
1 Image and preimage

[readtex set-theory/sections/02 functions/01 functions.ftl.tex]

Let u, v, w denote objects. Let x, y, z denote sets. Let f, g, h denote func-
tions.

1.1 The image

Given an arbitrary set z we can ask ourselves where its elements are mapped to
under a function f . The resulting set of such an application of f to all elements
of z is called the image of z under f .

Lemma 1.1. Let f be a function. There exists a set y such that y =
{ f(u) | u ∈ dom(f) ∩ z }.

Proof. Take y = range(f � (dom(f) ∩ z)). Then

y = { (f � (dom(f) ∩ z))(u) | u ∈ dom(f) ∩ z } .

Hence y = { f(u) | u ∈ dom(f) ∩ z }.

Definition 1.2. Let f be a function. f [z] is the set y such that y =
{ f(u) | u ∈ dom(f) ∩ z }.
Let the image of z under f stand for f [z]. Let the direct image of z under
f stand for f [z].

Proposition 1.3. Let f be a function from x to y and a ⊆ x. Then
f [a] = { f(u) | u ∈ a }.

Proof. f [a] = { f(u) | u ∈ dom(f) ∩ a }. dom(f) ∩ a = x ∩ a = a. Hence
the thesis.

Corollary 1.4. Let f be a function from x to y. Then f [x] = range(f).

Proof. We have f [x] = { f(u) | u ∈ x }. Hence f [x] = range(f).

Corollary 1.5. Let f be a function from x to y and a ⊆ x. Then f [a] =
range(f � a).

Proof. We have f [a] = { f(u) | u ∈ a }. Hence f [a] = range(f � a).

Proposition 1.6. Let a ⊆ x. Then idx[a] = a.

Proof. idx[a] = { idx(u) | u ∈ a }. We have idx(u) = u for all u ∈ a. Hence
idx[a] = { u | u ∈ a }. Thus idx[a] = a.

Proposition 1.7. Let a ⊆ x and v be an element. Assume that a is
nonempty. Then constx,v[a] = {v}.
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Proof. Let us show that constx,v[a] ⊆ {v}. Let w ∈ constx,v[a]. Take u ∈ a
such that w = constx,v(u). Then w = v. Hence w ∈ {v}. End.

Let us show that {v} ⊆ constx,v[a]. Let w ∈ {v}. Then w = v. Take
u ∈ a. Then constx,v(u) = v = w. Hence w ∈ constx,v[a]. End.

Proposition 1.8. Let f be a function from x into y and a ⊆ x. Then
f � a is a bijection between a and f [a].

Proof. (1) f � a is a function of a.

(2) f � a is one to one.

(3) range(f � a) = f [a]. Proof. Let us show that range(f � a) ⊆ f [a]. Let
v ∈ range(f � a). Take u ∈ a such that v = (f � a)(u). Then v = f(u).
Hence v ∈ f [a]. End.

Let us show that f [a] ⊆ range(f � a). Let v ∈ f [a]. Take u ∈ a such that
v = f(u). Then v = (f � a)(u). Hence v ∈ range(f � a). End. Qed.

Thus f � a is an one to one function from a onto f [a]. Therefore f � a is
a bijection between a and f [a].

1.2 The preimage

Similar to the construction of the image of a set under a function, we can
consider a set z and ask ourselves which elements of a function f are mapped
into z. This yields the so-called preimage of z under f .

Lemma 1.9. Let f be a function. There exists a set y such that y =
{ u ∈ dom(f) | f(u) ∈ z }.

Proof. Case f(u) ∈ z for all u ∈ dom(f). Obvious.

Case f(u) /∈ z for some u ∈ dom(f). Take w ∈ dom(f) such that f(w) /∈ z.
(1) Define

g(u) =

{
u : f(u) ∈ z

w : f(u) /∈ z

for u ∈ dom(f). range(g) = { g(u) | u ∈ dom(f) }. Hence range(g) =
{ u ∈ dom(f) | f(u) ∈ z or u = w } (by 1). Take y = range(g)\{w}. Then
y = { u ∈ dom(f) | f(u) ∈ z }. End.

Definition 1.10. Let f be a function. f−[z] is the set y such that y =
{ u ∈ dom(f) | f(u) ∈ z }.
Let the preimage of z under f stand for f−[z]. Let the inverse image of z
under f stand for f−[z].

Proposition 1.11. Let b ⊆ y. Then id−y [b] = b.
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Proof. id−y [b] = { u ∈ y | idy(u) ∈ b }. idy(u) = u for all u ∈ y. Hence

id−y [b] = { u ∈ y | u ∈ b }. Thus id−y [b] = b.

Proposition 1.12. Let v be an element and z be a set that contains v.
Then const−x,v[z] = x.

Proof. const−x,v[z] = { u ∈ x | constx,v(u) ∈ z }. constx,v(u) = v for every
u ∈ x. Hence const−x,v[z] = { u ∈ x | v ∈ z }. We have v ∈ z. Thus
const−x,v[z] = x.

Proposition 1.13. Let v be an element and z be a set that does not
contain v. Then const−x,v[z] = ∅.

Proof. const−x,v[z] = { u ∈ x | constx,v(u) ∈ z }. constx,v(u) = v for every
u ∈ x. Hence const−x,v[z] = { u ∈ x | v ∈ z }. It is wrong that v ∈ z. Thus
const−x,v[z] = ∅.

1.3 Computation rules

To conclude this paragraph let us prove some facts about the image and preim-
age.

Proposition 1.14. Let f be a function from x to y and a ⊆ x and u ∈ x.
Then u ∈ a =⇒ f(u) ∈ f [a].

Proof. Assume u ∈ a. We have f [a] = { f(u′) | u′ ∈ a }. Hence f(u) ∈
f [a].

Proposition 1.15. Let f be a function from x to y and b ⊆ y and u ∈ x.
Then f(u) ∈ b ⇐⇒ u ∈ f−[b].

Proof. We have f−[b] = { u′ ∈ x | f(u′) ∈ b }. Hence u ∈ f−[b] iff u ∈ x
and f(u) ∈ b. Then we have the thesis.

Proposition 1.16. Let f be a function from x to y. Then f [x] ⊆ y.

Proof. f [x] = f [dom(f)] = range(f) ⊆ y.

Proposition 1.17. Let f be a function from x to y. Then f−[y] = x.

Proof. We have f−[y] = { u ∈ x | f(u) ∈ y }. f(u) is an element of y for
all u ∈ x. Hence the thesis.

Proposition 1.18. Let f be a function from x to y. Then f [f−[y]] = f [x].

Proof. Let us show that f [f−[y]] ⊆ f [x]. Let v ∈ f [f−[y]]. Take u ∈
f−[y] ∩ x such that v = f(u). Then u ∈ x. Hence v ∈ f [x]. End.
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Let us show that f [x] ⊆ f [f−[y]]. Let v ∈ f [x]. Take u ∈ x such that
v = f(u). We have v ∈ y. Hence u ∈ f−[y]. Thus f(u) ∈ f [f−[y]]. Indeed
f−[y] ⊆ x. Therefore v ∈ f [f−[y]]. End.

Proposition 1.19. Let f be a function from x to y. Then f−[f [x]] = x.

Proof. f−[f [x]] = { u ∈ x | f(u) ∈ f [x] }. For all u ∈ x we have f(u) ∈
f [x]. Hence every element of f−[f [x]] is contained in x and every element
of x is contained in f−[f [x]]. Thus f−[f [x]] = x.

Proposition 1.20. Let f be a function from x to y and b ⊆ y. Then
f [f−[b]] = b ∩ f [x].

Proof. Let us show that f [f−[b]] ⊆ b ∩ f [x]. Let v ∈ f [f−[b]]. Take
u ∈ f−[b] such that v = f(u). Then f(u) ∈ b ∩ f [x]. Hence we have
v ∈ b ∩ f [x]. End.

Let us show that b ∩ f [x] ⊆ f [f−[b]]. Let v ∈ b ∩ f [x]. Take u ∈ x such
that v = f(u). Then u ∈ f−[b]. Hence f(u) ∈ f [f−[b]]. End.

Corollary 1.21. Let f be a function from x to y and b ⊆ y. Then
f [f−[b]] ⊆ b.

Proof. We have f [f−[b]] = b ∩ f [x] ⊆ b. Hence f [f−[b]] ⊆ b.

Proposition 1.22. Let f be a function from x to y and a ⊆ x. Then
f−[f [a]] ⊇ a.

Proof. Let u ∈ a. Then f(u) ∈ f [a]. Hence u ∈ f−[f [a]]. Indeed f [a] ⊆
y.

Proposition 1.23. Let f be a function from x to y and a ⊆ x. Then
f [a] = ∅ ⇐⇒ a = ∅.

Proof. Case f [a] = ∅. Then there is no u ∈ a such that f(u) ∈ f [a]. For
all u ∈ a we have f(u) ∈ f [a]. Hence a is empty. End.

Case a = ∅. For all v ∈ f [a] we have v = f(u) for some u ∈ a. There is no
u ∈ a. Hence f [a] is empty. End.

Proposition 1.24. Let f be a function from x to y and b ⊆ y. Then
f−[b] = ∅ ⇐⇒ b ⊆ y \ f [x].

Proof. Case f−[b] = ∅. Let v ∈ b. Then v ∈ y.

There is no u ∈ x such that v = f(u).
Proof. Assume the contrary. Take u ∈ x such that v = f(u). Then
u ∈ f−[b]. Contradiction. Qed.

Hence v /∈ f [x]. Therefore v ∈ y \ f [x]. End.
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Case b ⊆ y \ f [x]. Then no element of b is an element of f [x]. Assume
that f−[b] is nonempty. Take u ∈ f−[b]. Then f(u) ∈ b and f(u) ∈ f [x].
Contradiction. End.

Proposition 1.25. Let f be a function from x to y and a ⊆ x and b ⊆ y.
Then f [a] ∩ b = ∅ ⇐⇒ a ∩ f−[b] = ∅.

Proof. Case f [a] ∩ b = ∅. Assume that a ∩ f−[b] is nonempty. Take
u ∈ a ∩ f−[b]. Then f(u) ∈ f [a] and f(u) ∈ b. Hence f(u) ∈ f [a] ∩ b.
Contradiction. End.

Case a ∩ f−[b] = ∅. Assume that f [a] ∩ b is nonempty. Take v ∈ f [a] ∩ b.
Consider a u ∈ a such that v = f(u). Then u ∈ f−[b]. Indeed v ∈ b.
Hence u ∈ a ∩ f−[b]. Contradiction. End.

Proposition 1.26. Let f be a function from x to y and g be a function
from y to z and a ⊆ x. Then (g ◦ f)[a] = g[f [a]].

Proof. ((g ◦ f)[a]) = { g(f(u)) | u ∈ a }. f [a] is a subset of y. We have
g[f [a]] = { g(v) | v ∈ f [a] } and f [a] = { f(u) | u ∈ a }. Thus g[f [a]] =
{ g(f(u)) | u ∈ a }. Therefore (g ◦ f)[a] = g[f [a]]. Indeed ((g ◦ f)[a]) and
g[f [a]] are sets.

Proposition 1.27. Let f be a function from x to y and g be a function
from y to z and c ⊆ z. Then (g ◦ f)−[z] = f−[g−[z]].

Proof. ((g ◦ f)−[z]) = { u ∈ x | g(f(u)) ∈ z }. We have g−[z] =
{ v ∈ y | g(v) ∈ z } and f−[g−[z]] = { u ∈ x | f(u) ∈ g−[z] }. Hence
f−[g−[z]] = { u ∈ x | g(f(u)) ∈ z }. Thus (g ◦ f)−[z] = f−[g−[z]].

Proposition 1.28. Let f be a function from x to y and a, a′ ⊆ x. Then
a ⊆ a′ =⇒ f [a] ⊆ f [a′].

Proof. Assume a ⊆ a′. Let v ∈ f [a]. Take u ∈ a such that f(u) = v. Then
u ∈ a′. Hence v = f(u) ∈ f [a′].

Proposition 1.29. Let f be a function from x to y and b, b′ ⊆ y. Then
b ⊆ b′ =⇒ f−[b] ⊆ f−[b′].

Proof. Assume b ⊆ b′. Let u ∈ f−[b]. Then f(u) ∈ b. Hence f(u) ∈ b′.
Thus u ∈ f−[b′].

Proposition 1.30. Let f be a function from x to y and a, a′ ⊆ x. Then
f [a ∪ a′] = f [a] ∪ f [a′].

Proof. Let us show that f [a ∪ a′] ⊆ f [a] ∪ f [a′]. Let v ∈ f [a ∪ a′]. Take
u ∈ a∪ a′ such that v = f(u). Then u ∈ a or u ∈ a′. Hence f(u) ∈ f [a] or
f(u) ∈ f [a′]. Thus v = f(u) ∈ f [a] ∪ f [a′]. End.

Let us show that f [a] ∪ f [a′] ⊆ f [a ∪ a′]. Let v ∈ f [a] ∪ f [a′].
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Case v ∈ f [a]. Take u ∈ a such that v = f(u). Then u ∈ a ∪ a′. Hence
v ∈ f [a ∪ a′]. End.

Case v ∈ f [a′]. Take u ∈ a′ such that v = f(u). Then u ∈ a ∪ a′. Hence
v ∈ f [a ∪ a′]. End. End.

Proposition 1.31. Let f be a function from x to y and b, b′ ⊆ y. Then
f−[b ∪ b′] = f−[b] ∪ f−[b′].

Proof. Let us show that f−[b ∪ b′] ⊆ f−[b] ∪ f−[b′]. Let u ∈ f−[b ∪ b′].
Then f(u) ∈ b∪b′. Hence f(u) ∈ b or f(u) ∈ b′. If f(u) ∈ b then u ∈ f−[b].
If f(u) ∈ b′ then u ∈ f−[b′]. Thus u ∈ f−[b] ∪ f−[b′]. End.

Let us show that f−[b] ∪ f−[b′] ⊆ f−[b ∪ b′]. Let u ∈ f−[b] ∪ f−[b′]. Then
u ∈ f−[b] or u ∈ f−[b′]. If u ∈ f−[b] then f(u) ∈ b. If u ∈ f−[b′] then
f(u) ∈ b′. Hence f(u) ∈ b ∪ b′. Thus u ∈ f−[b ∪ b′]. End.

Proposition 1.32. Let f be a function from x to y and a, a′ ⊆ x. Then
f [a ∩ a′] ⊆ f [a] ∩ f [a′].

Proof. Let v ∈ f [a ∩ a′]. Take u ∈ a ∩ a′ such that v = f(u). Then u ∈ a
and u ∈ a′. Hence f(u) ∈ f [a] and f(u) ∈ f [a′]. Thus v ∈ f [a] ∩ f [a].

Proposition 1.33. Let f be a function from x to y and b, b′ ⊆ y. Then
f−[b ∩ b′] = f−[b] ∩ f−[b′].

Proof. Let us show that f−[b ∩ b′] ⊆ f−[b] ∩ f−[b′]. Let u ∈ f−[b ∩ b′].
Then f(u) ∈ b ∩ b′. Hence f(u) ∈ b and f(u) ∈ b′. Thus u ∈ f−[b] and
u ∈ f−[b′]. Therefore u ∈ f−[b] ∩ f−[b′]. End.

Let us show that f−[b] ∩ f−[b′] ⊆ f−[b ∩ b′]. Let u ∈ f−[b] ∩ f−[b′]. Then
u ∈ f−[b] and u ∈ f−[b′]. Hence f(u) ∈ b and f(u) ∈ b′. Thus f(u) ∈ b∩b′.
Therefore u ∈ f−[b ∩ b′]. End.

Proposition 1.34. Let f be a function from x to y and a, a′ ⊆ x. Then
f [a \ a′] ⊇ f [a] \ f [a′].

Proof. Let v ∈ f [a] \ f [a′]. Then v ∈ f [a] and v /∈ f [a′]. Take u ∈ a such
that v = f(u). If u ∈ a′ then v ∈ f [a′]. Hence u /∈ a′. Thus u ∈ a \ a′.
Therefore v = f(u) ∈ f [a \ a′].

Proposition 1.35. Let f be a function from x to y and b, b′ ⊆ y. Then
f−[b \ b′] = f−[b] \ f−[b′].

Proof. Let us show that f−[b\b′] ⊆ f−[b]\f−[b′]. Let u ∈ f−[b\b′]. Then
f(u) ∈ b\b′. Hence f(u) ∈ b and f(u) /∈ b′. Thus u ∈ f−[b] and u /∈ f−[b′].
Therefore u ∈ f−[b] \ f−[b′]. End.

Let us show that f−[b] \ f−[b′] ⊆ f−[b \ b′]. Let u ∈ f−[b] \ f−[b′]. Then
u ∈ f−[b] and u /∈ f−[b′]. Hence f(u) ∈ b and f(u) /∈ b′. Thus f(u) ∈ b\b′.
Therefore u ∈ f−[b \ b′]. End.
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