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We base our formalization on the notions of classes, sets and objects which are
hardcoded into Naproche.

Let x,y, z denote sets.

Sets are regarded as classes which are also objects, the latter being entities that
are in some sense small enough to be contained in classes.

Axiom 1.1. z is a class.
Axiom 1.2. x is an objects.

Axiom 1.3. Let u be an element of . Then w is an object.

1.1 Subsets
Let us continue with the notion of subsets, i.e. sets which are included in some
other set.

Definition 1.4. A subset of x is a set y such that every element of y is an
element of z.

Let y C x stand for y is a subset of z. Let y C x stand for y C x. Let a
superset of x stand for a set y such that x C y. Let y O z stand for y is a
superset of x. Let y D « stand for y O x. Let z includes y stand for y C z.
Let y is included in = stand for x includes .

Definition 1.5. A proper subset of x is a subset of x that is not equal to
x.

Let y € « stand for x is a proper subset of x. Let a proper superset of
x stand for a set y such that z C y. Let y 2 z stand for y is a proper
superset of x.

Proposition 1.6. z C .

Proposition 1.7. If  C y and y C z then = C z.

1.2 Set extensionality

Since the only distinguishing feature of a set should be its elements, let us add
the following extensionality axiom to our theory.

Axiom 1.8 (Set extensionality). If x C y and y C z then x = y.



1.3 Separation

Our next axiom ensures that the universe of sets is closed under taking subcol-
lections. This means that any subcollection of a given set is itself a set.

Axiom 1.9 (Separation). Let C be a collection and x be a set. Assume
that every element of C' is contained in x. Then C' is a set.

1.4 Set existence

Up to now our theory does not admit the existence of a single set. This is
changed by the following axiom.

Axiom 1.10 (Set existence). There exists a set.

1.5 The empty set

The last to axioms allow us now to show that there exists a unique set that does
not contain any element — the empty set.

Definition 1.11. z is empty iff + has no elements.
Let = is nonempty stand for x is not empty.

Lemma 1.12. There exists an empty set.

Proof. Define C = { u | contradiction }. Take a set = (by Set existence).
Then every element of C' is contained in z. Hence C' is a set (by Separation).
C has no element. Hence the thesis. O

Lemma 1.13. If z and y are empty then x = y.

Proof. Assume that x and y are empty. Then every element of x is an
element of y and every element of y is an element of x. Hence x C y and
y Cx. Thus z = y. O]
Definition 1.14. () is the empty set.

Let {} stand for (). Let the empty set stand for ).

Proposition 1.15. ) is a subset of every set.

Proof. Let x be a set. Then every element of ) is an element of z. Indeed
() has no element. Hence () C z. O

1.6 Pairing

Let us now consider an axiom which allows us to collect two given objects into
a set which contains exactly these two ones.



Axiom 1.16 (Pairing). Let u,v be objects. There exists a set z such
that z={w|w=worw=v}.

Definition 1.17. Let u, v be elements. {u, v} is the set z such that z =
{w|w=uorw=wv}.

Let the unordered pair of w and v stand for {u, v}.

Lemma 1.18. Let u be an element. There exists a set z such that z =
{w|w=u}.

Proof. Take z ={u, u}. Then z ={w|w=u}. O
Definition 1.19. Let u be an element. {u} is the set z such that z =
{w|w=u}.

Let the singleton set of u stand for {u}.

Definition 1.20. A singleton set is a set z such that = {u} for some
element u.

1.7 Set-systems

Sets whose elements are all sets as well are called set- systems or systems of
sets.

Definition 1.21. A system of sets is a set X such that every element of
X is a set.

Let X,Y, Z denote systems of sets.
Let a set of X stand for an element of X.

Definition 1.22. A system of nonempty sets is a system of sets X such
that every set of X is nonempty.

Proposition 1.23. {z} is a system of sets.
Proposition 1.24. {z, y} is a system of sets.

Definition 1.25. A system of subsets of x is a set X such that every set
of X is a subset of z.

Proposition 1.26. Every system of subsets of x is a system of sets.

1.8 Intersections

Considering a set-system X we can extract all objects which are contained in
every member of X into a new set, called the intersection over X.

Lemma 1.27. Let x be a nonempty system of sets. Then there exists a
set z such that z = { u | u is contained in every member of z }.

Proof. Take an element y of x. Then y is a set. (1) Define z =



{w | u is contained in every element of z }. Every element of z is con-
tained in y. Hence z is a set. Therefore the thesis (by 1). O

Definition 1.28. Let x be a nonempty system of sets. [z is the set z
such that z = { u | u is contained in every member of z }.

Let the intersection over x stand for () z.

The notion of the intersection over a set-system can be used to provide an
operation which maps two sets to the set of all elements they have in common.

Lemma 1.29. Let x,y be sets. Then there exists a set z such that z =
{u|uezanduey}.

Proof. Take z = ({z, y}. Then
z ={w | u is contained in every element of {z, y} }.

Hence z ={u|ueczanduey}. O

Definition 1.30. z Ny is the set z such that z={u|u €z andu ey }.
Let the intersection of x and y stand for z N y.

Proposition 1.31. {z, y} =z Ny.

Proof. Let us show that ({z, y} C zNy. Let v € N{x, y}. Then wu is
an element of every element of {z, y}. Hence u € z and u € y. Thus
u € xNy. End.

Let us show that z Ny C ({x, y}. Let w € x Ny. Then u € x and u € y.
Hence w is an element of every element of {z, y}. Thus v € (\{z, y}.
End. O

Corollary 1.32. N{z} = =.
Proof. N{z} =z, 2} =zna==x. O

Proposition 1.33. Let  be a nonempty system of sets. Then y C (z iff
y is a subset of every element of x.

Proof. Case y C () z. Let z be an element of z. Let u € y. Then u € [ z.
Hence u € z. End.

Case y is a subset of every element of z. Let u € y. Then u € z for all sets

z such that z € x. Hence u € [ z. End. O
An important notion is that of disjoint sets, i.e. sets wich do not have any
elements in common.

Definition 1.34. x and y are disjoint iff z Ny = 0.

Obviously this yields a symmetric relation on the universe of sets.



Proposition 1.35. If z and y are disjoint then y and x are disjoint.

Proof. Assume that x and y are disjoint. Then xNy is empty. Hence there
is no element u such that v € x and v € y. Thus y N« is empty. Therefore
y and x are disjoint. O

1.9 Unions

Analogous to the definition of the intersection over a set-system we now want
to consider for a given set-system X the collection of all elements which lie in
some member of X. To ensure that this collection is a set we need an additional
axiom.

Axiom 1.36 (Union). Let x be a system of sets. Then there exists a set
z such that z = {u | uw is contained in some element of x }.

Definition 1.37. Let « be a system of sets. |Jx is the set z such that
z = { w| u is contained in some element of x }.

Let the union over z stand for |Jz.

Lemma 1.38. Let z,y be sets. Then there exists a set z such that z =
{uluezoruecy}.

Proof. Take z = |J{z, y}. Then
z ={ u| u is contained in some element of {z, y} } .

Hence z ={u|ueczoruey}. O

Definition 1.39. x Uy is the set z such that z ={w |w €z orw € y }.
Let the union of x and y stand for z U y.

Proposition 1.40. | J{z, y} =z Uy.

Proof. Let us show that | J{z, y} C2xUy. Let u € |J{z, y}. Then w is an

element of some element of {z, y}. Hence u € x or u € y. Thus u € z U y.
End.

Let us show that x Uy C J{z, y}. Let u € x Uy. Then u € x or u € y.

Hence u is an element of some element of {z, y}. Thus u € J{z, y}.
End. O

Corollary 1.41. | J{z} = =.
Proof. | J{z} =U{z, 2} =zUx =12x. O

Proposition 1.42. Let « be a system of sets. Then Jz C y iff every
element of x is a subset of y.



Proof. Case |Jx C y. Let z be an element of z. Let u € z. Then u is an
element of some element of z. Hence u € | Jz. Thus u € y. End.

Case every element of z is a subset of y. Let u € [Jx. Take a set z such
that z €  and uw € z. Then z is a subset of y. Hence u € y. End. O

Proposition 1.43. |J0 = 0.

Proof. () has no elements. Hence there is no # € () that has an element.
Thus |0 is empty. Therefore | J0 = 0. O

1.10 Partitions

Another important notion is that of a partition of a set x. i.e. a set which splits
x into pairwise disjoint subsets.

Definition 1.44. A partition of z is a system of sets P such that every
element of P is a subset of z and every element of x is contained in some
member of P and all distinct sets A, B of P are pairwise disjoint.

Proposition 1.45. Let P be a partition of . Then = = |J P.

Proof. Let us show that  C | J P. Let u € x. Take a set A of P such that
u € A. Then we have u € J P. End.

Let us show that |JP C z. Let u € |JP. Then we can take a set A of P
such that u € A. A is a subset of . Hence u € z. End. O

1.11 Complements
Let us define another operation on sets: The (relative) complement.

Lemma 1.46. Let x,y be sets. There exists a set z such that z =
{w|wexand w ¢y}

Proof. Define z = {w|w € x and w ¢ y}. Then every element of z is
contained in z. Hence z is a set (by Separation). O

Definition 1.47. x\y is the set such that z\y = {w | w € z and w ¢ y }.

Let the complement of y in x stand for z \ y.

1.12 Computation laws

Now that we are provided with the most common operations on sets let us have
a look on their algebraic properties.



Commutativity of union and intersection:

Proposition 1.48.
rUy=yUx.

Proof. Let us show that tUy C yUx. Let u € xUy. Then u € x or u € y.
Hence u € y or uw € x. Thus u € y Uz. End.

Let us show that yUx C xUy. Let u € yUx. Then u € y or u € z. Hence
uezxorucy. Thusu € xUy. End. O

Proposition 1.49.
rNy=yN.

Proof. Let us show that tNy CyNaz. Let u € zNy. Then u € x and
u € y. Hence u € y and u € . Thus u € yNz. End.

Let us show that yNa C xNy. Let w € yNax. Then v € y and u € .
Hence v € x and u € y. Thus v € z Ny. End. O

Associativity of union and intersection:
Proposition 1.50.
(zUy)Uz)=2U(yUz2).

Proof. Let us show that (zUy)Uz2) CaxU(yUz). Let u € (xUy)U 2.
Then u € xrUyoru € z. Henceuw € x or u € y or u € z. Thus u € = or
u € (yU z). Therefore u € z U (y U z). End.

Let us show that xU (yUz) C (zUy)Uz. Let u € xU(yUz). Then u €
oru€yUz Henceu €€ zxzoruecyorue€cz ThusuezxUyorue =z
Therefore u € (z Uy) U z. End. O

Proposition 1.51.
((xny)nNz)=zN(ynNz).

Proof. Let us show that (zNy)Nz) CaxN(yNz). Letw e (zNy)N 2.
Then v € x Ny and u € z. Hence v € x and uw € y and u € z. Thus u € z
and u € (yNz). Thereforeu € N (y N z). End.

Let us show that N (yNz) C(zxNy)Nz. Let u € xN(yNz). Then u € x
and v € yNz. Hence w € z and v € y and v € z. Thus u € x Ny and
u € z. Thereforeu € (zNy) N z. End. O



Distributivity of union and intersection:
Proposition 1.52.
xN(yUz)=(xNy)U(xNz).

Proof. Let us show that N (yUz) C (xNy)U(zNz). Let u € xN(yU2).
Then v € z and v € yUz. Hence u € z and (u € y or u € z). Thus (u €
and u € y) or (u € x and u € z). Therefore u € x Ny or u € z N z. Hence
u€ (zNy)U(zNz). End.

Let us show that ((zNy)U(zNz)) CzN(yUz). Let u € (zNy)U(zNz).
Then v € x Ny or w € Nz Hence (u € z and u € y) or (u € = and
u € z). Thus u € z and (u € y or u € 2z). Therefore v € z and v € y U z.
Henceu € z N (y U z). End. O

Proposition 1.53.
xU(yNz)=(xzUy)N(xzUz).

Proof. Let us show that U (yNz) C (xUy)N(zUz). Let u € xU (yN 2).
Then v € x or w € yN z. Hence u € x or (u € y and u € z). Thus (u € x
oru €y)and (u € x or u € z). Therefore u € Uy and u € U z. Hence
u€ (zUy)N (zUz). End.

Let us show that ((zUy)N(zUz)) CzU(yNz). Letu € (zUy)N(zUz).
Then v € x Uy and u € U z. Hence (v € z or u € y) and (u € z or
u € z). Thus u € z or (u € y and u € z). Therefore u € z or u € y N z.
Hence u € z U (y N z). End. O

Idempocy laws for union and intersection:

Proposition 1.54.
rUx = x.

Proof. x Uz ={u|uc€zorucax} Hence zUx = {u|u€a}. Thus
rUz =2x.

Proposition 1.55.
rNx==x.

Proof. xNz={u|uczranduecx} Hence Nz ={u|uecaz} Thus
TNz =Z. O



Distributivity of complement wrt. union and intersection:

Proposition 1.56.

z\(yNz)=(z\y)U(z\2).

Proof. Let us show that z\ (yNz) C (z\y)U(z\2). Let u €z \ (yN2).
Then u € x and uw ¢ y N 2. Hence it is wrong that (v € y and u € z).
Thus u ¢ y or u ¢ z. Therefore u € z and (u ¢ y or u ¢ z). Then (u € x
and u ¢ y) or (u € z and u ¢ z). Hence u € x \y or u € z \ z. Thus
u€ (z\y)U(x\ 2z). End.

Let us show that ((z\y)U(z\2)) Cz\(yNz). Let ue (z\y)U(z)\ 2).
Then u € z\y or u € z\ 2. Hence (u € x and u ¢ y) or (u € z and u ¢ z).

Thus v € z and (u ¢ y or u ¢ z). Therefore u € x and not (u € y and
u € z). Then u € x and not u € y N z. Hence u € x \ (y N z). End. O

Proposition 1.57.

z\(yUz)=(z\y)N(z\2).

Proof. Let us show that z\ (yUz) C (z\y)N(z\2). Let u ez \ (yU 2).
Then u € z and u ¢ y U z. Hence it is wrong that (u € y or u € z). Thus
u ¢ yand u ¢ z. Therefore u € z and (u ¢ y and u ¢ z). Then (u € x
and u ¢ y) and (u € z and u ¢ z). Hence u € \ y and u € z \ z. Thus
u€ (z\y)N(x\z). End.

Let us show that ((z\y)N(z\2)) Cz\(yUz). Let ue (z\y)N(z\ 2).
Then u € z\ y and u €  \ 2. Hence (u € z and v ¢ y) and (v € z and
u ¢ z). Thusu € z and (u ¢ y and u ¢ z). Therefore u € x and not (u € y
oru € z). Then v € z and not u € yUz. Hence u € z\ (yU z). End. O

Subset laws:

Proposition 1.58.

zCxUy.
Proof. Let u € . Then u € z or u € y. Hence u € x U y. O
Proposition 1.59.

zNy C z.
Proof. Let u € x Ny. Then v € x and v € y. Hence u € x. O]

Proposition 1.60.
zCy < zUy=uy.

Proof. Case x C y.



Let us show that tUy Cy. Let u € x Uy. Thenu €z oruecy. fuecx
then u € y. Hence u € y. End.

Let us show that y C x Uy. Let w € y. Then u € x or u € y. Hence
u € zUy. End. End.

Case z Uy =y. Let u € z. Thenu € x or u € y. Hence u € Uy = y.
End. O

Proposition 1.61.
T Cy <= zNy==z.
Proof. Case x C y.

Let us show that x Ny C x. Let w € xNy. Then u € x and v € y. Hence
u € z. End.

Let us show that + C x Ny. Let w € x. Then v € y. Hence u € = and
u €y. Thus u € x Ny. End. End.

Case x Ny =x. Let u € x. Then v € xNy. Hence u € x and u € y. Thus
u € y. End. O

Complement laws:

Proposition 1.62.
z\z=0.

Proof. x\z has no elements. Indeed z\z = {u | v € z and u ¢ x }. Hence
the thesis. O

Proposition 1.63.
z\0 ==

Proof. 2\ = {u|u€zandu ¢ B} No element is an element of ().
Hence z \ ) = { u | u €  }. Then we have the thesis. O

Proposition 1.64.
z\ (z\y) =zNy.

Proof. Let us show that z\ (z\y) CzNy. Let u € z\ (z\y). Then u €
and u ¢ x \ y. Hence u ¢ x or u € y. Thus u € y. Therefore u € x N y.
End.

Let us show that xNy C z\ (z\y). Let w € xNy. Then u € x and u € y.
Hence u ¢ © or w € y. Thus u ¢ x \ y. Therefore w € z\ (z\ y). End. O

Proposition 1.65.

yCz <= z\(z\y) =y
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Proof. Case y C x. Obvious.

Case z \ (z \ y) = y. Then every element of y is an element of z \ (z \ y).
Thus every element of y is an element of . Then we have the thesis.
End. O

Proposition 1.66.

zN(y\2) = (ny)\ (zN2).

Proof. Let us show that z N (y\2) C (xNy)\ (zNz). Letuezn(y\ 2).
Then u € z and u € y \ 2. Hence u € z and u € y. Thus v € z Ny and
u ¢ z. Therefore u ¢ x N z. Then we have v € (zNy) \ (zNz). End.

Let us show that ((zNy)\ (zNz)) Cazn(y\z). Letwe (zny)\ (xNz).
Then v € x and u € y. u ¢ x N z. Hence u ¢ z. Thus u € y \ z. Therefore
uexzN(y\z). End O
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