Theory InfDatatype

(*  Title:      ZF/InfDatatype.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge

sectionInfinite-Branching Datatype Definitions

theory InfDatatype imports Datatype Univ Finite Cardinal_AC begin

lemmas fun_Limit_VfromE =
    Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]

lemma fun_Vcsucc_lemma:
  assumes f: "f  D -> Vfrom(A,csucc(K))" and DK: "|D|  K" and ICK: "InfCard(K)"
  shows "j. f  D -> Vfrom(A,j)  j < csucc(K)"
proof (rule exI, rule conjI)
  show "f  D  Vfrom(A, zD. μ i. f`z  Vfrom (A,i))"
    proof (rule Pi_type [OF f])
      fix d
      assume d: "d  D"
      show "f ` d  Vfrom(A, zD. μ i. f ` z  Vfrom(A, i))"
        proof (rule fun_Limit_VfromE [OF f d ICK]) 
          fix x
          assume "x < csucc(K)"  "f ` d  Vfrom(A, x)"
          hence "f`d  Vfrom(A, μ i. f`d  Vfrom (A,i))" using d
            by (fast elim: LeastI ltE)
          also have "...  Vfrom(A, zD. μ i. f ` z  Vfrom(A, i))" 
            by (rule Vfrom_mono) (auto intro: d) 
          finally show "f`d  Vfrom(A, zD. μ i. f ` z  Vfrom(A, i))" .
  show "(dD. μ i. f ` d  Vfrom(A, i)) < csucc(K)"
    proof (rule le_UN_Ord_lt_csucc [OF ICK DK])
      fix d
      assume d: "d  D"
      show "(μ i. f ` d  Vfrom(A, i)) < csucc(K)"
        proof (rule fun_Limit_VfromE [OF f d ICK]) 
          fix x
          assume "x < csucc(K)"  "f ` d  Vfrom(A, x)"
          thus "(μ i. f ` d  Vfrom(A, i)) < csucc(K)"
            by (blast intro: Least_le lt_trans1 lt_Ord) 

lemma subset_Vcsucc:
     "D  Vfrom(A,csucc(K));  |D|  K;  InfCard(K)
       j. D  Vfrom(A,j)  j < csucc(K)"
by (simp add: subset_iff_id fun_Vcsucc_lemma)

(*Version for arbitrary index sets*)
lemma fun_Vcsucc:
     "|D|  K;  InfCard(K);  D  Vfrom(A,csucc(K)) 
          D -> Vfrom(A,csucc(K))  Vfrom(A,csucc(K))"
apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)
apply (rule Vfrom [THEN ssubst])
apply (drule fun_is_rel)
(*This level includes the function, and is below csucc(K)*)
apply (rule_tac a1 = "succ (succ (j  ja))" in UN_I [THEN UnI2])
apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ
apply (erule subset_trans [THEN PowI])
apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)

lemma fun_in_Vcsucc:
     "f: D -> Vfrom(A, csucc(K));  |D|  K;  InfCard(K);
         D  Vfrom(A,csucc(K))
        f: Vfrom(A,csucc(K))"
by (blast intro: fun_Vcsucc [THEN subsetD])

textRemove ⊆› from the rule above
lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]

(** Version where K itself is the index set **)

lemma Card_fun_Vcsucc:
     "InfCard(K)  K -> Vfrom(A,csucc(K))  Vfrom(A,csucc(K))"
apply (frule InfCard_is_Card [THEN Card_is_Ord])
apply (blast del: subsetI
             intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom
                   lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans])

lemma Card_fun_in_Vcsucc:
     "f: K -> Vfrom(A, csucc(K));  InfCard(K)  f: Vfrom(A,csucc(K))"
by (blast intro: Card_fun_Vcsucc [THEN subsetD])

lemma Limit_csucc: "InfCard(K)  Limit(csucc(K))"
by (erule InfCard_csucc [THEN InfCard_is_Limit])

lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]
lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]
lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]
lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]
lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]

(*For handling Cardinals of the form  @{term"nat ∪ |X|"} *)

lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]

lemmas le_nat_Un_cardinal =
     Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]

lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_cardinal_le]

(*The new version of Data_Arg.intrs, declared in Datatype.ML*)
lemmas Data_Arg_intros =
       SigmaI InlI InrI
       Pair_in_univ Inl_in_univ Inr_in_univ
       zero_in_univ A_into_univ nat_into_univ UnCI

(*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)
lemmas inf_datatype_intros =
     InfCard_nat InfCard_nat_Un_cardinal
     Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc
     zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc
     Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I