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Beginnings of Tarskian geometry inNaproche (draft)

Abstract

We present a literate formalization of the beginnings of Tarskian geometry. We follow
Metamathematische Methoden in der Geometrie by Schwabhäuser, Szmielew, and Tarski
(SST), covering most of the material up to Satz 6.7, including Gupta’s result that outer
Pasch follows from inner Pasch. Throughout, figures help the human reader keep up
with the automated theorem prover.

1. Introduction

Tarski’s axiomatization of geometry is characterized by its logical elegance, relying
only on two basic relations between points and a few simple axioms. These properties
make Tarskian geometry attractive for formalization: in particular for research in
automated deduction, see for instance Narboux (2006), Beeson and Wos (2017). For
more detailed accounts of Tarski’s axioms and their history see SST, Beeson (2015),
and Narboux (2006).

2. The language of Tarskian geometry

The only objects under consideration are points. They are subject to two primitive
relations: quaternary congruence (−)(−)≡(−)(−) and ternary betweenness (−)(−)(−).
Congruence (also called equidistance) expresses that the distance between the first two
points is equal to the distance of the last two points, and betweenness expresses that
the second point lies between the other two on a shared line. Informally we will also
talk about segments and lines, indicating them by concatenation (−)(−) of points.

2.1. Signature. A point is an object.

2.2. Convention. Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 denote points.

2.3. Signature (Congruence). 𝑎𝑏 ≡ 𝑐𝑑 is a relation.

2.4. Convention. Let 𝑎𝑏 . 𝑐𝑑 stand for it is wrong that 𝑎𝑏 ≡ 𝑐𝑑.

2.5. Signature (Betweenness). 𝑎𝑏𝑐 is a relation.

Points are collinear when they lie on a single line. We will later see that betweenness is
symmetric (𝑎𝑏𝑐 implies 𝑐𝑏𝑎), so we only need to consider three of the six permutations
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of three points in the definition of collinearity.

2.6. Definition (Collinearity). 𝑎 is collinear with 𝑏 and 𝑐 iff 𝑎𝑏𝑐 or 𝑏𝑐𝑎 or 𝑐𝑎𝑏.

2.7. Axiom (Reflexivity of congruence). We have 𝑎𝑏 ≡ 𝑏𝑎.

2.8. Axiom (Pseudotransitivity of congruence). If 𝑐𝑑 ≡ 𝑎𝑏 and 𝑐𝑑 ≡ 𝑒 𝑓 then 𝑎𝑏 ≡ 𝑒 𝑓 .

2.9. Axiom (Identity of congruence). If 𝑎𝑏 ≡ 𝑐𝑐 then 𝑎 = 𝑏.

Segment construction allows us to extend a segment 𝑎𝑏 by a length specified by
another segment 𝑑𝑒.

2.10. Axiom (Segment construction). There exists a point 𝑐 such that 𝑎𝑏𝑐 and 𝑏𝑐 ≡ 𝑑𝑒.

We say that the points 𝑥, 𝑦, 𝑧, 𝑟, 𝑢, 𝑣, 𝑤, 𝑝 are in an outer five segment configuration
whenever OFS

( 𝑥 𝑦 𝑧 𝑟
𝑢 𝑣 𝑤 𝑝

)
.

2.11. Convention. Let 𝑎′, 𝑏′, 𝑐′, 𝑑′ denote points. Let 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟 denote points.

2.12. Definition. OFS
( 𝑥 𝑦 𝑧 𝑟
𝑢 𝑣 𝑤 𝑝

)
if and only if 𝑥𝑦𝑧 ∧ 𝑢𝑣𝑤 and we have 𝑥𝑦 ≡ 𝑢𝑣 ∧ 𝑦𝑧 ≡

𝑣𝑤 ∧ 𝑥𝑟 ≡ 𝑢𝑝 ∧ 𝑦𝑟 ≡ 𝑣𝑝.

Using the concept of an outer five segment configuration, we can state the five segment
axiom in a concise form.

𝑑 𝑑′

𝑎 𝑏 𝑐 𝑎′ 𝑏′ 𝑐′

2.13. Axiom (Five segment axiom). If OFS
(
𝑎 𝑏 𝑐 𝑑
𝑎′ 𝑏′ 𝑐′ 𝑑′

)
and 𝑎 ≠ 𝑏 then 𝑐𝑑 ≡ 𝑐′𝑑′.

2.14. Axiom (Identity of betweenness). If 𝑎𝑏𝑎 then 𝑎 = 𝑏.

Tarski splits the classical axiom of Pasch into two axioms by making an inner/outer
distinction, leading to logically simpler statements. We will later see that outer Pasch
follows from inner Pasch, which was first demonstrated by Gupta (1965).

2.15. Axiom (Inner Pasch). If 𝑥𝑢𝑧 and 𝑦𝑣𝑧 then there exists a point 𝑤 such that 𝑢𝑤𝑦
and 𝑣𝑤𝑥.

2.16. Axiom (Lower dimension). There exist points 𝛼, 𝛽, 𝛾 such that 𝛼 is not collinear
with 𝛽 and 𝛾.

2.17. Axiom (Upper dimension). If 𝑥𝑢 ≡ 𝑥𝑣 and 𝑦𝑢 ≡ 𝑦𝑣 and 𝑧𝑢 ≡ 𝑧𝑣 and 𝑢 ≠ 𝑣 then
𝑥 is collinear with 𝑦 and 𝑧.

2.18. Axiom (Euclid). Assume 𝑥 ≠ 𝑟. If 𝑥𝑟𝑣 and 𝑦𝑟𝑧 then there exist points 𝑠, 𝑡 such
that 𝑥𝑦𝑠 and 𝑥𝑧𝑡 and 𝑠𝑣𝑡.
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Circle continuity is equivalent to the the statement a line that has a point within a circle
intersects that circle.

𝑥

𝑎

𝑐

𝑐′

𝑏

𝑎′

𝑏′

2.19. Axiom (Circle continuity). Assume 𝑥𝑎𝑏 and 𝑥𝑏𝑐. Assume 𝑥𝑎′ ≡ 𝑥𝑎 and 𝑥𝑐′ ≡ 𝑥𝑐.
Then there exists a point 𝑏′ such that 𝑥𝑏′ ≡ 𝑥𝑏 and 𝑎′𝑏′𝑐′.

2.20. Lemma (Reflexivity of congruence). For all points 𝑥, 𝑦 we have 𝑥𝑦 ≡ 𝑥𝑦.

2.21. Lemma (Symmetry of congruence). If 𝑥𝑦 ≡ 𝑣𝑤 then 𝑣𝑤 ≡ 𝑥𝑦.

2.22. Lemma (Transitivity of congruence). If 𝑥𝑦 ≡ 𝑣𝑤 and 𝑣𝑤 ≡ 𝑝𝑞 then 𝑥𝑦 ≡ 𝑝𝑞.

2.23. Lemma (Congruence is independent of the order of the pairs). If 𝑥𝑦 ≡ 𝑣𝑤 then
𝑦𝑥 ≡ 𝑣𝑤.

2.24. Lemma. If 𝑥𝑦 ≡ 𝑣𝑤 then 𝑥𝑦 ≡ 𝑤𝑣.

2.25. Lemma (Zero segments are congruent). For all point 𝑥, 𝑦 we have 𝑥𝑥 ≡ 𝑦𝑦.

2.26. Lemma (Concatenation of segments). Assume 𝑥𝑦𝑧 and 𝑟𝑣𝑤. Assume 𝑥𝑦 ≡ 𝑟𝑣
and 𝑦𝑧 ≡ 𝑣𝑤. Then 𝑥𝑧 ≡ 𝑟𝑤.

Proof. We have OFS ( 𝑥 𝑦 𝑧 𝑥
𝑟 𝑣 𝑤 𝑟 ). If 𝑥 = 𝑦 then 𝑟 = 𝑣. If 𝑥 ≠ 𝑦 then 𝑥𝑧 ≡ 𝑟𝑤. □

2.27. Lemma (Uniqueness of segment construction). Assume 𝑎 ≠ 𝑏. Suppose 𝑎𝑏𝑐 and
𝑏𝑐 ≡ 𝑑𝑒. Suppose 𝑎𝑏𝑐′ and 𝑏𝑐′ ≡ 𝑑𝑒. Then 𝑐 = 𝑐′.

Proof. We have 𝑎𝑐 ≡ 𝑎𝑐′. Thus 𝑏𝑐 ≡ 𝑏𝑐′. Thus OFS
(
𝑎 𝑏 𝑐 𝑐
𝑎 𝑏 𝑐 𝑐′

)
. Therefore 𝑐𝑐 ≡ 𝑐𝑐′. □

2.28. Lemma (Right betweenness). For all points 𝑥, 𝑦 we have 𝑥𝑦𝑦.

2.29. Lemma (Symmetry of betweenness). Assume 𝑥𝑦𝑧. Then 𝑧𝑦𝑥.

Left betweenness follows directly from right betweenness and symmetry of between-
ness.

2.30. Lemma (Left betweenness). For all points 𝑥, 𝑦 we have 𝑥𝑥𝑦.

2.31. Lemma. Assume 𝑥𝑦𝑧 and 𝑦𝑥𝑧. Then 𝑥 = 𝑦.
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Proof. Take a point 𝑤 such that 𝑦𝑤𝑦 and 𝑥𝑤𝑥. Then 𝑥 = 𝑤 = 𝑦. □

2.32. Lemma. Assume 𝑥𝑦𝑣 and 𝑦𝑧𝑣. Then 𝑥𝑦𝑧.

Proof. Take a point 𝑤 such that 𝑦𝑤𝑦 and 𝑧𝑤𝑥. □

2.33. Lemma. Assume 𝑥𝑦𝑧 and 𝑦𝑧𝑟 and 𝑦 ≠ 𝑧. Then 𝑥𝑧𝑟.

Proof. Take 𝑣 such that 𝑥𝑧𝑣 and 𝑧𝑣 ≡ 𝑧𝑟. Then 𝑦𝑧𝑣 and 𝑧𝑣 ≡ 𝑧𝑟. Hence 𝑣 = 𝑟. □

2.34. Lemma. Assume 𝑥𝑦𝑣 and 𝑦𝑧𝑣. Then 𝑥𝑧𝑣.

Proof. If 𝑦 = 𝑧 then 𝑥𝑧𝑣. Assume 𝑦 ≠ 𝑧. We have 𝑥𝑦𝑧. □

2.35. Lemma. Assume 𝑥𝑦𝑧 and 𝑥𝑧𝑟. Then 𝑦𝑧𝑟.

2.36. Lemma. Assume 𝑥𝑦𝑧 and 𝑥𝑧𝑟. Then 𝑥𝑦𝑟.

Proof. We have 𝑟𝑧𝑥. We have 𝑧𝑦𝑥. Thus 𝑟𝑦𝑥. Thus 𝑥𝑦𝑧. □

2.37. Lemma. Assume 𝑦 ≠ 𝑧. If 𝑥𝑦𝑧 and 𝑦𝑧𝑟 then 𝑥𝑦𝑟.

Existence of at least two points follows from the lower dimension axiom. All other
axioms also hold in a one-point space.

2.38. Lemma. We have 𝑥 ≠ 𝑦 for some 𝑥, 𝑦.

2.39. Lemma. There exist 𝑧 such that 𝑥𝑦𝑧 and 𝑦 ≠ 𝑧.

The following follows from invoking inner Pasch twice.

2.40. Lemma. Assume 𝑥𝑦𝑧 and 𝑢𝑣𝑧 and 𝑥𝑝𝑢. Then there exist 𝑞 such that 𝑝𝑞𝑧 and
𝑦𝑞𝑣.

Proof. We have 𝑥𝑝𝑢 and 𝑧𝑣𝑢. Take 𝑟 such that 𝑣𝑟𝑥 and 𝑝𝑟𝑧. Take 𝑞 such that 𝑟𝑞𝑧 and
𝑣𝑞𝑦. □

We say that the points 𝑎, 𝑏, 𝑐, 𝑑, 𝑎′, 𝑏′, 𝑐′, 𝑑′ are in an inner five segment configuration
whenever IFS

(
𝑎 𝑏 𝑐 𝑑
𝑎′ 𝑏′ 𝑐′ 𝑑′

)
.

2.41. Definition. IFS
( 𝑥 𝑦 𝑧 𝑟
𝑣 𝑤 𝑝 𝑞

)
iff 𝑥𝑦𝑧 and 𝑣𝑤𝑝 and 𝑥𝑧 ≡ 𝑣𝑝 and 𝑦𝑧 ≡ 𝑤𝑝 and 𝑥𝑟 ≡ 𝑣𝑞

and 𝑧𝑟 ≡ 𝑝𝑞.

We can swap 𝑥, 𝑦 with 𝑣, 𝑤.

2.42. Lemma. Assume IFS
( 𝑥 𝑦 𝑧 𝑟
𝑣 𝑤 𝑝 𝑞

)
. Then 𝑦𝑟 ≡ 𝑤𝑞.

Proof. Case 𝑥 ≠ 𝑧. Take points 𝑔, ℎ such that 𝑔 ≠ 𝑧 and 𝑥𝑧𝑔 and 𝑣𝑝ℎ and 𝑝ℎ ≡ 𝑧𝑔.
Then OFS

(
𝑥 𝑧 𝑔 𝑟
𝑣 𝑝 ℎ 𝑞

)
. Thus 𝑔𝑟 ≡ ℎ𝑞. Thus OFS

(
𝑔 𝑧 𝑦 𝑟
ℎ 𝑝 𝑤 𝑞

)
. Thus 𝑦𝑟 ≡ 𝑤𝑞. End. □
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2.43. Lemma (Overlapping segments). Assume 𝑥𝑦𝑧 and 𝑟𝑣𝑤 and 𝑥𝑧 ≡ 𝑟𝑤 and 𝑦𝑧 ≡
𝑣𝑤. Then 𝑥𝑦 ≡ 𝑟𝑣.

Proof. We have IFS ( 𝑥 𝑦 𝑧 𝑥
𝑟 𝑣 𝑤 𝑟 ). □

2.44. Definition. 𝑥𝑦𝑧 ≡ 𝑢𝑣𝑤 iff 𝑥𝑦 ≡ 𝑢𝑣 and 𝑥𝑧 ≡ 𝑢𝑤 and 𝑦𝑧 ≡ 𝑣𝑤.

2.45. Lemma. 𝑥𝑦𝑧 ≡ 𝑢𝑣𝑤 iff 𝑦𝑥𝑧 ≡ 𝑣𝑢𝑤.

2.46. Lemma. 𝑥𝑦𝑧 ≡ 𝑢𝑣𝑤 iff 𝑧𝑦𝑥 ≡ 𝑤𝑣𝑢.

2.47. Lemma. 𝑥𝑦𝑧 ≡ 𝑢𝑣𝑤 iff 𝑥𝑧𝑦 ≡ 𝑢𝑤𝑣.

If we have two congruent segments, then an inner point of one segment can be
transferred congruently onto the other segment.

2.48. Lemma. Assume 𝑥𝑦𝑧 and 𝑥𝑧 ≡ 𝑟𝑤. Then there exists 𝑣 such that 𝑟𝑣𝑤 and
𝑥𝑦𝑧 ≡ 𝑟𝑣𝑤.

Proof. Take 𝑢 such that 𝑤𝑟𝑢 and 𝑟 ≠ 𝑢. Then take 𝑣 such that 𝑢𝑟𝑣 and 𝑟𝑣 ≡ 𝑥𝑦. Take
a point 𝑔 such that 𝑢𝑣𝑔 and 𝑣𝑔 ≡ 𝑦𝑧. Then 𝑥𝑧 ≡ 𝑟𝑤. Therefore 𝑔 = 𝑤. □

2.49. Lemma. Assume 𝑥𝑦𝑧 and 𝑥𝑦𝑧 ≡ 𝑟𝑣𝑤. Then 𝑟𝑣𝑤.

Proof. Take 𝑢 such that 𝑟𝑢𝑤 and 𝑥𝑦𝑧 ≡ 𝑟𝑢𝑤. Then 𝑟𝑢𝑤 ≡ 𝑟𝑣𝑤 and IFS ( 𝑟 𝑢 𝑤 𝑢
𝑟 𝑢 𝑤 𝑣 ). Then

𝑢𝑢 ≡ 𝑢𝑣. Hence 𝑢 = 𝑣. Hence 𝑟𝑣𝑤. □

3. Collinearity

Until now we have only used the concept of collinearity to abbreviate some axioms.
We first make the straightforward observation that collinearity is invariant under
permutation of the arguments.

3.1. Lemma. Assume that 𝑎 is collinear with 𝑏 and 𝑐. Then 𝑏 is collinear with 𝑐 and 𝑎.

3.2. Lemma. Assume that 𝑎 is collinear with 𝑏 and 𝑐. Then 𝑐 is collinear with 𝑎 and 𝑏.

3.3. Lemma. Assume that 𝑎 is collinear with 𝑏 and 𝑐. Then 𝑐 is collinear with 𝑏 and 𝑎.

3.4. Lemma. Assume that 𝑎 is collinear with 𝑏 and 𝑐. Then 𝑏 is collinear with 𝑎 and 𝑐.

3.5. Lemma. Assume that 𝑎 is collinear with 𝑏 and 𝑐. Then 𝑎 is collinear with 𝑐 and 𝑏.

Similarly, it is easy to find a common line between just two points instead of three.

3.6. Lemma. 𝑎 is collinear with 𝑎 and 𝑏 for all points 𝑎, 𝑏.

3.7. Lemma. Assume 𝑎 is collinear with 𝑏 and 𝑐. Assume 𝑎𝑏 ≡ 𝑎′𝑏′. Then there exists
𝑐′ such that 𝑎𝑏𝑐 ≡ 𝑎′𝑏′𝑐′.

Proof. Case 𝑎𝑏𝑐. Take 𝑐′ such that 𝑎′𝑏′𝑐′ and 𝑏′𝑐′ ≡ 𝑏𝑐. End. Case 𝑏𝑎𝑐. Take 𝑐′ such
that 𝑏′𝑎′𝑐′ and 𝑎′𝑐′ ≡ 𝑎𝑐. Then 𝑏𝑐 ≡ 𝑏′𝑐′. End. Then 𝑎𝑐𝑏. Take 𝑐′ such that 𝑎′𝑐′𝑏′ and
𝑎𝑐𝑏 ≡ 𝑎′𝑐′𝑏′. □
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4. Five segment configuration

4.1. Definition. FS
( 𝑥 𝑦 𝑧 𝑟
𝑣 𝑤 𝑝 𝑞

)
iff 𝑥 is collinear with 𝑦 and 𝑧 and 𝑥𝑦𝑧 ≡ 𝑣𝑤𝑝 and 𝑥𝑟 ≡ 𝑣𝑞

and 𝑦𝑟 ≡ 𝑤𝑞.

The following lemma summarizes previous statements about outer/inner five seg-
ment configurations.

4.2. Lemma. Assume FS
( 𝑥 𝑦 𝑧 𝑟
𝑣 𝑤 𝑝 𝑞

)
and 𝑥 ≠ 𝑦. Then 𝑧𝑟 ≡ 𝑝𝑞.

Proof. Case 𝑥𝑦𝑧. We have 𝑥𝑦𝑧 ≡ 𝑣𝑤𝑝. Thus 𝑣𝑤𝑝. Thus OFS
( 𝑥 𝑦 𝑧 𝑟
𝑣 𝑤 𝑝 𝑞

)
. End. Case

𝑧𝑥𝑦. We have 𝑧𝑥𝑦 ≡ 𝑝𝑣𝑤. Thus 𝑝𝑣𝑤. Then OFS
( 𝑦 𝑥 𝑧 𝑟
𝑤 𝑣 𝑝 𝑞

)
. End. Then 𝑦𝑧𝑥. We have

𝑦𝑧𝑥 ≡ 𝑤𝑝𝑣. Thus 𝑤𝑝𝑣. Then IFS
( 𝑦 𝑧 𝑥 𝑟
𝑤 𝑝 𝑣 𝑞

)
. □

4.3. Lemma. Assume 𝑥 ≠ 𝑦. Assume 𝑥 is collinear with 𝑦 and 𝑧. Assume 𝑥𝑝 ≡ 𝑥𝑞 and
𝑦𝑝 ≡ 𝑦𝑞. Then 𝑧𝑝 ≡ 𝑧𝑞.

Proof. We have FS
( 𝑥 𝑦 𝑧 𝑝
𝑥 𝑦 𝑧 𝑞

)
. □

4.4. Lemma. Assume 𝑎 ≠ 𝑏. Assume 𝑎 is collinear with 𝑏 and 𝑐. Assume 𝑎𝑐 ≡ 𝑎𝑐′ and
𝑏𝑐 ≡ 𝑏𝑐′. Then 𝑐′ = 𝑐.

4.5. Lemma. Assume 𝑥𝑧𝑦 and 𝑥𝑧 ≡ 𝑥𝑝 and 𝑦𝑧 ≡ 𝑦𝑝. Then 𝑧 = 𝑝.

Proof. Assume 𝑥 = 𝑦. Then 𝑥 = 𝑧 and 𝑥 = 𝑝. Hence 𝑧 = 𝑝. Assume 𝑥 ≠ 𝑦. □

5. Connexity of betweenness

Gupta (1965) proved that outer Pasch follows from inner Pasch. To prove Gupta’s
theorem, we need a few preparatory lemmas.

5.1. Definition. 𝑎𝑏𝑐𝑑 iff 𝑎𝑏𝑐 and 𝑎𝑏𝑑 and 𝑎𝑐𝑑 and 𝑏𝑐𝑑.

5.2. Definition. 𝑎𝑏𝑐𝑑𝑒 iff 𝑎𝑏𝑐 and 𝑎𝑏𝑑 and 𝑎𝑏𝑒 and 𝑎𝑐𝑑 and 𝑎𝑐𝑒 and 𝑎𝑑𝑒 and 𝑏𝑐𝑑 and
𝑏𝑐𝑒 and 𝑏𝑑𝑒 and 𝑐𝑑𝑒.

5.3. Lemma (Extension to quaternary betweenness). If 𝑎𝑏𝑐 and 𝑎𝑐𝑑 then 𝑎𝑏𝑐𝑑.

5.4. Lemma (Extension to quinary betweenness). If 𝑎𝑏𝑐𝑑 and 𝑎𝑑𝑒 then 𝑎𝑏𝑐𝑑𝑒.

5.5. Lemma. Assume 𝑥 ≠ 𝑦 and 𝑥𝑦𝑧 and 𝑥𝑦𝑟. Then there exist points 𝛼, 𝛽 such that
𝑥𝑟𝛼 and 𝑟𝛼 ≡ 𝑧𝑟 and 𝑥𝑧𝛽 and 𝑧𝛽 ≡ 𝑧𝑟.

Proof. Take point 𝑎 such that 𝑥𝑟𝑎 and 𝑟𝑎 ≡ 𝑧𝑟 (by segment construction). Take point
𝑏 such that 𝑥𝑧𝑏 and 𝑧𝑏 ≡ 𝑧𝑟 (by segment construction). □

5.6. Lemma. Assume 𝑥 ≠ 𝑦 and 𝑥𝑦𝑧 and 𝑥𝑦𝑟 and 𝑥𝑟𝑝 and 𝑟𝑝 ≡ 𝑧𝑟 and 𝑥𝑧𝑞 and
𝑧𝑞 ≡ 𝑧𝑟. Then there exist points 𝑠, 𝑡 such that 𝑧𝑞𝑡 and 𝑟𝑝𝑠.
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𝑎 𝑏
𝑑 𝑐′

𝑏′

𝑐 𝑑′

𝑏′′

5.7. Theorem (Outer Pasch). Assume 𝑎 ≠ 𝑏. Assume 𝑎𝑏𝑐 and 𝑎𝑏𝑑. Then 𝑎𝑐𝑑 or 𝑎𝑑𝑐.

Proof. Take a point 𝑐′ such that 𝑎𝑑𝑐′ and 𝑑𝑐′ ≡ 𝑐𝑑. Take a point 𝑑′ such that 𝑎𝑐𝑑′ and
𝑐𝑑′ ≡ 𝑐𝑑. Then 𝑐 = 𝑐′ or 𝑑 = 𝑑′.

Proof. We have 𝑎𝑏𝑐𝑑′ (by extension to quaternary betweenness). We have 𝑎𝑏𝑑𝑐′ (by
extension to quaternary betweenness). Take a point 𝑏′ such that 𝑎𝑐′𝑏′ and 𝑐′𝑏′ ≡ 𝑐𝑏
(by segment construction). Take a point 𝑏′′ such that 𝑎𝑑′𝑏′′ and 𝑑′𝑏′′ ≡ 𝑏𝑑 (by segment
construction). Then 𝑎𝑏𝑐𝑑′𝑏′′. Then 𝑎𝑏𝑑𝑐′𝑏′.

Thus 𝑏𝑐′ ≡ 𝑏′′𝑐.

Thus 𝑏𝑏′ ≡ 𝑏′′𝑏.

We have 𝑎𝑏𝑏′ and 𝑎𝑏𝑏′′. Thus 𝑏′′ = 𝑏′.

We have OFS
(
𝑏 𝑐 𝑑′ 𝑐′
𝑏′ 𝑐′ 𝑑 𝑐

)
. Thus 𝑐′𝑑′ ≡ 𝑐𝑑.

Take a point 𝑒 such that 𝑐𝑒𝑐′ and 𝑑𝑒𝑑′. Then IFS
(
𝑑 𝑒 𝑑′ 𝑐
𝑑 𝑒 𝑑′ 𝑐′

)
and IFS

(
𝑐 𝑒 𝑐′ 𝑑
𝑐 𝑒 𝑐′ 𝑑′

)
. Thus

𝑒𝑐 ≡ 𝑒𝑐′ and 𝑒𝑑 ≡ 𝑒𝑑′.

Case 𝑐 ≠ 𝑐′. We have 𝑐 ≠ 𝑑′.

Take a point 𝑝 such that 𝑐′𝑐𝑝 and 𝑐𝑝 ≡ 𝑐𝑑′. Take a point 𝑟 such that 𝑑′𝑐𝑟 and 𝑐𝑟 ≡ 𝑐𝑒.
Take a point 𝑞 such that 𝑝𝑟𝑞 and 𝑟𝑞 ≡ 𝑟𝑝.

Then OFS
(
𝑑′ 𝑐 𝑟 𝑝
𝑝 𝑐 𝑒 𝑑′

)
. Thus 𝑟𝑝 ≡ 𝑒𝑑′. Thus 𝑟𝑞 ≡ 𝑒𝑑.

Then OFS
(
𝑑′ 𝑒 𝑑 𝑐
𝑝 𝑟 𝑞 𝑐

)
. Thus 𝑑′𝑑 ≡ 𝑝𝑞. Thus 𝑐𝑞 ≡ 𝑐𝑑. Thus 𝑐𝑝 ≡ 𝑐𝑞.

We have 𝑟𝑝 ≡ 𝑟𝑞. We have 𝑟 ≠ 𝑐.

Then 𝑟 is collinear with 𝑐 and 𝑑′. Thus 𝑑′𝑝 ≡ 𝑑′𝑞.

We have 𝑐 ≠ 𝑑′. Then 𝑐 is collinear with 𝑑′ and 𝑏. Then 𝑐 is collinear with 𝑑′ and 𝑏′.
Thus 𝑏𝑝 ≡ 𝑏𝑞 and 𝑏′𝑝 ≡ 𝑏′𝑞.

Thus 𝑏 ≠ 𝑏′. Then 𝑏 is collinear with 𝑐′ and 𝑏′. Thus 𝑐′𝑝 ≡ 𝑐′𝑞.

𝑐′ is collinear with 𝑐 and 𝑝. Thus 𝑝𝑝 ≡ 𝑝𝑞. Thus 𝑝 = 𝑞. Thus 𝑑 = 𝑑′. End. End.
Therefore 𝑎𝑐𝑑 or 𝑎𝑑𝑐. □
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5.8. Lemma. Assume 𝑎 ≠ 𝑏. If 𝑎𝑏𝑐 and 𝑎𝑏𝑑 then 𝑏𝑐𝑑 or 𝑏𝑑𝑐.

5.9. Theorem. If 𝑥𝑦𝑤 and 𝑥𝑧𝑤 then 𝑥𝑦𝑧 or 𝑥𝑧𝑦.

𝑏 𝑎 𝑥 𝑏′ 𝑐 𝑑

5.10. Lemma. Assume 𝑎 ≠ 𝑏. Then we have 𝑎𝑥 ≡ 𝑐𝑑 for some point 𝑥 such that 𝑎𝑏𝑥 or
𝑎𝑥𝑏.

Proof. Take 𝑏′ such that 𝑏𝑎𝑏′ and 𝑎𝑏′ ≡ 𝑎𝑏. Take 𝑥 such that 𝑏′𝑎𝑥 and 𝑎𝑥 ≡ 𝑐𝑑. □

6. Comparing segments

Informally, a segment 𝑎𝑏 is smaller than a segment 𝑐𝑑 whenever we can find a sub-
segment 𝑐𝑥 of 𝑐𝑑 of the same length as 𝑎𝑏.

𝑎 𝑏

𝑐 𝑑𝑥

6.1. Definition. 𝑎𝑏 ≤ 𝑐𝑑 iff there exists 𝑥 such that 𝑐𝑥𝑑 and 𝑎𝑏 ≡ 𝑐𝑥.

Alternatively, we can say that a segment 𝑎𝑏 is smaller than 𝑐𝑑 whenever we can extend
𝑎𝑏 to a segment 𝑎𝑥 of length 𝑐𝑑.

𝑎 𝑏

𝑐 𝑑

𝑥

6.2. Lemma. Assume 𝑎𝑏 ≤ 𝑐𝑑. Then there exists 𝑥 such that 𝑎𝑏𝑥 and 𝑎𝑥 ≡ 𝑐𝑑.

Proof. Take 𝑦 such that 𝑐𝑦𝑑 and 𝑎𝑏 ≡ 𝑐𝑦. Take 𝑥 such that 𝑎𝑏𝑥 and 𝑏𝑥 ≡ 𝑦𝑑. Then
𝑎𝑥 ≡ 𝑐𝑑. □

𝑎 𝑏 𝑥 𝑐 𝑦 𝑑

6.3. Lemma. Let 𝑥 be a point such that 𝑎𝑏𝑥 and 𝑎𝑥 ≡ 𝑐𝑑. Then 𝑎𝑏 ≤ 𝑐𝑑.

Proof. Take 𝑏′ such that 𝑐𝑏′𝑑 and 𝑎𝑏𝑥 ≡ 𝑐𝑏′𝑑. □

6.4. Lemma (Transitivity of congruence and comparison). Assume 𝑎𝑏 ≡ 𝑐𝑑 and 𝑐𝑑 ≤
𝑒 𝑓 . Then 𝑎𝑏 ≤ 𝑒 𝑓 .

Proof. Take 𝑥 such that 𝑒𝑥 𝑓 and 𝑐𝑑 ≡ 𝑒𝑥. □
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6.5. Lemma (Transitivity of comparison and congruence). Assume 𝑎𝑏 ≤ 𝑐𝑑 and 𝑐𝑑 ≡
𝑒 𝑓 . Then 𝑎𝑏 ≤ 𝑒 𝑓 .

Proof. Take 𝑥 such that 𝑎𝑏𝑥 and 𝑎𝑥 ≡ 𝑐𝑑. □

6.6. Lemma (Reflexivity of comparison). For all points 𝑎, 𝑏 we have 𝑎𝑏 ≤ 𝑎𝑏.

6.7. Lemma (Transitivity of comparison). Assume 𝑎𝑏 ≤ 𝑐𝑑 and 𝑐𝑑 ≤ 𝑒 𝑓 . Then 𝑎𝑏 ≤ 𝑐𝑑.

Proof. Take 𝑥 such that 𝑎𝑏𝑥 and 𝑎𝑥 ≡ 𝑐𝑑. Take 𝑦 such that 𝑐𝑑𝑦 and 𝑐𝑦 ≡ 𝑒 𝑓 . □

6.8. Lemma (Antisymmetry of comparison). Assume 𝑎𝑏 ≤ 𝑐𝑑 and 𝑐𝑑 ≤ 𝑎𝑏. Then
𝑎𝑏 ≡ 𝑐𝑑.

Proof. Take 𝑥 such that 𝑐𝑥𝑑 and 𝑎𝑏 ≡ 𝑐𝑥. Take 𝑦 such that 𝑐𝑑𝑦 and 𝑎𝑏 ≡ 𝑐𝑦. Then
𝑐𝑥 ≡ 𝑐𝑦. Thus 𝑥 = 𝑑 = 𝑦. □

6.9. Lemma (Connexity of comparison). Let 𝑎, 𝑏, 𝑐, 𝑑 be points. Then 𝑎𝑏 ≤ 𝑐𝑑 or
𝑐𝑑 ≤ 𝑎𝑏.

Proof. Case 𝑎 ≠ 𝑏. Take 𝑥 such that (𝑏𝑎𝑥 or 𝑏𝑥𝑎) and 𝑏𝑥 ≡ 𝑐𝑑. End. □

6.10. Lemma. For all points 𝑎, 𝑏, 𝑐 we have 𝑎𝑎 ≤ 𝑏𝑐.

6.11. Lemma. Assume 𝑎𝑏𝑐. Then 𝑎𝑏 ≤ 𝑎𝑐.

6.12. Lemma. Assume 𝑎𝑏𝑐. Then 𝑏𝑐 ≤ 𝑎𝑐.

Proof. 𝑎 is a point such that 𝑐𝑏𝑎 and 𝑐𝑎 ≡ 𝑎𝑐. □

6.13. Lemma. Assume that 𝑎 is collinear with 𝑏 and 𝑐. Assume 𝑎𝑏 ≤ 𝑎𝑐 and 𝑏𝑐 ≤ 𝑎𝑐.
Then 𝑎𝑏𝑐.

6.14. Definition. 𝑝𝑞 < 𝑥𝑦 iff 𝑝𝑞 ≤ 𝑥𝑦 and 𝑝𝑞 . 𝑥𝑦.

6.15. Definition. 𝑝𝑞 > 𝑥𝑦 iff 𝑥𝑦 < 𝑝𝑞.

7. Rays and lines

7.1. Definition. 𝑎 and 𝑏 lie on opposite sides of 𝑢 iff 𝑎, 𝑏, 𝑢 are pairwise nonequal and
𝑎𝑢𝑏.

7.2. Definition. 𝑎 and 𝑏 are equivalent with respect to 𝑢 iff 𝑎, 𝑏 ≠ 𝑢 and (𝑢𝑎𝑏 or 𝑢𝑏𝑎).

7.3. Convention. Let 𝑎 ≈𝑢 𝑏 stand for 𝑎 and 𝑏 are equivalent with respect to 𝑢.

We will see that two points are equivalent with respect to a point 𝑢 iff they determine
the same ray with origin 𝑢.

7.4. Lemma. Suppose 𝑎, 𝑏, 𝑐 ≠ 𝑢. Suppose 𝑎𝑢𝑐. Then 𝑏𝑢𝑐 iff 𝑎 ≈𝑢 𝑏.
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7.5. Lemma. Suppose 𝑎 and 𝑏 are equivalent with respect to 𝑢. Then 𝑎, 𝑏 ≠ 𝑢 and there
exists a point 𝑐 such that 𝑐 ≠ 𝑢 and 𝑎𝑢𝑐 and 𝑏𝑢𝑐.

7.6. Lemma. Suppose 𝑎, 𝑏 ≠ 𝑢. Suppose there exists a point 𝑐 such that 𝑐 ≠ 𝑢 and 𝑎𝑢𝑐
and 𝑏𝑢𝑐. Then 𝑎 and 𝑏 are equivalent with respect to 𝑢.

7.7. Lemma. 𝑎 and 𝑏 are equivalent with respect to 𝑢 iff 𝑎 is collinear with 𝑢 and 𝑏 and
not 𝑎𝑢𝑏.

7.8. Lemma (Reflexivity of relative equivalence). Suppose 𝑎 ≠ 𝑢. Then 𝑎 ≈𝑢 𝑎.

7.9. Lemma (Symmetry of relative equivalence). If 𝑎 ≈𝑢 𝑏 then 𝑏 ≈𝑢 𝑎.

7.10. Lemma (Transitivity of relative equivalence). Assume 𝑎 ≈𝑢 𝑏 and 𝑏 ≈𝑢 𝑐. Then
𝑎 ≈𝑢 𝑐.

Proof. Case 𝑢𝑎𝑏. End. □

7.11. Lemma. Suppose 𝑟 ≠ 𝑎 and 𝑏 ≠ 𝑐. Then there exists a point 𝑥 such that 𝑥 ≈𝑎 𝑟 and
𝑎𝑥 ≡ 𝑏𝑐.

7.12. Lemma. Suppose 𝑟 ≠ 𝑎 and 𝑏 ≠ 𝑐. Let 𝑥 be a point such that 𝑥 ≈𝑎 𝑟 and 𝑎𝑥 ≡ 𝑏𝑐.
Let 𝑥′ be a point such that 𝑥′ ≈𝑎 𝑟 and 𝑎𝑥′ ≡ 𝑏𝑐. Then 𝑥′ = 𝑥.

7.13. Lemma. Suppose 𝑎 ≈𝑢 𝑏 and 𝑢𝑎 ≤ 𝑢𝑏. Then 𝑢𝑎𝑏.

7.14. Lemma. Suppose 𝑎 ≈𝑢 𝑏 and 𝑢𝑎𝑏. Then 𝑢𝑎 ≤ 𝑢𝑏.
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