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1 Basic Ideas

The natural proof assistant Naproche is intended to approximate and sup-
port ordinary mathematical practices. Naproche employs the controlled
natural language ForTheL as its input language. Some ForTheL notions are
already built into Naproche, as well as some basic properties of these no-
tions. There are mathematical objects, and sets and classes of mathematical
objects. Sets are classes which are objects themselves and can thus be used
in further mathematical constructions. Functions and maps map objects to
objects, where functions are those maps which are objects.

Modelling mathematical notions by objects corresponds to the intuition
that numbers, points, etc. should not have internal set-theoretical structur-
ings, contrary to purely set-theoretical foundations of mathematics. This is
also advantageous for automated proving since it prevents proof searches to
dig into non-informative internal structurings.

As in common mathematics, sets and functions are required to satisfy
separation and replacement properties known from the set theories of Kelley-
Morse or Zermelo-Fraenkel.

The ontology presented here is more hierarchical than ad-hoc first-order
axiomatizations in some previous Naproche formalizations. Sometimes this
results in more complex and longer ontological checking tasks. Controlling
the complexitiy of automated proofs will be a major issue for the further
development.

2 Importing Some Mathematical Language

We import singular/plural forms of words that will be used in our formaliza-
tions (examples/vocabulary.ftl). In the long run this should be replaced
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by employing a proper English vocabulary. We also import some alternative
formulations for useful mathematical phrases (examples/macros.ftl).

[read vocabulary.ftl]
[read macros.ftl]

3 Sets and Classes

The notions of classes and sets are already provided by Naproche. Classes
are usually defined by abstraction terms {· · · | . . . }. Since such terms need
to be processed by the parser we cannot introduce them simply by first-
order definitions but have to implement them in the software. That sets
are classes which are objects, or extensionality can be proved from inbuilt
assumptions, but it is important to reprove or restate such facts so that they
can directly be accessed by the ATP.

Lemma 1. Every set is a class.

Lemma 2. Every class that is an object is a set.

Axiom 3. Every element of every class is an object.

Let S, T,X, Y, Z denote classes.

Definition 4. The empty set is the set that has no elements.

Definition 5. A subclass of S is a class T such that every x ∈ T
belongs to S.

Let T ⊆ S stand for T is a subclass of S.
Let a proper subclass of B stand for a subclass A of B such that A 6= B.

Lemma 6. (Class Extensionality) If S is a subclass of T and T
is a subclass of S then S = T .

Definition 7. A subset of S is a set X such that X ⊆ S.

Let a proper subset of B stand for a subset A of B such that A 6= B.

Axiom 8. (Separation Axiom) Assume that X is a set. Let T be
a subclass of X. Then T is a set.

Definition 9. Let B,C be classes. The intersection of B and C is
{x ∈ B|x ∈ C}.
Let B ∩ C stand for the intersection of B and C.

Definition 10. Let B,C be classes. The union of B and C is {x|x ∈
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B ∨ x ∈ C}.
Let B ∪ C stand for the union of B and C.

Definition 11. Let B,C be classes. The set difference of B and C is
{x ∈ B|x /∈ C}.
Let B \ C stand for the set difference of B and C.

Definition 12. Let B,C be classes. B is disjoint from C iff there is
no element of B that is an element of C.

Definition 13. A family is a set F such that every element of F is a
set.

Definition 14. A disjoint family is a family F such that B is disjoint
from C for all nonequal elements B,C of F .

4 Pairs and Products

Since we prefer objects over sets if possible, we do not work with Kuratowski-
style set-theoretical ordered pairs, but axiomatize them as objects.

Axiom 15. (a, b) is an object for all objects a, b.

Axiom 16. For any objects a, b, c, d if (a, b) = (c, d) then a = c and
b = d.

Definition 17. S × T = {(x, y)|x ∈ S and y ∈ T}.
Axiom 18. Let X,Y be sets. Then X × Y is a set.

Axiom 19. Let x, y be objects. If (x, y) is an element of S × T then
x is an element of S and y is an element of T .

5 Functions and Maps

The treatment of functions and maps is similar to that of sets and classes.

Lemma 20. Every function is a map.

Lemma 21. Every map that is an object is a function.

Let f, g stand for maps.

Lemma 22. The domain of every map is a class.

Lemma 23. Let x ∈ Dom(f). Then f(x) is an object.
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Lemma 24. (Functional Extensionality) Assume Dom(f) =
Dom(g) and for every x ∈ Dom(f) f(x) = g(x). Then f = g.

Definition 25. Assume S is a subclass of the domain of f . f [S] =
{f(x)|x ∈ S}.
Definition 26. f maps elements of X to elements of Y iff Dom(f) =
X and f [X] ⊆ Y .

Let f : X → Y stand for f maps elements of X to elements of Y .

Axiom 27. (Replacement Axiom) Let X be a set. Assume that
X is a subset of the domain of f . Then f [X] is a set.

Let g retracts f stand for g(f(x)) = x for all elements x of Domf . Let
h sections f stand for f(h(y)) = y for all elements y of Domh.

Definition 28. Let F be a map. Let B,C be classes. F : B ↔ C
iff F : B → C and there exists a map G such that G : C → B and G
retracts F and G sections F .
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