Isar — A language for structured proofs

Apply scripts

unreadable

Apply scripts

unreadable
hard to maintain

Apply scripts

unreadable
hard to maintain
do not scale

Apply scripts

unreadable
hard to maintain
do not scale

NoO structure!

Apply scripts versus Isar proofs

Apply script = assembly language program

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration

A typical Isar proof

proof
assume formula
have formula; by SIMp

have formula, by blast
show formula, ;1 by ...
ged

A typical Isar proof

proof
assume formula
have formula; by SIMp

have formula, by blast
show formula, ;1 by ...
ged

proves formulay = formula,, 4

Overview

Basic Isar

|sar by example
Proof patterns
Streamlining proofs

|sar core syntax

proof = proof [method] statement* ged
| by method

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)|...

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)|...

assume Prop (=)

statement = fix variables (A)
|
| [from fact™] (have | show) prop proof

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)|...

statement = fix variables (A)

assume Prop (=)

[from fact™] (have | show) prop proof

next (separates subgoals)

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)|...

statement = fix variables (A)
assume Prop (=)
[from fact™] (have | show) prop proof
next (separates subgoals)

prop = [name:] "formula"

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)|...

statement = fix variables (A)

assume Prop (=)

[from fact™] (have | show) prop proof

next (separates subgoals)
prop = [name:] "formula”

fact = name | name[OF fact™] | ‘formula’

Isar by example

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume surj, show False

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume surj, show False
assume a. surj f

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume surj, show False

assume a. surj f

from ahave b: V A. 3 a.A=fa

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A.3 a. A=fa
by (simp add: surj_def)

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A. 3 a.A=fa
by (simp add: surj_def)
from b have c: 3 a. {X. X ¢fx}=fa

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A.3 a. A=fa
by (simp add: surj_def)
from b have c: 3 a. {X. X ¢fx}=fa
by blast

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A. 3 a.A=fa
by (simp add: surj_def)
from b have c: 3 a. {X. X ¢fx}=fa
by blast
from C show False

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A. 3 a.A=fa
by (simp add: surj_def)
from b have c: 3 a. {X. X ¢fx}=fa
by blast
from C show False
by blast

Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A. 3 a.A=fa
by (simp add: surj_def)
from b have c: 3 a. {X. X ¢fx}=fa
by blast
from C show False
by blast
ged

Demo: this, then etc

this
then
thus
hence

Abbreviations

the previous proposition proved or assumed
from this
then show
then have

10

using

First the what, then the how:

(have [show) prop using facts

11

using

First the what, then the how:

(have [show) prop using facts

from facts (have|show) prop

11

Example: Structured lemma statement

lemma Cantor’:
fixes f::'a = 'a set
assumes S: surj f
shows False

12

Example: Structured lemma statement

lemma Cantor’:
fixes f::'a = 'a set
assumes S: surj f
shows False

proof -

12

Example: Structured lemma statement

lemma Cantor’:
fixes f::'a = 'a set
assumes S: surj f
shows False

proof -

no automatic proof step

12

Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)

12

Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
thus False by blast
ged

12

Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
thus False by blast
ged

Proves surjf — False

12

Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
thus False by blast
ged

Proves surjf — False
but surjf becomes local fact s in proof.

12

The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

13

Structured lemma statements

fixes x .. and y i o ...
assumes a. P and b: Q ...
shows R

14

Structured lemma statements

fixes x .. and y i o ...
assumes a. P and b: Q ...
shows R

fixes and assumes sections optional

14

Structured lemma statements

fixes x .. and y i o ...
assumes a. P and b: Q ...
shows R

fixes and assumes sections optional
shows optional if no fixes and assumes

14

Proof patterns

show P «—— Q
proof
assume P

show Q ...
next
assume Q

show P ...
ged

Propositional proof patterns

16

show P «—— Q
proof
assume P

show Q ...
next
assume Q

show P ...
ged

Propositional proof patterns

show A =B
proof

show ACB ...
next

show B C A ...
ged

16

show P «—— Q
proof
assume P

show Q ...
next
assume Q

show P ...
ged

Propositional proof patterns

show A =B
proof

show ACB ...
next

show B C A ...
ged

show A C B
proof

fix X

assume X € A

show X € B ...

ged

16

Propositional proof patterns

show R
proof CASes
assume P

show R ...
next
assume — P

show R ...
ged

Case distinction

17

Propositional proof patterns

show R
proof CASes
assume P

show R ...
next
assume — P

show R ...
ged

Case distinction

have P v Q ...
then show R
proof

assume P

show R ...
next
assume Q

show R ...
ged

Case distinction

17

Propositional proof patterns

show R
proof CASes
assume P

show R ...
next
assume — P

show R ...
ged

Case distinction

have P v Q ...
then show R
proof

assume P

show R ...
next
assume Q

show R ...
ged

Case distinction

show P
proof (rule ccontr)
assume —P

show False ...
ged

Contradiction

17

Quantifier introduction proof patterns

show V X. P(X)

proof
fix X local fixed variable
show P(X) ...

ged

18

Quantifier introduction proof patterns

show V X. P(X)

proof

fix X local fixed variable
show P(X) ...

ged

show IX. P(X)
proof

show P(witnhess) ...
ged

18

4 elimination:

obtain

19

34 elimination: obtain

have 3X. P(X)
then obtain X where pP: P(X) by blast

X local fixed variable

19

34 elimination: obtain

have 3X. P(X)
then obtain X where pP: P(X) by blast

X local fixed variable

Works for one or more x

19

obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

20

obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

then obtain a where {X. X ¢ fx} =fa by blast

20

obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

then obtain a where {X. X ¢ fx} =fa by blast
hence a¢fa+«— aecfa by blast

20

obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

then obtain a where {X. X ¢ fx} =fa by blast
hence a¢fa+«— aecfa by blast

thus False by blast
ged

20

proof method

21

proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A

21

proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A

How to prove each subgoal:

21

proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A

How to prove each subgoal:

fix X1 ... X,
assume A ... A,

show A

21

proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A

How to prove each subgoal:

fix X1 ... X,
assume A ... A,
show A

Separated by next

21

Demo: proof

Streamlining proofs:
Pattern matching and Quotations

Example: pattern matching

show formula; «<— formulay (is ?L «+—— ?R)

24

Example: pattern matching

show formula; «<— formulay (is ?L «+—— ?R)
proof
assume 7L

show ?R ...
next
assume 7R

show ?L ...
ged

24

show formula
proof -

show ?thesis ...

ged

?thesis

25

?thesis

show formula (IS 7thesis)
proof -

show ?thesis ...
ged

25

?thesis

show formula (IS 7thesis)
proof -

show ?thesis ...
ged

Every show implicitly defines ?thesis

25

Quoting facts by value

By name:
have X0: "x>0" ...

from XO ...

Quoting facts by value

By name:
have X0: "x>0" ...

from XO ...

By value:

have "X > 0" ...

from ‘X>0°...

26

Quoting facts by value

By name:
have X0: "x>0" ...

from XO ...

By value:

have "X > 0" ...

from ‘X>0°...

back guotes

Demo: pattern matching and quotations

Advanced Isar

28

Overview

Case distinction
Induction
Chains of (in)equations

29

Case distinction

30

Demo: case distinction

31

Datatype case distinction

datatype t = C; 7 | ...

Datatype case distinction

datatype t = C; 7 | ...

proof (cases term)
case (Cq)

next

ged

32

Datatype case distinction

datatype t = C; 7 | ...

proof (cases term)
case (C; 7)

next

ged

where case (C; 7)) =

fix =

assume C;. term = (C; 7)
— - -~ z

label formula w

Induction

33

Structural induction
Rule induction
Induction with fun

Overview

34

Structural induction for type nat

show P(n)
proof (Induct n)
case O

show ?case
next
case (Suc n)

. n -.--
show ?case
ged

35

Structural induction for type nat

show P(n)
proof (Induct n)
case O

show ?case
next
case (Suc n)

. n -.--
show ?case
ged

let ?case = P(0)

35

Structural induction for type nat

show P(n)
proof (Induct n)
case O

let ?case = P(0)

show ?case
next
case (Suc n)

fix N assume Suc: P(Nn)
let ?case = P(Suc n)
- Nn ---
show ?case
ged

35

Demo: structural induction

36

Structural induction with

show A(n) = P(n)
proof (Induct n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

—

37

Structural induction with —

show A(n) = P(n)
proof (Induct n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

fix X assume 0O: A(O)
let ?case = P(0)

37

Structural induction with —

show A(n) = P(n)
proof (Induct n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

fix X assume 0O: A(O)
let ?case = P(0)

fix N

assume Suc: A(n) = P(n)
A(Suc n)

let ?case = P(Suc n)

37

A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

38

A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

fix N assume formula . ..show formula’
IS easler to read:
all information is shown locally
no contextual references (e.g. ?case)

38

Demo: structural induction with

—

39

Rule induction

40

Inductive definition

inductive _set S
Intros
rule;: [se S;A]=5s €S

rule,: ...

41

Rule induction

show X € S = P(X)
proof (Induct rule: S.induct)
case rule;

show ?case
next

next
case rule,,
show ?case
ged

42

Implicit selection of induction rule

assume A: X € S

show P(X)
using A proof Induct

ged

43

Implicit selection of induction rule

assume A: X € S

show P(X)
using A proof Induct

ged

lemma assumes A: X € S shows P(X)
using A proof Induct

ged

43

Renaming free variables in rule

case (I‘UIGZ' X1 ... Xk)

Renames the (alphabetically!) first £ variables Iin rule; to

X1 ... XE.

44

Demo: rule induction

45

Induction with fun

Definition:
fun f

Induction with fun

Definition:
fun f

Proof:
show ... f(...) ...
proof (Induct x; ... X; rule: f.induct)

Definition:
fun f

Proof:

show ... f(...) ...
proof (Induct X ...

case 1

Induction with fun

X, rule: f.induct)

46

Induction with fun

Definition:

fun f

Proof:

show ... f(...) ...

proof (Induct x; ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f

46

Induction with fun

Definition:
fun f

Proof:
show ... f(...) ...
proof (Induct x; ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f
More precisely: to equation ; in f.simps

46

Demo: induction with fun

Chains of (in)equations

have "{j

tlll

also

49

also

49

also

49

also

49

have
also
have
also

also
have

also

tn—1

49

have "tg =1t1"

also
have "... = 5"
also
also
have "...=1¢,"

finally show

also

tn—1

49

have "tg =1t1"
also

have "... = 5"
also

also
have "...=1¢,"
finally show

— like from ‘tg = t,," show

also

I
N
p—

49

also

“..."1s merely an abbreviation

50

also

“..."1s merely an abbreviation
also works for other transitive relations (<, <, ...)

50

Demo: also

51

Accumulating facts

have formula; ...

maoreover

53

have formula; ...

maoreover

have formula, ...

maoreover

53

have formulaq
moreover
have formula,
moreover

moreover
have formula,,

maoreover

53

have formulaq
moreover
have formula,
moreover

moreover
have formula,,

ultimately show ...

maoreover

53

maoreover

have formula; ...
moreover
have formulas ...
moreover

moreover
have formula,, ...
ultimately show ...

— like from f1...f, show but needs no labels

53

Demo: moreover

54

		extcolor {darkblue}{Apply scripts}
		extcolor {darkblue}{Apply scripts versus Isar proofs}
		extcolor {darkblue}{A typical Isar proof}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Isar core syntax}
		extcolor {darkblue}{Example: Cantor's theorem}
		extcolor {darkblue}{Abbreviations}
		extcolor {darkblue}{using}
		extcolor {darkblue}{Example: Structured lemma statement}
		extcolor {darkblue}{The essence of structured proofs}
		extcolor {darkblue}{Structured lemma statements}
		extcolor {darkblue}{Propositional proof patterns}
		extcolor {darkblue}{Propositional proof patterns}
		extcolor {darkblue}{Quantifier introduction proof patterns}
		extcolor {darkblue}{isa {{isasymexists }} elimination: high {isakeyword {obtain}}}
		extcolor {darkblue}{isakeyword {obtain} example}
		extcolor {darkblue}{high {isakeyword {proof}}
m method}
		extcolor {darkblue}{Example: pattern matching}
		extcolor {darkblue}{isa {{isacharquery }thesis}}
		extcolor {darkblue}{Quoting facts by value}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Datatype case distinction}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Structural induction for type nat}
		extcolor {darkblue}{Structural induction with isa {{isasymLongrightarrow }}}
		extcolor {darkblue}{A remark on style}
		extcolor {darkblue}{Inductive definition}
		extcolor {darkblue}{Rule induction}
		extcolor {darkblue}{Implicit selection of induction rule}
		extcolor {darkblue}{Renaming free variables in rule}
		extcolor {darkblue}{Induction with fun}
		extcolor {darkblue}{also}
		extcolor {darkblue}{also}
		extcolor {darkblue}{moreover}

