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Abstract

We present a literate formalization of the beginnings of Tarskian geometry. We follow
Metamathematische Methoden in der Geometrie by Schwabhéuser, Szmielew, and Tarski
(SST), covering most of the material up to Satz 6.7, including Gupta’s result that outer
Pasch follows from inner Pasch. Throughout, figures help the human reader keep up
with the automated theorem prover.

1. Introduction

Tarski’s axiomatization of geometry is characterized by its logical elegance, relying
only on two basic relations between points and a few simple axioms. These properties
make Tarskian geometry attractive for formalization: in particular for research in
automated deduction, see for instance Narboux (2006), Beeson and Wos (2017). For

more detailed accounts of Tarski’s axioms and their history see SST, Beeson (2015),
and Narboux (2006).

2. Thelanguage of Tarskian geometry

The only objects under consideration are points. They are subject to two primitive
relations: quaternary congruence (—)(—)=(—)(—) and ternary betweenness (—)(—)(-).
Congruence (also called equidistance) expresses that the distance between the first two
points is equal to the distance of the last two points, and betweenness expresses that
the second point lies between the other two on a shared line. Informally we will also
talk about segments and lines, indicating them by concatenation (—)(—) of points.

2.1. Signature. A point is an object.

2.2. Convention. Leta,b,c,d, e, f denote points.

2.3. Signature (Congruence). ab = cd is a relation.

2.4. Convention. Let ab # cd stand for it is wrong that ab = cd.
2.5. Signature (Betweenness). abc is a relation.

Points are collinear when they lie on a single line. We will later see that betweenness is
symmetric (abc implies cba), so we only need to consider three of the six permutations
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of three points in the definition of collinearity.

2.6. Definition (Collinearity). a is collinear with b and ¢ iff abc or bca or cab.

2.7. Axiom (Reflexivity of congruence). We have ab = ba.

2.8. Axiom (Pseudotransitivity of congruence). If cd = ab and cd = ef then ab = ef.
2.9. Axiom (Identity of congruence). If ab = cc then a = b.

Segment construction allows us to extend a segment ab by a length specified by
another segment de.

2.10. Axiom (Segment construction). There exists a point ¢ such that abc and bc = de.

We say that the points X,Y,z,7,u,0,w,p are in an outer ﬁve segment conﬁgumtion
whenever OFS (;, § « ; ).

2.11. Convention. Leta’,b’, ¢/, d’ denote points. Letx,y,z,u,v,w,p, q,r denote points.

2.12. Definition. OFS (3 # » ) if and only if xyz A uvw and we have xy = uv A yz =
VW AXr=up ANyr =op.

Using the concept of an outer five segment configuration, we can state the five segment
axiom in a concise form.

a b ¢ a’ b’ c’
2.13. Axiom (Five segment axiom). If OFS (% [, & 4) and a # b then cd = ¢'d’.

2.14. Axiom (Identity of betweenness). If aba then a = b.

Tarski splits the classical axiom of Pasch into two axioms by making an inner/outer
distinction, leading to logically simpler statements. We will later see that outer Pasch
follows from inner Pasch, which was first demonstrated by Gupta (1965).

2.15. Axiom (Inner Pasch). If xuz and yvz then there exists a point w such that uwy
and vwx.

2.16. Axiom (Lower dimension). There exist points «, , ¥ such that « is not collinear
with g and y.

2.17. Axiom (Upper dimension). If xu = xv and yu = yv and zu = zv and u # v then
x is collinear with y and z.

2.18. Axiom (Euclid). Assume x # r. If xrv and yrz then there exist points s, t such
that xys and xzt and svt.
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Circle continuity is equivalent to the the statement a line that has a point within a circle
intersects that circle.

2.19. Axiom (Circle continuity). Assume xab and xbc. Assume xa’ = xa and xc’ = xc.
Then there exists a point b’ such that xb’ = xb and a’b’c’.

2.20. Lemma (Reflexivity of congruence). For all points x, y we have xy = xy.
2.21. Lemma (Symmetry of congruence). If xy = vw then vw = xy.
2.22. Lemma (Transitivity of congruence). If xy = vw and vw = pq then xy = pq.

2.23. Lemma (Congruence is independent of the order of the pairs). If xy = vw then
yx = ow.

2.24. Lemma. If xy = vw then xy = wo.
2.25. Lemma (Zero segments are congruent). For all point x, y we have xx = yy.

2.26. Lemma (Concatenation of segments). Assume xyz and row. Assume xy = rv
and yz = vw. Then xz = rw.

Proof. We have OFS(} Y 2 7). If x = y thenr = v. If x # y then xz = rw. i

2.27. Lemma (Uniqueness of segment construction). Assume a # b. Suppose abc and
bc = de. Suppose abc” and bc” = de. Then c = ¢’.

Proof. We have ac = ac’. Thus be = bc’. Thus OFS (2 ¢ & ). Therefore cc = cc’. O

2.28. Lemma (Right betweenness). For all points x, ¥ we have xyy.
2.29. Lemma (Symmetry of betweenness). Assume xyz. Then zyx.

Left betweenness follows directly from right betweenness and symmetry of between-
ness.

2.30. Lemma (Left betweenness). For all points x, y we have xxy.

2.31. Lemma. Assume xyz and yxz. Then x = y.
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Proof. Take a point w such that ywy and xwx. Thenx = w = y. ]

2.32. Lemma. Assume xyv and yzv. Then xyz.

Proof. Take a point w such that ywy and zwx. O

2.33. Lemma. Assume xyz and yzr and y # z. Then xzr.

Proof. Take v such that xzv and zv = zr. Then yzv and zv = zr. Hence v =r. ]

2.34. Lemma. Assume xyv and yzv. Then xzv.

Proof. If y = z then xzv. Assume y # z. We have xyz. O

2.35. Lemma. Assume xyz and xzr. Then yzr.

2.36. Lemma. Assume xyz and xzr. Then xyr.

Proof. We have rzx. We have zyx. Thus ryx. Thus xyz. o

2.37. Lemma. Assume y # z. If xyz and yzr then xyr.

Existence of at least two points follows from the lower dimension axiom. All other
axioms also hold in a one-point space.

2.38. Lemma. We have x # y for some x, y.
2.39. Lemma. There exist z such that xyz and y # z.
The following follows from invoking inner Pasch twice.

2.40. Lemma. Assume xyz and uvz and xpu. Then there exist g such that pgz and
yqo.

Proof. We have xpu and zvu. Take r such that vrx and prz. Take g such that rgz and
vqy. ]

We say that the points a, b, c,d,a’,b’, ¢/, d’ are in an inner five segment configuration

whenever IFS (% [ & 4).

2.41. Definition. IFS (3 & ¢ ) iff xyz and vwp and xz = vp and yz = wp and xr = vg
and zr = pq.
We can swap x, y with v, w.

Xyz

2.42. Lemma. Assume IFS (3 # , o). Then yr = wq.
Proof. Case x # z. Take points g, h such that ¢ # z and xzg and vph and ph = zg.

Then OFS(i ; ; ;) Thus gr = hg. Thus OFS (i ; y ;) Thus yr = wq. End. |
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2.43. Lemma (Overlapping segments). Assume xyz and row and xz = rw and yz
vw. Then xy = rv.

Proof. We have IFS(; 7 27 i

rowr/’

2.44. Definition. xyz = uovw iff xy = uv and xz = yw and yz = vw.
2.45. Lemma. xyz = uow iff yxz = vuw.
2.46. Lemma. xyz = uvw iff zyx = wou.
2.47. Lemma. xyz = uow iff xzy = uwv.

If we have two congruent segments, then an inner point of one segment can be
transferred congruently onto the other segment.

2.48. Lemma. Assume xyz and xz = rw. Then there exists v such that row and
Xyz = row.

Proof. Take u such that wru and r # u. Then take v such that urv and rv = xy. Take

a point g such that uvg and vg = yz. Then xz = rw. Therefore g = w. ]

2.49. Lemma. Assume xyz and xyz = row. Then row.

Proof. Take u such that ruw and xyz = ruw. Then ruw = row and IFS(} i; & ). Then
uu = uv. Hence u = v. Hence row. O

3. Collinearity

Until now we have only used the concept of collinearity to abbreviate some axioms.
We first make the straightforward observation that collinearity is invariant under
permutation of the arguments.

3.1. Lemma. Assume that a is collinear with b and c. Then b is collinear with ¢ and a.
3.2. Lemma. Assume that a is collinear with b and c¢. Then c is collinear with a and b.
3.3. Lemma. Assume that a is collinear with b and c¢. Then c is collinear with b and a.
3.4. Lemma. Assume that a is collinear with b and c. Then b is collinear with a and c.
3.5. Lemma. Assume that a is collinear with b and c. Then a is collinear with ¢ and b.
Similarly, it is easy to find a common line between just two points instead of three.
3.6. Lemma. a is collinear with a and b for all points a, b.

3.7. Lemma. Assume a is collinear with b and ¢. Assume ab = a’b’. Then there exists
¢’ such that abc = a’b’c’.

Proof. Case abc. Take ¢’ such that a’b’c’ and b’c” = bc. End. Case bac. Take ¢’ such
that b’a’c’ and a’c’ = ac. Then be = b’¢’. End. Then acbh. Take ¢’ such that a’c’b’ and
acb=a’c’b’. m]

5/1



4. Five segment configuration
4.1. Definition. FS (7 1 ; ,;) iff x is collinear with y and z and xyz = vwp and xr = vg
and yr = wq.

The following lemma summarizes previous statements about outer/inner five seg-
ment configurations.

4.2. Lemma. Assume FS (3 # , 1) and x # y. Then zr = pq.

Proof. Case xyz. We have xyz = vwp. Thus vwp. Thus OFS (3 # , ). End. Case

yxzr

zxy. We have zxy = pow. Thus pow. Then OFS ({5 » 4). End. Then yzx. We have

yzx = wpv. Thus wpo. ThenIFS (7, 5 q)- m

4.3. Lemma. Assume x # y. Assume x is collinear with y and z. Assume xp = xq and

yp =yq. Then zp = zq.

Proof. Wehave FS (y 1z 7). ]
4.4, Lemma. Assume a # b. Assume 4 is collinear with b and ¢. Assume ac = ac’ and
bc =bc’. Then ¢’ = c.

4.5. Lemma. Assume xzy and xz = xp and yz = yp. Thenz = p.

Proof. Assume x = y. Then x = z and x = p. Hence z = p. Assume x # y. O

5. Connexity of betweenness

Gupta (1965) proved that outer Pasch follows from inner Pasch. To prove Gupta’s
theorem, we need a few preparatory lemmas.

5.1. Definition. abcd iff abc and abd and acd and bcd.

5.2. Definition. abcde iff abc and abd and abe and acd and ace and ade and bcd and
bce and bde and cde.

5.3. Lemma (Extension to quaternary betweenness). If abc and acd then abcd.
5.4. Lemma (Extension to quinary betweenness). If abcd and ade then abcde.

5.5. Lemma. Assume x # y and xyz and xyr. Then there exist points a, § such that
xra and ra = zr and xzf and zf = zr.

Proof. Take point a such that xra and ra = zr (by segment construction). Take point
b such that xzb and zb = zr (by segment construction). ]

5.6. Lemma. Assume x # y and xyz and xyr and xrp and rp = zr and xzq and
zq = zr. Then there exist points s, t such that zqt and rps.
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5.7. Theorem (Outer Pasch). Assume a # b. Assume abc and abd. Then acd or adc.

Proof. Take a point ¢’ such that adc’ and dc” = cd. Take a point d’ such that acd” and
cd’=cd. Thenc=c"ord =d".

Proof. We have abcd’ (by extension to quaternary betweenness). We have abdc’ (by
extension to quaternary betweenness). Take a point b’ such that ac’b’ and c’b’ = cb
(by segment construction). Take a point b” such that ad’b” and d’b” = bd (by segment
construction). Then abcd’b”. Then abdc’b’.

Thus bc” = b”c.

Thus bb’ = b”b.

We have abb’ and abb”. Thus b” =b’.
We have OFS (5 &% ). Thus ¢’d’ = cd.

Take a point e such that cec’ and ded’. Then IFS(9¢% ¢) and IFS(¢¢ ¢ 4). Thus
ec=ec’and ed = ed’.

Casec #¢’. Wehavec # d’.

Take a point p such that ¢’cp and cp = cd’. Take a point r such that d’cr and cr = ce.
Take a point g such that prg and rq = rp.

Then OFS(‘: ool ) Thus rp = ed’. Thus rq = ed.

Then OFS(‘;,/ ; Z E) Thus d’d = pg. Thus c¢q = cd. Thus cp = cq.
We have rp = rq. We have r # c.

Then r is collinear with ¢ and d’. Thus d’p = d'g.

We have ¢ # d’. Then c is collinear with d’ and b. Then c is collinear with d’ and V’.
Thus bp = bgand b’p = b'q.

Thus b # b’. Then b is collinear with ¢’ and b’. Thus ¢’p = 3.

¢’ is collinear with ¢ and p. Thus pp = pg. Thus p = q. Thusd = d’. End. End.
Therefore acd or adc. ]
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5.8. Lemma. Assume a # b. If abc and abd then bcd or bdc.

5.9. Theorem. If xyw and xzw then xyz or xzy.

b a X 4 c d

5.10. Lemma. Assume a # b. Then we have ax = cd for some point x such that abx or
axb.

Proof. Take b’ such that bab’ and ab’ = ab. Take x such that b’ax and ax = cd. O

6. Comparing segments

Informally, a segment ab is smaller than a segment cd whenever we can find a sub-
segment cx of cd of the same length as ab.

b

a
————*

x d

- - - -

c

*~----

6.1. Definition. ab < cd iff there exists x such that cxd and ab = cx.

Alternatively, we can say that a segment ab is smaller than cd whenever we can extend
ab to a segment ax of length cd.

a b x
— o ----9

c d

1
1
1

¢

*~----

6.2. Lemma. Assume ab < cd. Then there exists x such that abx and ax = cd.

Proof. Take y such that cyd and ab = cy. Take x such that abx and bx = yd. Then
ax = cd. O

a b X c Y d

6.3. Lemma. Let x be a point such that abx and ax = cd. Then ab < cd.

Proof. Take b’ such that cb’d and abx = cb’d. ]

6.4. Lemma (Transitivity of congruence and comparison). Assume ab = cd and cd <
ef. Thenab < ef.

Proof. Take x such that exf and cd = ex. ]
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6.5. Lemma (Transitivity of comparison and congruence). Assume ab < cd and cd =
ef. Thenab < ef.

Proof. Take x such that abx and ax = cd. ]

6.6. Lemma (Reflexivity of comparison). For all points a, b we have ab < ab.

6.7. Lemma (Transitivity of comparison). Assume ab < cd and cd < ef. Then ab < cd.

Proof. Take x such that abx and ax = cd. Take y such that cdy and cy = ef. |

IA

6.8. Lemma (Antisymmetry of comparison). Assume ab < cd and cd < ab. Then

ab = cd.
Proof. Take x such that cxd and ab = cx. Take y such that cdy and ab = cy. Then
cx=cy. Thusx=d=y. O

6.9. Lemma (Connexity of comparison). Let a,b,c,d be points. Then ab < cd or
cd < ab.

Proof. Case a # b. Take x such that (bax or bxa) and bx = cd. End. O

6.10. Lemma. For all points a, b, c we have aa < bc.
6.11. Lemma. Assume abc. Then ab < ac.

6.12. Lemma. Assume abc. Then be < ac.

Proof. a is a point such that cba and ca = ac. ]
6.13. Lemma. Assume that a is collinear with b and c. Assume ab < ac and bc < ac.
Then abc.

6.14. Definition. pq < xy iff pq < xy and pg # xy.

6.15. Definition. pq > xy iff xy < pq.

7. Rays and lines

7.1. Definition. a and b lie on opposite sides of u iff a, b, u are pairwise nonequal and
aub.

7.2. Definition. a and b are equivalent with respect to u iff a,b # u and (uab or uba).
7.3. Convention. Let a =, b stand for a and b are equivalent with respect to u.

We will see that two points are equivalent with respect to a point u iff they determine
the same ray with origin u.

7.4. Lemma. Suppose a,b, ¢ # u. Suppose auc. Then buc iff a =, b.
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7.5. Lemma. Suppose a and b are equivalent with respect to u. Then a, b # u and there
exists a point ¢ such that ¢ # u and auc and buc.

7.6. Lemma. Suppose a, b # u. Suppose there exists a point ¢ such that ¢ # u and auc
and buc. Then a and b are equivalent with respect to u.

7.7. Lemma. a and b are equivalent with respect to u iff 4 is collinear with u and b and
not aub.

7.8. Lemma (Reflexivity of relative equivalence). Suppose a # u. Thena =, a.
7.9. Lemma (Symmetry of relative equivalence). If a =, b then b =, a.

7.10. Lemma (Transitivity of relative equivalence). Assume a =, b and b =, c. Then
a=y C.

Proof. Case uab. End. o

7.11. Lemma. Suppose r # a and b # c. Then there exists a point x such that x =, r and
ax = be.

7.12. Lemma. Suppose r # a and b # c. Let x be a point such that x =, r and ax = bc.
Let x” be a point such that x” =, r and ax’ = bc. Then x” = x.

7.13. Lemma. Suppose a =, b and ua < ub. Then uab.

7.14. Lemma. Suppose a =, b and uab. Then ua < ub.
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