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Firstenberg’s proof of the infinitude of primes is a topological proof of the
fact that there are infinitely many primes. It was published 1955 while Fiirsten-
berg was still an undergraduate student!.

1 Integers

The central idea of Fiirstenberg’s proof is to define a certain topology on Z from
the properties of which we can deduce that the set of primes is infinite. So first
we have to introduce the ring Z of integers. In fact, we do not need to give a full
axiomatization of integer arithmetic; it suffices to assume that Z is an integral

domain.

Let us start by introducing the signature of the ring of integers.

[unfoldlow on] [synonym integer/-s]

Signature 1.

(Integers) An integer is a notion.

Let a,b,c,d, 1,7, k,l,m,n stand for integers.

Axiom 2. ¢ is setsized.

Signature 3.
Signature 4.
Signature 5.
Signature 6.

Signature 7.

(IntZero) O is an integer.
(IntOne) 1 is an integer.
(IntNeg) —a is an integer.
(IntPlus) a+ b is an integer.
(IntMult) a-b is an integer.

Let a — b stand for a + (—b).

Moreover, we assume (Z, 0,4, —) to be an abelian group and (Z,1,-) to be
a commutative monoid which satisfy the distribution laws.

Axiom 8. (AddAsso) a+ (b+c¢)=(a+b)+c.
Axiom 9. (AddComm) a+b=0b+a.
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Axiom 10. (AddZero) a+0=a=0+a.

Axiom 11. (AddNeg) a—a=0=—a+a.

Axiom 12. (MulAsso) a-(b-¢c)=(a-b)-c.

Axiom 13. (MulComm) a-b=10-a.

Axiom 14. (MulOne) a-1=a=1-a.

Axiom 15. (Distrib) a-(b+c) = (a-b)+(a-c) and(a+b)-c = (a-c)+(b-c).

Lemma 16. (MulZero) a-0=0=0-a.

Lemma 17. (MulMinOne) —1-a=—-a=a--1.

Proof. (—1-a)+a=0. O

Furthermore, we assume that our ring is not trivial and that there are no
non-trivial zero divisors.

Axiom 18. (NonTriv) 0 # 1.

Axiom 19. (ZeroDiv) a #0Ab#0 = a-b#0.

Lemma 20. —(—a) is an integer.

Let us continue with the notion of divisors and congruency.

Let a is nonzero stand for a # 0. Let p, ¢ stand for nonzero integers.
[synonym divisor/-s] [synonym divide/-s]

Definition 21. (Divisor) A divisor of b is a nonzero integer a such
that for some n (a-n =b).

Let a divides b stand for a is a divisor of b. Let a | b stand for a is a divisor
of b.

Definition 22. (EquMod) a =b (mod q) iff ¢ | a —b.

Lemma 23. (EquModRef) a = a (mod q).

Lemma 24. (EquModSym) a =10 (mod ¢) = b= a (mod q).
Proof. Assume that a = b (mod q).

(1) Take n such that ¢ -n =a — 0.

q-(—m).=(=1)-(¢-n) (by MulMinOne, MulAsso,MulComm) . = (—1) -
(a =) (by 1). O
Lemma 25. (EquModTrn) a =5 (mod ¢) Ab=c (mod q) = a=
¢ (mod q).

Proof. Assume that a = b (mod ¢) Ab = ¢ (mod ¢). Take n such that
q-n = a—b. Take m such that g-m = b—c. We have ¢-(n+m) =a—c. O

Lemma 26. (EquModMul) ¢ =b (mod p-q) = a = b (mod p)Aa =
b (mod q).



Proof. Assume that a = b (mod p-q). Take m such that (p-¢q)-m =a—b.
We have p- (¢-m) =a—b=gq- (p-m). O

Note that up to now every finite field could be a model of our theory. But
since we want to prove that there are infinitely many primes we must eventually
add some axiom which eliminates such models.

This is done by introducing the notion of prime integers. All we need to
know about them for Fiirstenberg’s proof is that every integer n has a prime
divisor iff n # 1 and n # —1.

Signature 27. (Prime) a is prime is an atom.

Let a prime stand for a prime nonzero integer.

Axiom 28. (PrimeDivisor) n has a prime divisor iff n £ 1An # —1.

Let us assume that some finite field is a model of our current theory. Recall
that in any finite field every non-zero element is a divisor of 1. Let us rephrase
axiom PrimeDivisor:

n has no prime divisor if n =1Vvn = —1.

Then we immediately see that 1 has no prime divisor. But since every non-
zero element is a divisor of 1, no non-zero element is prime. Hence 0 has also
no prime divisor (recall that any divisor must be non-zero). But then, again by
the axiom, we get 0 =1V 0 = —1, a contradiction (by NonTriv).

2 Generic sets

Another important notion is that of finite subsets of Z. We leave the character-
ization of what it means for a set to be finite for the next sections.

[synonym belong/-s] [synonym subset/-s] [read ZFC.{tl]
Let S, T stand for sets.
Let z belongs to S stand for z is an element of S.

Definition 29.  (Subset) A subset of S is a set T" such that every
element of T" belongs to S.

Let S C T stand for S is a subset of 7T'.
Signature 30. (FinSet) S is finite is an atom.

Let x is infinite stand for x is not finite.

3 Sets of integers

Since Fiirstenberg’s proof is a topological proof we have to define unions, inter-
sections and also complements of sets.



Definition 31. Z is the class of integers.

Axiom 32. Zis a set.

Let A, B,C, D stand for subsets of Z.

Definition 33. (Union) AU B = {integer z | x € AV z € B}.
Definition 34. (Intersection) AN B = {integer z |z € AAx € B}.

Definition 35. (IntegerSets) A family of integer sets is a set .S such
that every element of S is a subset of Z.

Definition 36. (UnionSet) Let S be a family of integer sets. |JS =
{integer x | = belongs to some element of S}.

Lemma 37. Let S be a family of integer sets. | J S is a subset of Z.

Definition 38. (Complement) A = {integer = | 2 does not belong to
A}
Lemma 39. A is a subset of Z.

4 Introducing topology

In our next step towards a suitable topology on Z let us define arithmetic se-
quences, i.e. sets of the form ¢Z + a.

Definition 40. (ArSeq) ¢Z + a = {integer b | b = a (mod ¢)}.

Lemma 41. ¢Z + a is a set.

This allows us to define the so-called evenly spaced integer topology where
its open sets are defined as follows:

Definition 42. (Open) A is open iff A = Z or for any a € A there
exists ¢ such that qZ + a C A.

Note that we have declared ¢ as a non-zero integer. Otherwise, every set A
would be open since 0Z + a = {a} C A for every a € A.

Definition 43. (Closed) A is closed iff A is open.

Definition 44. (OpenlIntegerSets) An open family is a family of
integer sets S such that every element of S is open.

We can easily check that the open sets really form a topology on Z.
Lemma 45. (UnionOpen) Let S be an open family. | J.S is open.

Proof. Let x € |JS. Take a set M such that (M is an element of S and
x € M). Take ¢q such that ¢Z +x C M. Then ¢Z + 2 C |JS. O

Lemma 46. (InterOpen) Let A, B be open subsets of Z. Then AN B



is a subset of Z and AN B is open.

Proof. AN B is a subset of Z. Let x € AN B. Then z is an integer. Take
q such that qZ + x C A. Take p such that pZ + x C B.

Let us show that p - ¢ is a nonzero integer and (p-¢)Z+2x C ANB. p-q
is a nonzero integer. Let a € (p- q)Z + x.

a € pZ+ x and a € qZ + .
Proof. z is an integer and a = z (mod p - ¢). a = x (mod p) and a =
z (mod ¢q) (by EquModMul). Qed.

Therefore a € A and a € B. Hence a € AN B. End. O

Lemma 47. (UnionClosed) Let A, B be closed subsets of Z. AU B
is closed.

Proof. We have A,BCZ. AUB = ANB. O

Now we state a consequence of finiteness:

Axiom 48. (UnionSClosed) Let S be a finite family of integer sets
such that all elements of S are closed subsets of Z. | .S is closed.

This characterization allows us to prove that a family .S of closed sets is infin-

ite by assuming S to be finite and deriving a contradiction from this assumption
together with the statement that (J S is closed. In Fiirstenberg’s proof we will
use this method to show that the family {rZ | r is prime} is infinite. To use
the above argument we thus have to prove that any rZ — or more general any

qZ + a — is closed.

Lemma 49. (ArSeqClosed) ¢Z + a is a closed subset of Z.

Proof. Proof by contradiction. gZ + a is a subset of Z. Let b € ¢Z + a.

Let us show that ¢Z+b C ¢qZ + a. Let ¢ € ¢Z+b. Assume not ¢ € ¢Z + a.
Then ¢ = b (mod ¢) and a = ¢ (mod ¢). Hence b = a (mod ¢g). Therefore
b € qZ + a. Contradiction. End. O

To prove that there are infinitely many primes we identify a prime number

r with the set rZ and show that the set S = {rZ | r is a prime} is infinite. It
is easy to see that | J S = {integer n | n has a prime divisor} = Z \ {1,—1}. So
if S is finite then (J S is closed (by UnionClosed) and hence {1,—1} is open.
But then some arithmetic sequence pZ + 1 (where p is non-zero) is contained in

{1, —1} which obviously cannot be.

Theorem 50. (Fuerstenberg) Let S = {rZ+ 0| ris a prime}. S is
infinite.

Proof. Proof by contradiction. S is a family of integer sets.



We have S = {1, —1}.
Proof. Let us show that for any integer n n belongs to |JS iff n has a
prime divisor. Let n be an integer.

If » has a prime divisor then n belongs to [JS.
Proof. Assume n has a prime divisor. Take a prime divisor p of n. pZ + 0
is setsized. pZ +0€ S. n € pZ + 0. Qed.

If n belongs to |J S then n has a prime divisor.
Proof. Assume n belongs to | J.S. Take a prime r such that n € rZ + 0.
Then r is a prime divisor of n. Qed. End. Qed.

Assume that S is finite. Then |J S is closed and [J S is open.
Take p such that pZ + 1 C W

pZ + 1 has an element x such that neither x = 1 nor x = —1.

Proof. 1+ p and 1 — p are integers. 1 + p and 1 — p belong to pZ + 1.
Indeed 1+p=1 (modp) and 1 —p=1 (mod p). 1+p#1A1—p#1.
1+p#—-1V1—p#—1. Qed.

We have a contradiction. O

Note that we cannot define qZ as ¢qZ + 0 in our formalization since then any
term of the form ¢Z + a would be ambiguous: It could either be interpreted as
qZ + a or as (¢Z + 0) + a. This is a result of some kind of overloading of the
symbol +. We use + on the one hand to denote integer addition and on the
other hand it is part of the operator - Z 4 -.



