Thus f � a is an one to one function from a onto f [a]. Therefore f � a is
a bijection between a and f [a].

8.2 The preimage

Similar to the construction of the image of a set under a function, we can
consider a set z and ask ourselves which elements of a function f are mapped
into z. This yields the so-called preimage of z under f .

Lemma 8.9. Let f be a function. There exists a set y such that y =
{ u ∈ dom(f) | f(u) ∈ z }.

Proof. Case f(u) ∈ z for all u ∈ dom(f). Obvious.

Case f(u) /∈ z for some u ∈ dom(f). Take w ∈ dom(f) such that f(w) /∈ z.
(1) Define

g(u) =

{
u : f(u) ∈ z
w : f(u) /∈ z

for u ∈ dom(f). range(g) = { g(u) | u ∈ dom(f) }. Hence range(g) =
{ u ∈ dom(f) | f(u) ∈ z or u = w } (by 1). Take y = range(g)\{w}. Then
y = { u ∈ dom(f) | f(u) ∈ z }. End.

Definition 8.10. Let f be a function. f−[z] is the set y such that y =
{ u ∈ dom(f) | f(u) ∈ z }.
Let the preimage of z under f stand for f−[z]. Let the inverse image of z
under f stand for f−[z].

Proposition 8.11. Let b ⊆ y. Then id−y [b] = b.
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Proof. id−y [b] = { u ∈ y | idy(u) ∈ b }. idy(u) = u for all u ∈ y. Hence

id−y [b] = { u ∈ y | u ∈ b }. Thus id−y [b] = b.

Proposition 8.12. Let v be an element and z be a set that contains v.
Then const−x,v[z] = x.

Proof. const−x,v[z] = { u ∈ x | constx,v(u) ∈ z }. constx,v(u) = v for every
u ∈ x. Hence const−x,v[z] = { u ∈ x | v ∈ z }. We have v ∈ z. Thus
const−x,v[z] = x.

Proposition 8.13. Let v be an element and z be a set that does not
contain v. Then const−x,v[z] = ∅.

Proof. const−x,v[z] = { u ∈ x | constx,v(u) ∈ z }. constx,v(u) = v for every
u ∈ x. Hence const−x,v[z] = { u ∈ x | v ∈ z }. It is wrong that v ∈ z. Thus
const−x,v[z] = ∅.

8.3 Computation rules

To conclude this paragraph let us prove some facts about the image and preim-
age.

Proposition 8.14. Let f be a function from x to y and a ⊆ x and u ∈ x.
Then u ∈ a =⇒ f(u) ∈ f [a].

Proof. Assume u ∈ a. We have f [a] = { f(u′) | u′ ∈ a }. Hence f(u) ∈
f [a].

Proposition 8.15. Let f be a function from x to y and b ⊆ y and u ∈ x.
Then f(u) ∈ b ⇐⇒ u ∈ f−[b].

Proof. We have f−[b] = { u′ ∈ x | f(u′) ∈ b }. Hence u ∈ f−[b] iff u ∈ x
and f(u) ∈ b. Then we have the thesis.

Proposition 8.16. Let f be a function from x to y. Then f [x] ⊆ y.

Proof. f [x] = f [dom(f)] = range(f) ⊆ y.

Proposition 8.17. Let f be a function from x to y. Then f−[y] = x.

Proof. We have f−[y] = { u ∈ x | f(u) ∈ y }. f(u) is an element of y for
all u ∈ x. Hence the thesis.

Proposition 8.18. Let f be a function from x to y. Then f [f−[y]] = f [x].

Proof. Let us show that f [f−[y]] ⊆ f [x]. Let v ∈ f [f−[y]]. Take u ∈
f−[y] ∩ x such that v = f(u). Then u ∈ x. Hence v ∈ f [x]. End.
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Let us show that f [x] ⊆ f [f−[y]]. Let v ∈ f [x]. Take u ∈ x such that
v = f(u). We have v ∈ y. Hence u ∈ f−[y]. Thus f(u) ∈ f [f−[y]]. Indeed
f−[y] ⊆ x. Therefore v ∈ f [f−[y]]. End.

Proposition 8.19. Let f be a function from x to y. Then f−[f [x]] = x.

Proof. f−[f [x]] = { u ∈ x | f(u) ∈ f [x] }. For all u ∈ x we have f(u) ∈
f [x]. Hence every element of f−[f [x]] is contained in x and every element
of x is contained in f−[f [x]]. Thus f−[f [x]] = x.

Proposition 8.20. Let f be a function from x to y and b ⊆ y. Then
f [f−[b]] = b ∩ f [x].

Proof. Let us show that f [f−[b]] ⊆ b ∩ f [x]. Let v ∈ f [f−[b]]. Take
u ∈ f−[b] such that v = f(u). Then f(u) ∈ b ∩ f [x]. Hence we have
v ∈ b ∩ f [x]. End.

Let us show that b ∩ f [x] ⊆ f [f−[b]]. Let v ∈ b ∩ f [x]. Take u ∈ x such
that v = f(u). Then u ∈ f−[b]. Hence f(u) ∈ f [f−[b]]. End.

Corollary 8.21. Let f be a function from x to y and b ⊆ y. Then
f [f−[b]] ⊆ b.

Proof. We have f [f−[b]] = b ∩ f [x] ⊆ b. Hence f [f−[b]] ⊆ b.

Proposition 8.22. Let f be a function from x to y and a ⊆ x. Then
f−[f [a]] ⊇ a.

Proof. Let u ∈ a. Then f(u) ∈ f [a]. Hence u ∈ f−[f [a]]. Indeed f [a] ⊆
y.

Proposition 8.23. Let f be a function from x to y and a ⊆ x. Then
f [a] = ∅ ⇐⇒ a = ∅.

Proof. Case f [a] = ∅. Then there is no u ∈ a such that f(u) ∈ f [a]. For
all u ∈ a we have f(u) ∈ f [a]. Hence a is empty. End.

Case a = ∅. For all v ∈ f [a] we have v = f(u) for some u ∈ a. There is no
u ∈ a. Hence f [a] is empty. End.

Proposition 8.24. Let f be a function from x to y and b ⊆ y. Then
f−[b] = ∅ ⇐⇒ b ⊆ y \ f [x].

Proof. Case f−[b] = ∅. Let v ∈ b. Then v ∈ y.

There is no u ∈ x such that v = f(u).
Proof. Assume the contrary. Take u ∈ x such that v = f(u). Then
u ∈ f−[b]. Contradiction. Qed.

Hence v /∈ f [x]. Therefore v ∈ y \ f [x]. End.
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Case b ⊆ y \ f [x]. Then no element of b is an element of f [x]. Assume
that f−[b] is nonempty. Take u ∈ f−[b]. Then f(u) ∈ b and f(u) ∈ f [x].
Contradiction. End.

Proposition 8.25. Let f be a function from x to y and a ⊆ x and b ⊆ y.
Then f [a] ∩ b = ∅ ⇐⇒ a ∩ f−[b] = ∅.

Proof. Case f [a] ∩ b = ∅. Assume that a ∩ f−[b] is nonempty. Take
u ∈ a ∩ f−[b]. Then f(u) ∈ f [a] and f(u) ∈ b. Hence f(u) ∈ f [a] ∩ b.
Contradiction. End.

Case a ∩ f−[b] = ∅. Assume that f [a] ∩ b is nonempty. Take v ∈ f [a] ∩ b.
Consider a u ∈ a such that v = f(u). Then u ∈ f−[b]. Indeed v ∈ b.
Hence u ∈ a ∩ f−[b]. Contradiction. End.

Proposition 8.26. Let f be a function from x to y and g be a function
from y to z and a ⊆ x. Then (g ◦ f)[a] = g[f [a]].

Proof. ((g ◦ f)[a]) = { g(f(u)) | u ∈ a }. f [a] is a subset of y. We have
g[f [a]] = { g(v) | v ∈ f [a] } and f [a] = { f(u) | u ∈ a }. Thus g[f [a]] =
{ g(f(u)) | u ∈ a }. Therefore (g ◦ f)[a] = g[f [a]]. Indeed ((g ◦ f)[a]) and
g[f [a]] are sets.

Proposition 8.27. Let f be a function from x to y and g be a function
from y to z and c ⊆ z. Then (g ◦ f)−[z] = f−[g−[z]].

Proof. ((g ◦ f)−[z]) = { u ∈ x | g(f(u)) ∈ z }. We have g−[z] =
{ v ∈ y | g(v) ∈ z } and f−[g−[z]] = { u ∈ x | f(u) ∈ g−[z] }. Hence
f−[g−[z]] = { u ∈ x | g(f(u)) ∈ z }. Thus (g ◦ f)−[z] = f−[g−[z]].

Proposition 8.28. Let f be a function from x to y and a, a′ ⊆ x. Then
a ⊆ a′ =⇒ f [a] ⊆ f [a′].

Proof. Assume a ⊆ a′. Let v ∈ f [a]. Take u ∈ a such that f(u) = v. Then
u ∈ a′. Hence v = f(u) ∈ f [a′].

Proposition 8.29. Let f be a function from x to y and b, b′ ⊆ y. Then
b ⊆ b′ =⇒ f−[b] ⊆ f−[b′].

Proof. Assume b ⊆ b′. Let u ∈ f−[b]. Then f(u) ∈ b. Hence f(u) ∈ b′.
Thus u ∈ f−[b′].

Proposition 8.30. Let f be a function from x to y and a, a′ ⊆ x. Then
f [a ∪ a′] = f [a] ∪ f [a′].

Proof. Let us show that f [a ∪ a′] ⊆ f [a] ∪ f [a′]. Let v ∈ f [a ∪ a′]. Take
u ∈ a∪ a′ such that v = f(u). Then u ∈ a or u ∈ a′. Hence f(u) ∈ f [a] or
f(u) ∈ f [a′]. Thus v = f(u) ∈ f [a] ∪ f [a′]. End.

Let us show that f [a] ∪ f [a′] ⊆ f [a ∪ a′]. Let v ∈ f [a] ∪ f [a′].

36



Case v ∈ f [a]. Take u ∈ a such that v = f(u). Then u ∈ a ∪ a′. Hence
v ∈ f [a ∪ a′]. End.

Case v ∈ f [a′]. Take u ∈ a′ such that v = f(u). Then u ∈ a ∪ a′. Hence
v ∈ f [a ∪ a′]. End. End.

Proposition 8.31. Let f be a function from x to y and b, b′ ⊆ y. Then
f−[b ∪ b′] = f−[b] ∪ f−[b′].

Proof. Let us show that f−[b ∪ b′] ⊆ f−[b] ∪ f−[b′]. Let u ∈ f−[b ∪ b′].
Then f(u) ∈ b∪b′. Hence f(u) ∈ b or f(u) ∈ b′. If f(u) ∈ b then u ∈ f−[b].
If f(u) ∈ b′ then u ∈ f−[b′]. Thus u ∈ f−[b] ∪ f−[b′]. End.

Let us show that f−[b] ∪ f−[b′] ⊆ f−[b ∪ b′]. Let u ∈ f−[b] ∪ f−[b′]. Then
u ∈ f−[b] or u ∈ f−[b′]. If u ∈ f−[b] then f(u) ∈ b. If u ∈ f−[b′] then
f(u) ∈ b′. Hence f(u) ∈ b ∪ b′. Thus u ∈ f−[b ∪ b′]. End.

Proposition 8.32. Let f be a function from x to y and a, a′ ⊆ x. Then
f [a ∩ a′] ⊆ f [a] ∩ f [a′].

Proof. Let v ∈ f [a ∩ a′]. Take u ∈ a ∩ a′ such that v = f(u). Then u ∈ a
and u ∈ a′. Hence f(u) ∈ f [a] and f(u) ∈ f [a′]. Thus v ∈ f [a] ∩ f [a].

Proposition 8.33. Let f be a function from x to y and b, b′ ⊆ y. Then
f−[b ∩ b′] = f−[b] ∩ f−[b′].

Proof. Let us show that f−[b ∩ b′] ⊆ f−[b] ∩ f−[b′]. Let u ∈ f−[b ∩ b′].
Then f(u) ∈ b ∩ b′. Hence f(u) ∈ b and f(u) ∈ b′. Thus u ∈ f−[b] and
u ∈ f−[b′]. Therefore u ∈ f−[b] ∩ f−[b′]. End.

Let us show that f−[b] ∩ f−[b′] ⊆ f−[b ∩ b′]. Let u ∈ f−[b] ∩ f−[b′]. Then
u ∈ f−[b] and u ∈ f−[b′]. Hence f(u) ∈ b and f(u) ∈ b′. Thus f(u) ∈ b∩b′.
Therefore u ∈ f−[b ∩ b′]. End.

Proposition 8.34. Let f be a function from x to y and a, a′ ⊆ x. Then
f [a \ a′] ⊇ f [a] \ f [a′].

Proof. Let v ∈ f [a] \ f [a′]. Then v ∈ f [a] and v /∈ f [a′]. Take u ∈ a such
that v = f(u). If u ∈ a′ then v ∈ f [a′]. Hence u /∈ a′. Thus u ∈ a \ a′.
Therefore v = f(u) ∈ f [a \ a′].

Proposition 8.35. Let f be a function from x to y and b, b′ ⊆ y. Then
f−[b \ b′] = f−[b] \ f−[b′].

Proof. Let us show that f−[b\b′] ⊆ f−[b]\f−[b′]. Let u ∈ f−[b\b′]. Then
f(u) ∈ b\b′. Hence f(u) ∈ b and f(u) /∈ b′. Thus u ∈ f−[b] and u /∈ f−[b′].
Therefore u ∈ f−[b] \ f−[b′]. End.

Let us show that f−[b] \ f−[b′] ⊆ f−[b \ b′]. Let u ∈ f−[b] \ f−[b′]. Then
u ∈ f−[b] and u /∈ f−[b′]. Hence f(u) ∈ b and f(u) /∈ b′. Thus f(u) ∈ b\b′.
Therefore u ∈ f−[b \ b′]. End.
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9 Invertible functions

[readtex set-theory/sections/02 functions/02 image-and-preimag

e.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

9.1 Definitions and basic properties

We call a function f invertible if there is a function g that undoes the operation
of f , i.e. applying f after g and applying g after f each results in the identity
function.

Definition 9.1. An inverse of f is a function g from range(f) to dom(f)
such that

f(u) = v ⇐⇒ g(v) = u

for all u ∈ dom(f) and all v ∈ dom(g).

Definition 9.2. f is invertible iff f has an inverse.

Lemma 9.3. Let g, g′ be inverses of f . Then g = g′.

Proof. We have dom(g) = range(f) = dom(g′).

Let us show that g(v) = g′(v) for all v ∈ range(f). Let v ∈ range(f). Take
u = g′(v). Then g(v) = u iff f(u) = v. We have f(u) = v iff g′(v) = u.
Thus g(v) = g′(v). End.

Hence the thesis (by Function extensionality). Indeed dom(g) = dom(g′).

Definition 9.4. Let f be invertible. f−1 is the inverse of f .

Let f is involutory stand for f is the inverse of f . Let f is selfinverse stand
for f is the inverse of f .

Proposition 9.5. Let f be a function from x onto y and g be a function
from y onto x. Then g is the inverse of f iff g ◦ f = idx and f ◦ g = idy.

Proof. Case g is the inverse of f . We have dom(g ◦ f) = dom(f) = x =
dom(idx). For all u ∈ x we have (g◦f)(u) = g(f(u)) = u. Hence g◦f = idx.

We have dom(f ◦ g) = dom(g) = y = dom(idy). For all v ∈ y we have
(f ◦ g)(v) = f(g(v)) = v. Hence f ◦ g = idy. End.

Case g ◦ f = idx and f ◦ g = idy. Then dom(g) = y = range(f) and
range(g) = x = dom(f). Let u ∈ dom(f) and v ∈ dom(g). If f(u) = v
then g(v) = g(f(u)) = (g ◦ f)(u) = idx(u) = u. If g(v) = u then f(u) =
f(g(v)) = (f ◦ g)(v) = idy(v) = v. Hence f(u) = v iff g(v) = u. End.
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Proposition 9.6. Let f be an invertible function from x onto y. Then
f−1 is an invertible function from y onto x such that (f−1)−1 = f .

Proof. f−1 is a function from y to x. Indeed range(f) = y and dom(f) = x.
f−1 is a function onto x. Indeed for any u ∈ x we have f−1(f(u)) = u.
f−1 is the inverse of f . Thus f ◦ f−1 = idy and f−1 ◦ f = idx. Therefore
f is the inverse of f−1 (by 9.5).

Proposition 9.7. Let f be an invertible function from x onto y. Then
f ◦ f−1 = idy and f−1 ◦ f = idx.

Proof. f−1 is a function from y onto x (by 9.6). f−1 is the inverse of f .
Hence the thesis (by 9.5).

Proposition 9.8. Let f be an invertible function from x onto y. Then
(f−1(f(u)) = u for all u ∈ x) and (f(f−1(v)) = v for all v ∈ y).

Proof. Let us show that f−1(f(u)) = u for all u ∈ x. Let u ∈ x. Then
f−1(f(u)) = (f−1 ◦ f)(u) = idx(u) = u. End.

Let us show that f(f−1(v)) = v for all v ∈ y. Let v ∈ y. Then f(f−1(v)) =
(f ◦ f−1)(v) = idy(v) = v. End.

Proposition 9.9. Let f be an invertible function from x onto y and g
be an invertible function from y onto z. Then g ◦ f is invertible and
(g ◦ f)−1 = f−1 ◦ g−1.

Proof. f−1 is a function from y onto x. g−1 is a function from z onto y.
Take h = f−1 ◦ g−1. [prover vampire] Then h is a function from z onto x
(by 7.42). [prover eprover] g ◦ f is a function from x to z.

Let us show that ((g◦f)◦h) = idz. We have f ◦(f−1◦g−1) = (f ◦f−1)◦g−1
(by Function extensionality). Indeed f ◦ (f−1 ◦ g−1) and (f ◦ f−1) ◦ g−1
are functions of z. f ◦ h is a function from z to y. Hence

(g ◦ f) ◦ h

= g ◦ (f ◦ h)

= g ◦ (f ◦ (f−1 ◦ g−1))

= g ◦ ((f ◦ f−1) ◦ g−1)

= g ◦ (idy ◦g−1)

= g ◦ g−1

= idz .

End.
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Let us show that h◦ (g ◦f) = idx. We have (f−1 ◦g−1)◦g = f−1 ◦ (g−1 ◦g)
(by Function extensionality). g ◦ f is a function from x to z. Hence

h ◦ (g ◦ f)

= (h ◦ g) ◦ f

= ((f−1 ◦ g−1) ◦ g) ◦ f

= (f−1 ◦ (g−1 ◦ g)) ◦ f

= (f−1 ◦ idy) ◦ f

= f−1 ◦ f

= idx .

End.

Thus h is the inverse of g ◦ f (by 9.5). Indeed g ◦ f is a function from x
onto z and h is a function from z onto x.

Proposition 9.10. Let f be an invertible function from x onto y and
a ⊆ x. Then f � a is invertible and (f � a)−1 = f−1 � f [a].

Proof. f � a is a function from a onto f [a]. Take g = f−1 � f [a]. Then g
is a function of f [a].

Let us show that a ⊆ range(g). Let u ∈ a. Then f(u) ∈ f [a]. Hence
g(f(u)) = f−1(f(u)) = u. Thus u is a value of g. End.

Let us show that range(g) ⊆ a. Let u ∈ range(g). Take v ∈ f [a] such that
u = g(v). Take w ∈ a such that v = f(w). Then u = (f−1 � f [a])(v) =
f−1(v) = f−1(f(w)) = w. Hence u ∈ a. End.

Hence range(g) = a. Thus g is a function onto a.

Let us show that g((f � a)(u)) = u for all u ∈ a. Let u ∈ a. Then
g((f � a)(u)) = g(f(u)) = (f−1 � f [a])(f(u)) = f−1(f(u)) = u. End.

Let us show that ((f � a)(g(v))) = v for all v ∈ f [a]. Let v ∈ f [a]. Take
u ∈ a such that v = f(u). We have g(v) = g(f(u)) = (f−1 � f [a])(f(u)) =
f−1(f(u)) = u. Hence (f � a)(g(v)) = (f � a)(u) = f(u) = v. End.

Thus g ◦ (f � a) = ida and (f � a) ◦ g = idf [a]. Therefore g is the inverse
of f � a.

Proposition 9.11. Let f be an invertible function from x onto y and
b ⊆ y. Then f−[b] = f−1[b].

Proof. We have f−1[b] =
{
f−1(v)

∣∣ v ∈ b } and f−[b] =
{ u ∈ x | f(u) ∈ b }.
Let us show that f−[b] ⊆ f−1[b]. Let u ∈ f−[b]. Take v ∈ b such that
v = f(u). Then f−1(v) = f−1(f(u)) = u. Hence u ∈ f−1[b]. End.
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Let us show that f−1[b] ⊆ f−[b]. Let u ∈ f−1[b]. Take v ∈ b such that
u = f−1(v). Then f(u) = f(f−1(v)) = v. Hence u ∈ f−[b]. End.

Corollary 9.12. Let f be an invertible function from x onto y and v ∈ y.
Then f−[{v}] = {f−1(v)}.

Proof. f−[{v}] = f−1[{v}]. We have f−1[{v}] =
{
f−1(w)

∣∣ w ∈ {v} }.
Hence f−1[{v}] = {f−1(v)}.

Proposition 9.13. Let f be a function from x onto y. f is invertible iff
f is one to one.

Proof. Case f is invertible. Let u, v ∈ x. Assume f(u) = f(v). Then
u = f−1(f(u)) = f−1(f(v)) = v. End.

Case f is one to one. Define g(v) = choose u ∈ x such that f(u) = v in u
for v ∈ y. g is a function from y to x. For all v ∈ y and all u, u′ ∈ x such
that f(u) = v = f(u′) we have u = u′. Hence g is a function from y onto
x. For all u ∈ x we have g(f(u)) = u. For all v ∈ y we have f(g(v)) = v.
Hence g is the inverse of f . End.

Corollary 9.14. Let f be an invertible function from x onto y. Then f−1

is a bijection between y and x.

Proof. f−1 is a function from y onto x. f−1 is invertible. Hence f−1 is one
to one. Thus f−1 is a function from y into x. Therefore f−1 is a bijection
between y and x.

9.2 Involutions

A special case of invertible functions are involutions, i.e. functions which are
self-inverse on their domain.

Definition 9.15. An involution on x is a selfinverse function f on x.

Proposition 9.16. idx is an involution on x.

Proof. idx is a function on x. We have idx ◦ idx = idx. Hence idx is
selfinverse.

Proposition 9.17. Let f and g be involutions on x. Then g ◦ f is an
involution on x iff g ◦ f = f ◦ g.

Proof. Case g ◦f is an involution on x. Then (g ◦f)−1 = f−1 ◦g−1 = f ◦g.
End.

Case g ◦ f = f ◦ g. f ◦ f , f ◦ g and f ◦ g are functions on x. Hence

(g ◦ f) ◦ (g ◦ f)
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= (g ◦ f) ◦ (f ◦ g)

= ((g ◦ f) ◦ f) ◦ g

= (g ◦ (f ◦ f)) ◦ g

= (g ◦ idx) ◦ g

= g ◦ g

= idx .

Thus g ◦ f is selfinverse. End.

Corollary 9.18. Let f be an involutions on x. Then f ◦f is an involution
on x.

Proposition 9.19. Let f be an involution on x. Then f is a permutation
of x.

Proof. f is an invertible function from x onto x. Hence f is a bijection
between x and x. Thus f is a permutation of x.

10 Functions and the symmetric difference

[readtex set-theory/sections/01 sets/04 symmetric-difference.ft

l.tex]

[readtex set-theory/sections/02 functions/02 image-and-preimag

e.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

In this paragraph we will briefly examine the behaviour of the image and preim-
age of a function with respect to the symmetric difference.

Proposition 10.1. Let f be a function from x to y and a, a′ ⊆ x. Then

f [a4 a′] ⊇ f [a]4 f [a′].

Proof. Let v ∈ f [a]4 f [a′]. We have f [a]4 f [a′] = (f [a] ∪ f [a′]) \ (f [a] ∩
f [a′]). Hence v ∈ f [a] ∪ f [a′] and v /∈ f [a] ∩ f [a′]. We have f [a] ∪ f [a′] =
f [a ∪ a′] (by 8.30).

Thus we can take u ∈ a ∪ a′ such that v = f(u).

Let us show that u /∈ a∩a′. Assume the contrary. Then v = f(u) ∈ f [a∩a′].
We have f [a ∩ a′] ⊆ f [a] ∩ f [a′]. Hence v ∈ f [a] ∩ f [a′]. Contradiction.
End.
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Thus u ∈ a4 a′. Therefore v ∈ f [a4 a′].

Proposition 10.2. Let f be a function from x to y and b, b′ ⊆ y. Then

f−[b4 b′] ⊇ f−[b]4 f−[b′].

Proof. Let u ∈ f−[b]4 f−[b′]. Then u ∈ f−[b] ∪ f−[b′] and u /∈ f−[b] ∩
f−[b′]. We have f−[b] ∪ f−[b′] = f−[b ∪ b′]. Hence we can take v ∈ b ∪ b′
such that f(u) = v.

Let us show that v /∈ b ∩ b′. Assume the contrary. Then v = f(u) ∈ b ∩ b′.
Hence u ∈ f−[b ∩ b′] = f−[b] ∩ f−[b′]. Contradiction. End.

Therefore v ∈ b4 b′. Hence u ∈ f−[b4 b′].

11 Functions and set-systems

[readtex set-theory/sections/01 sets/02 powerset.ftl.tex]

[readtex set-theory/sections/02 functions/01 functions.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

When dealing with set-systems, we might want to consider functions wich pre-
serve the order given by the ⊆-relation on these set-systems.

Definition 11.1. A function between systems of sets is a function f such
that f is a function from X to Y for some systems of sets X,Y .

Definition 11.2. Let f be a function between systems of sets. f preserves
subsets iff for all x, y ∈ dom(f) if x ⊆ y then f(x) ⊆ f(y).

Definition 11.3. Let f be a function between systems of sets. f preserves
supersets iff for all x, y ∈ dom(f) if x ⊇ y then f(x) ⊇ f(y).

Lemma 11.4. Let f be a function between systems of sets. Then f pre-
serves subsets iff f preserves supersets.

Proof. Case f preserves subsets. Let x, y ∈ dom(f). Assume x ⊇ y. Then
y ⊆ x. Hence f(y) ⊆ f(x). Thus f(x) ⊇ f(y). End.

Case f preserves supersets. Let x, y ∈ dom(f). Assume x ⊆ y. Then
y ⊇ x. Hence f(y) ⊇ f(x). Thus f(x) ⊆ f(y). End.

A famous result about order-preserving functions is the Knaster-Tarski fixed
point theorem:
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Theorem 11.5 (Knaster-Tarski). Let h be a function from P(x) to
P(x) that preserves subsets. Then h has a fixed point.

Proof. (1) Define A = { y | y ⊆ x and y ⊆ h(y) }. Then A is a subset of
P(x) (by Separation). We have

⋃
A ∈ P(x).

Let us show that (2)
⋃
A ⊆ h(

⋃
A). Let u ∈

⋃
A. Take y ∈ A such that

u ∈ y. Then u ∈ h(y). We have y ⊆
⋃
A. Hence h(y) ⊆ h(

⋃
A). Thus

h(y) ⊆ h(
⋃
A). Therefore u ∈ h(

⋃
A). End.

Then h(
⋃
A) ∈ A (by 1). Indeed h(

⋃
A) ⊆ x. (3) Hence h(

⋃
A) ⊆

⋃
A.

Indeed every element of h(
⋃
A) is an element of some element of A.

Thus h(
⋃
A) =

⋃
A (by 2, 3).

12 Equipollency

[readtex set-theory/sections/02 functions/03 invertible-functi

ons.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

We conclude this part about functions by introducing the notion of equipollency :
Two sets x, y being equipollent expresses the idea of x and y having the same
number of elements.

Definition 12.1. x and y are equipollent iff there exists a bijection be-
tween x and y.

Let x and y are equipotent stand for x and y are equipollent.

Proposition 12.2. x and x are equipollent.

Proof. idx is a bijection between x and x.

Proposition 12.3. If x and y are equipollent then y and x are equipollent.

Proof. Assume that x and y are equipollent. Take a bijection f between
x and y. Then f−1 is a bijection between y and x. Hence y and x are
equipollent.

Proposition 12.4. If x and y are equipollent and y and z are equipollent
then x and z are equipollent.

Proof. Assume that x and y are equipollent and y and z are equipollent.
Take a bijection f between x and y. Take a bijection g between y and z.
Then g◦f is a bijection between x and z. Hence x and z are equipollent.
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Proposition 12.5. x and ∅ are equipollent iff x is empty.

Proof. Case x and ∅ are equipollent. Take a bijection f between x and
∅. Assume that x is nonempty. Take an element u of x. Then f(u) ∈ ∅.
Contradiction. End.

Case x is empty. Then x = ∅. Hence x and ∅ are equipollent. End.
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