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1 Introduction

Max Black proposed this problem in his book Critical Thinking (1946). It was
later discussed by Martin Gardner in his Scientific American column, Mathe-
matical Games. John McCarthy, one of the founders of Artificial Intelligence
described it as a Tough Nut for Proof Procedures and discussed fully automatic
or interactive proofs of the solution.

There have been several formalization of the Checkerboard problem before.
A survey article by Manfred Kerber and Martin Pollet called A Tough Nut for
Mathematical Knowledge Management lists a couple of formalizations.

2 Setting up the checkerboard

We introduce types (or notions) and constants to model checkerboards as a
Cartesian product of ranks 1,2,...,8 and files a,b,...,h. In future versions
these signature declarations will be grouped together as a single declaration of
an inductively defined set.

Naproche allows us to group elements into classes and sets as long as they
are setsized (informally also called small).

Signature 1. A rank is a notion.

Let r, s denote ranks.

Axiom 2. r is setsized.

Signature 3. 1 is a rank.

Signature 4. 2 is a rank.

Signature 5. 3 is a rank.

Signature 6. 4 is a rank.

Signature 7. 5 is a rank.

Signature 8. 6 is a rank.

Signature 9. 7 is a rank.

Signature 10. 8 is a rank.



Definition 11. R =1{1,2,3,4,5,6,7,8}.
Signature 12. A file is a notion.

Let f, g denote files.

Axiom 13. f is setsized.

Signature 14. a is a file.

Signature 15. b is a file.

Signature 16. c is a file.

Signature 17. d is a file.

Signature 18. e is a file.

Signature 19. f is a file.

Signature 20. g is a file.

Signature 21. h is a file.

Definition 22. F = {a,b,c,d,e,f, g, h}.
Signature 23. A square is a notion.
Axiom 24. (f,r) is a square.

Let v, w, x,y, z denote squares.

Is there a set of all squares? This may not be true for an arbitrary notion,
but it is true for squares, so we assume it as an axiom. Note that we can always
form the class C' of all inhabitants of a notion as long as x € C' can only be
true for setsized xz. Morse and Kelley [2, [3] use the same approach in their
axiomatization of set theory.

Definition 25. C is the class of squares x such that x = (f,r) for some
element f of F and some element r of R.

Axiom 26. C is a set.

3 Preliminaries about sets and functions

We enrich the small built-in set theory by further properties and axioms that
will be used in the course of our argument. To keep the document fully self-
contained we formulate the necessary definitions and axioms ourselves. Note
that there are many degrees of freedom in picking an axiomatic setting.

Let A, B, C denote sets.

Definition 27. A subset of B is a set A such that every element of A is
an element of B.

Axiom 28. (Extensionality) If A is a subset of B and B is a subset
of A then A = B.



Definition 29. A proper subset of B is a subset A of B such that A # B.

Definition 30. A is disjoint from B iff there is no element of A that is
an element of B.

Definition 31. A family is a set F' such that every element of F is a set.

Definition 32. A disjoint family is a family F' such that A is disjoint
from B for all nonequal elements A, B of F.

Definition 33. BNC ={x € B|z e C}.
Definition 34. B\C={x€ B |z ¢ C}.

The notion of object is the built-in largest notion, containing all other no-
tions. Also note that the proof of the lemma below really is omitted and not
merely hidden: with the help of automated theorem provers such as the E the-
orem prover [I], Naproche can accept some theorems without any additional
argumentation.

Lemma 35. Every set is an object.

The built-in ordered pair notation that we already used in the first subsection
does not include the universal property of ordered pairs, so we postulate it as
an axiom.

Axiom 36. Let «,[3,7,d be objects. If (o, 8) = (v,9) then o« = v and
B=4.

(Unary) functions are built into Naproche; F(t) denotes the application of
a function F to an argument ¢ and dom(F) stands for the domain of F. In our
exposition we shall use functions to compare cardinalities of black and white
squares. As with sets, we introduce some further properties of functions.

Let F, G denote functions.

Definition 37. F: A — B iff dom(F) = A and F(x) is an element of B
for all elements x of A.

Bijective functions are the basis of the modern theory of cardinalities; sets
have the same cardinality iff there is a bijection between them.

Definition 38. F : A« B iff F: A — B and there exists G such that
G : B — A and (for all elements x of A we have G(F(z)) = ) and (for all
elements y of B we have F(G(y)) = y).



4 Cardinalities of Finite Sets

Definition 39. A is equinumerous with B iff there is F' such that F :
A« B.

Lemma 40. Assume that A is equinumerous with B. Then B is equinu-
merous with A.

Lemma 41. Assume that A is equinumerous with B and B is equinu-
merous with C. Then A is equinumerous with C.

Proof. Take a function F' such that F': A <> B. Take a function G such
that G : B — A and (for all elements a of A we have G(F(x)) = x) and
(for all elements y of B we have F(G(y)) = y). Take a function H such
that H : B + C. Take a function I such that I : C' — B and (for all
elements = of B we have I(H(z)) = z) and (for all elements y of C' we
have H(I(y)) = y). Define J(z) = H(F(z)) forzin A. J: A <> C. Indeed
define K (y) = G(I(y)) for y in C. O

For the finite checkerboard problem we only need to consider finite sets.
Intuitively we can thus assume that all sets considered are finite, and then we
have the following finiteness axiom:

Axiom 42. If Ais a proper subset of B then A is not equinumerous with
B.

5 The Mutilated Checkerboard

Defining the mutilated checkerboard is straightforward: we simply remove the
two corners.

Definition 43. C’' = {(a,1), (h,8)}.
Definition 44. M =C\ C'.
Let the mutilated checkerboard stand for M.

6 Dominoes

To define dominoes, we introduce concepts of adjacency by first declaring new
relations and then axiomatizing them. As usual, chaining of relation symbols
indicates a conjunction.

Signature 45. r is vertically adjacent to s is a relation.
Let r ~ s stand for r is vertically adjacent to s.

Axiom 46. If r ~ s then s~ r.

Axiom 47. 1~2~3~4~5~6~T7~8.



Signature 48. f is horizontally adjacent to g is a relation.

Let f ~' g stand for f is horizontally adjacent to g.

Axiom 49. If f ~' g then g ~' f.

Axiom 50. a~'b~c~d~ e~ f~ g~ h.

Definition 51. =z is adjacent to y iff there exist f,r,g,s such that z =

(f,r) and y = (g, ) and ((f = g and r is vertically adjacent to s) or (r = s
and f is horizontally adjacent to g)).

Definition 52. A domino is a set D such that D = {z,y} for some
adjacent squares x,y.

7 Domino Tilings

Definition 53. A domino tiling is a disjoint family T' such that every
element of T is a domino.

Let A denote a subset of C.

Definition 54. A domino tiling of A is a domino tiling 7" such that for
every square x x is an element of A iff x is an element of some element of
T.

We shall prove:

Theorem. The mutilated checkerboard has no domino tiling.

8 Colours

We shall solve the mutilated checkerboard problem by a cardinality argument.
Squares on an actual checkerboard are coloured black and white and we can
count colours on dominoes and on the mutilated checkerboard M.

The introduction of colours can be viewed as a creative move typical of
mathematics: changing perspectives and introducing aspects that are not part
of the original problem. The mutilated checkerboard was first discussed under
a cognition-theoretic perspective: can one solve the problem without inventing
new concepts and completely stay within the realm of squares, subsets of the
checkerboard and dominoes.

Signature 55. = is black is a relation.

Signature 56. x is white is a relation.

Axiom 57. z is black iff = is not white.

Axiom 58. If x is adjacent to y then z is black iff y is white.
Axiom 59. (a,1) is black.



Axiom 60. (h,8) is black.

Definition 61. B is the class of black elements of C.
Definition 62. W is the class of white elements of C.
Lemma 63. B is a set.

Lemma 64. W is a set.

9 Counting Colours on Checkerboards

The original checkerboard has an equal number of black and white squares.
Since our setup does not include numbers for counting, we rather work with
equinumerosity. The following argument formalizes that we can invert the
colours of a checkerboard by swapping the files a and b, ¢ and d, etc.. We
formalize swapping by a first-order function symbol Swap.

Signature 65. Let z be an element of C. Swap x is an element of C.
Let t denote an element of R.

Axiom 66. Swap(a,t) = (b,t) and Swap(b,t) = (a,t).

Axiom 67. Swap(c,t) = (d,t) and Swap(d,t) = (c, ).

Axiom 68. Swap(e,t) = (f,t) and Swap(f,t) = (e, t).

Axiom 69. Swap(g,t) = (h,?) and Swap(h,t) = (g, ).

Lemma 70. Let x be an element of C. Swap z is adjacent to z.

Proof. Take f, r such that x = (f,r). r is an element of R. Case f = a.
End. Case f =b. End. Case f = c. End. Case f =d. End. Case f =e.
End. Case f =f. End. Case f =g. End. O

Swap is an involution.

Lemma 71. Let z be an element of C. Swap(Swapz) = x.

Proof. Take f,r such that x = (f,r). r is an element of R. Case f = a.
End. Case f =b. End. Case f = c¢. End. Case f =d. End. Case f =e.
End. Case f =f. End. Case f =g. End. O

Lemma 72. Let x be an element of C. x is black iff Swap x is white.

Using Swap we can define a witness of B <> W.

Lemma 73. B is equinumerous with W.

Proof. Define F(x) = Swapx for z in B. Define G(x) = Swapz for z
in W. Then FF : B -+ W and G : W — B. For all elements x of B
we have G(F(z)) = z. For all elements z of W we have F'(G(z)) = =.
F:B+ W. O



Given a domino tiling one can also swap the squares of each dominoes,
leading to similar properties.

Signature 74. Assume that T is a domino tiling of A. Let z be an
element of A. Swap#(x) is a square y such that there is an element D of
T such that D = z,y.

Lemma 75. Assume that T is a domino tiling of A. Let x be an element
of A. Then Swapi(z) is an element of A.

Proof. Let y = Swapi(x). Take an element D of T such that D = z,y. [

Swapping dominoes is also an involution.

Lemma 76. Assume that T is a domino tiling of A. Let x be an element
of A. Then Swaps (Swap? (z)) = .

Proof. Let y = Swap%(x). Take an element Y of T" such that Y = z,y.
Let z = Swap7(y). Take an element Z of T such that Z = y,z. Then
B = %, O

Lemma 77. Assume that T is a domino tiling of A. Let x be a black
element of A. Then Swap4 () is white.

Proof. Let y = Swapi(z). Take an element Y of T such that Y = z,y. [

10 The Theorem

We can easily show that a domino tiling involves as many black as white squares.

Lemma 78. Let T be a domino tiling of A. Then ANB is equinumerous
with AN'W.

Proof. Define F(x) = Swaps(z) for z in AN B. Define G(z) = Swap? ()
forzin ANW. Then F: ANB -+ ANWand G: ANW — ANB. For
all elements x of ANB we have G(F(z)) = z. For all elements z of ANW
we have F(G(z)) =xz. F: ANB < AN'W. O

In mutilating the checkerboard, one only removes black squares

Lemma 79. M NW =W.

Proof. M N'W is a subset of W. W is a subset of M. Proof. Let x be an
element of W. z # (a,1) and x # (h, 8). Indeed (h,8) is black. End. O

Now the theorem follows by putting together the previous cardinality properties.
Note that the phrasing /[...] has no domino tiling in the theorem is automatically
derived from the definition of a domino tiling of [...].



Theorem 80. The mutilated checkerboard has no domino tiling.

Proof. Proof by contradiction. Assume 7' is a domino tiling of M. M NB
is equinumerous with M N W. Indeed M is a subset of C. M N B is
equinumerous with W. M N B is equinumerous with B. Contradiction.
Indeed M N B is a proper subset of B. O
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