Isar — A language for structured proofs
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NoO structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration



A typical Isar proof

proof
assume formula
have formula; by SIMp

have formula, by blast
show formula, ;1 by ...
ged



A typical Isar proof

proof
assume formula
have formula; by SIMp

have formula, by blast
show formula, ;1 by ...
ged

proves formulay = formula,, 4



Overview

Basic Isar

|sar by example
Proof patterns
Streamlining proofs
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proof = proof [method] statement* ged
| by method
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statement = fix variables (A)
assume Prop (=)
[from fact™] (have | show) prop proof
next (separates subgoals)

prop = [name:] "formula"



|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)|...

statement = fix variables (A)

assume Prop (=)

[from fact™] (have | show) prop proof

next (separates subgoals)
prop = [name:] "formula”

fact = name | name[OF fact™] | ‘formula’



Isar by example



Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
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Example: Cantor’s theorem

lemma Cantor: — surj(f :: 'a = ’a set)
proof assume Surj, show False
assume a. surj f
from ahave b: V A. 3 a.A=fa
by (simp add: surj_def)
from b have c: 3 a. {X. X ¢fx}=fa
by blast
from C show False
by blast
ged



Demo: this, then etc



this
then
thus
hence

Abbreviations

the previous proposition proved or assumed
from this
then show
then have

10



using

First the what, then the how:

(have [show ) prop using facts
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using

First the what, then the how:

(have [show ) prop using facts

from facts (have|show ) prop

11



Example: Structured lemma statement

lemma Cantor’:
fixes f::'a = 'a set
assumes S: surj f
shows False

12
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Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
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Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
thus False by blast
ged
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Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
thus False by blast
ged

Proves surjf — False
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Example: Structured lemma statement

lemma Cantor’:
fixes f:.'a = a set
assumes S: surj f
shows False
proof - no automatic proof step
have 3 a. {X. X ¢ fx} =fausing s
by (auto simp: surj_def)
thus False by blast
ged

Proves surjf — False
but surjf becomes local fact s in proof.

12



The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively
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Structured lemma statements

fixes x .. and y i o ...
assumes a. P and b: Q ...
shows R
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Structured lemma statements
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Structured lemma statements

fixes x .. and y i o ...
assumes a. P and b: Q ...
shows R

fixes and assumes sections optional
shows optional if no fixes and assumes

14



Proof patterns



show P «—— Q
proof
assume P

show Q ...
next
assume Q

show P ...
ged

Propositional proof patterns

16



show P «—— Q
proof
assume P

show Q ...
next
assume Q

show P ...
ged

Propositional proof patterns

show A =B
proof

show ACB ...
next

show B C A ...
ged

16



show P «—— Q
proof
assume P

show Q ...
next
assume Q

show P ...
ged

Propositional proof patterns

show A =B
proof

show ACB ...
next

show B C A ...
ged

show A C B
proof

fix X

assume X € A

show X € B ...

ged

16



Propositional proof patterns

show R
proof CASes
assume P

show R ...
next
assume — P

show R ...
ged

Case distinction

17



Propositional proof patterns

show R
proof CASes
assume P

show R ...
next
assume — P

show R ...
ged

Case distinction

have P v Q ...
then show R
proof

assume P

show R ...
next
assume Q

show R ...
ged

Case distinction

17



Propositional proof patterns

show R
proof CASes
assume P

show R ...
next
assume — P

show R ...
ged

Case distinction

have P v Q ...
then show R
proof

assume P

show R ...
next
assume Q

show R ...
ged

Case distinction

show P
proof (rule ccontr)
assume —P

show False ...
ged

Contradiction

17



Quantifier introduction proof patterns

show V X. P(X)

proof
fix X local fixed variable
show P(X) ...

ged
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Quantifier introduction proof patterns

show V X. P(X)

proof

fix X local fixed variable
show P(X) ...

ged

show IX. P(X)
proof

show P(witnhess) ...
ged

18



4 elimination:

obtain

19



34 elimination: obtain

have 3X. P(X)
then obtain X where pP: P(X) by blast

X local fixed variable

19



34 elimination: obtain

have 3X. P(X)
then obtain X where pP: P(X) by blast

X local fixed variable

Works for one or more x

19



obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)
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obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

then obtain a where {X. X ¢ fx} =fa by blast

20



obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

then obtain a where {X. X ¢ fx} =fa by blast
hence a¢fa+«— aecfa by blast

20



obtain example

lemma Cantor”: - surj(f :: 'a = 'a set)
proof
assume surj f
hence 3 a. {X. X ¢ fx} =fa by(auto simp: surj_def)

then obtain a where {X. X ¢ fx} =fa by blast
hence a¢fa+«— aecfa by blast

thus False by blast
ged

20



proof method

21



proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A
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proof method

Applies method and generates subgoal(s):
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How to prove each subgoal:
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proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A

How to prove each subgoal:

fix X1 ... X,
assume A ... A,

show A

21



proof method

Applies method and generates subgoal(s):
LAXL .. X [AL .. AL = A

How to prove each subgoal:

fix X1 ... X,
assume A ... A,
show A

Separated by next

21



Demo: proof



Streamlining proofs:
Pattern matching and Quotations



Example: pattern matching

show formula; «<— formulay (is ?L «+—— ?R)

24



Example: pattern matching

show formula; «<— formulay (is ?L «+—— ?R)
proof
assume 7L

show ?R ...
next
assume 7R

show ?L ...
ged

24



show formula
proof -

show ?thesis ...

ged

?thesis

25



?thesis

show formula (IS 7thesis)
proof -

show ?thesis ...
ged

25



?thesis

show formula (IS 7thesis)
proof -

show ?thesis ...
ged

Every show implicitly defines ?thesis

25



Quoting facts by value

By name:
have X0: "x>0" ...

from XO ...



Quoting facts by value

By name:
have X0: "x>0" ...

from XO ...

By value:

have "X > 0" ...

from ‘X>0°...

26



Quoting facts by value

By name:
have X0: "x>0" ...

from XO ...

By value:

have "X > 0" ...

from ‘X>0°...

back guotes



Demo: pattern matching and quotations



Advanced Isar

28



Overview

Case distinction
Induction
Chains of (in)equations
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Case distinction

30



Demo: case distinction
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Datatype case distinction

datatype t = C; 7 | ...



Datatype case distinction

datatype t = C; 7 | ...

proof (cases term)
case (Cq )

next

ged

32



Datatype case distinction

datatype t = C; 7 | ...

proof (cases term)
case (C; 7)

next

ged

where  case (C; 7)) =

fix =

assume C;. term = (C; 7)
— - -~ z

label formula w



Induction

33



Structural induction
Rule induction
Induction with fun

Overview

34



Structural induction for type nat

show P(n)
proof (Induct n)
case O

show ?case
next
case (Suc n)

. n -.--
show ?case
ged

35



Structural induction for type nat

show P(n)
proof (Induct n)
case O

show ?case
next
case (Suc n)

. n -.--
show ?case
ged

let ?case = P(0)

35



Structural induction for type nat

show P(n)
proof (Induct n)
case O

let ?case = P(0)

show ?case
next
case (Suc n)

fix N assume Suc: P(Nn)
let ?case = P(Suc n)
- Nn ---
show ?case
ged

35



Demo: structural induction
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Structural induction with

show A(n) = P(n)
proof (Induct n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

—
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Structural induction with —

show A(n) = P(n)
proof (Induct n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

fix X assume 0O: A(O)
let ?case = P(0)

37



Structural induction with —

show A(n) = P(n)
proof (Induct n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

fix X assume 0O: A(O)
let ?case = P(0)

fix N

assume Suc: A(n) = P(n)
A(Suc n)

let ?case = P(Suc n)

37



A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

38



A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

fix N assume formula . ..show formula’
IS easler to read:
all information is shown locally
no contextual references (e.g. ?case)
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Demo: structural induction with

—
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Rule induction

40



Inductive definition

inductive _set S
Intros
rule;: [se S;A]=5s €S

rule,: ...

41



Rule induction

show X € S = P(X)
proof (Induct rule: S.induct)
case rule;

show ?case
next

next
case rule,,
show ?case
ged
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Implicit selection of induction rule

assume A: X € S

show P(X)
using A proof Induct

ged
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Implicit selection of induction rule

assume A: X € S

show P(X)
using A proof Induct

ged

lemma assumes A: X € S shows P(X)
using A proof Induct

ged
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Renaming free variables in rule

case (I‘UIGZ' X1 ... Xk)

Renames the (alphabetically!) first £ variables Iin rule; to

X1 ... XE.
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Demo: rule induction

45



Induction with fun

Definition:
fun f



Induction with fun

Definition:
fun f

Proof:
show ... f(...) ...
proof (Induct x; ... X; rule: f.induct)



Definition:
fun f

Proof:

show ... f(...) ...
proof (Induct X ...

case 1

Induction with fun

X, rule: f.induct)
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Induction with fun

Definition:

fun f

Proof:

show ... f(...) ...

proof (Induct x; ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f
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Induction with fun

Definition:
fun f

Proof:
show ... f(...) ...
proof (Induct x; ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f
More precisely: to equation ; in f.simps

46



Demo: induction with fun



Chains of (in)equations



have "{j

tlll

also
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also
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also
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also
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have
also
have
also

also
have

also

tn—1

49



have "tg =1t1"

also
have "... = 5"
also
also
have "...=1¢,"

finally show

also

tn—1

49



have "tg =1t1"
also

have "... = 5"
also

also
have "...=1¢,"
finally show

— like from ‘tg = t,," show

also

I
N
p—

49



also

“..."1s merely an abbreviation
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also

“..."1s merely an abbreviation
also works for other transitive relations (<, <, ...)
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Demo: also

51



Accumulating facts



have formula; ...

maoreover

53



have formula; ...

maoreover

have formula, ...

maoreover

53



have formulaq
moreover
have formula,
moreover

moreover
have formula,,

maoreover
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have formulaq
moreover
have formula,
moreover

moreover
have formula,,

ultimately show ...

maoreover

53



maoreover

have formula; ...
moreover
have formulas ...
moreover

moreover
have formula,, ...
ultimately show ...

— like from f1...f, show but needs no labels

53



Demo: moreover

54
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