Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

September 11, 2023

Contents

1 Transposition function 1
2 Stirling numbers of first and second kind 5
2.1 Stirling numbers of the second kind 5
2.2 Stirling numbers of the first kind 6
2.2.1 Efficient code 9
3 Permutations, both general and specifically on finite sets. 11
3.1 Auxiliary 12
3.2 Basic definition and consequences 12
3.3 Group properties 17
3.4 Mapping permutations with bijections 17
3.5 The number of permutations on a finite set 19
3.6 Hence a sort of induction principle composing by swaps 22
3.7 Permutations of index set for iterated operations 23
3.8 Permutations as transposition sequences 23
3.9 Some closure properties of the set of permutations, with lengths 23
3.10 Various combinations of transpositions with 2,1 and 0 com- mon elements 25
3.11 The identity map only has even transposition sequences 26
3.12 Therefore we have a welldefined notion of parity 28
3.13 And it has the expected composition properties 29
3.14 A more abstract characterization of permutations 29
3.15 Relation to permutes 32
3.16 Sign of a permutation as a real number 32
3.17 Permuting a list 33
3.18 More lemmas about permutations 35
3.19 Sum over a set of permutations (could generalize to iteration) 44
3.20 Constructing permutations from association lists 45
4 Permuted Lists 48
4.1 An existing notion 48
4.2 Nontrivial conclusions 48
4.3 Trivial conclusions: 49
5 Permutations of a Multiset 51
5.1 Permutations of a multiset 52
5.2 Cardinality of permutations 54
5.3 Permutations of a set 57
5.4 Code generation 58
6 Cycles 62
6.1 Definitions 62
6.2 Basic Properties 62
6.3 Conjugation of cycles 64
6.4 When Cycles Commute 65
6.5 Cycles from Permutations 66
6.5.1 Exponentiation of permutations 66
6.5.2 Extraction of cycles from permutations 67
6.6 Decomposition on Cycles 69
6.6.1 Preliminaries 69
6.6.2 Decomposition 72
7 Permutations as abstract type 74
7.1 Abstract type of permutations 74
7.2 Identity, composition and inversion 76
7.3 Orbit and order of elements 79
7.4 Swaps 89
7.5 Permutations specified by cycles 90
7.6 Syntax 90
8 Permutation orbits 91
8.1 Orbits and cyclic permutations 91
8.2 Decomposition of arbitrary permutations 97
8.3 Function-power distance between values 99
9 Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs) 103
1 Transposition function
theory Transpositionimports Mainbegin

```
definition transpose :: <' \(\left.a \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a\right\rangle\)
    where 〈transpose \(a b c=(\) if \(c=a\) then \(b\) else if \(c=b\) then \(a\) else \(c)\rangle\)
lemma transpose_apply_first [simp]:
    〈transpose a ba=b〉
    by (simp add: transpose_def)
lemma transpose_apply_second [simp]:
    〈transpose \(a b b=a\rangle\)
    by (simp add: transpose_def)
lemma transpose_apply_other [simp]:
    \(\langle\) transpose a b c = c \(\rangle\) if \(\langle c \neq a\rangle\langle c \neq b\rangle\)
    using that by (simp add: transpose_def)
lemma transpose_same [simp]:
    〈transpose a \(a=i d\) 〉
    by (simp add: fun_eq_iff transpose_def)
lemma transpose_eq_iff:
    <transpose \(a b c=d \longleftrightarrow(c \neq a \wedge c \neq b \wedge d=c) \vee(c=a \wedge d=b) \vee(c=b\)
\(\wedge d=a)\) >
    by (auto simp add: transpose_def)
lemma transpose_eq_imp_eq:
    \(\langle c=d\rangle\) if \(\langle\) transpose \(a b c=\) transpose \(a b d\rangle\)
    using that by (auto simp add: transpose_eq_iff)
lemma transpose_commute [ac_simps]:
    〈transpose \(b a=\) transpose \(a b\rangle\)
    by (auto simp add: fun_eq_iff transpose_eq_iff)
lemma transpose_involutory [simp]:
    〈transpose a \(b\) (transpose abc)=c〉
    by (auto simp add: transpose_eq_iff)
lemma transpose_comp_involutory [simp]:
    〈transpose \(a b \circ\) transpose \(a b=i d\rangle\)
    by (rule ext) simp
lemma transpose_triple:
    〈transpose \(a b\) (transpose \(b c(\) transpose \(a b d))=\) transpose \(a c d\rangle\)
    if \(\langle a \neq c\rangle\) and \(\langle b \neq c\rangle\)
    using that by (simp add: transpose_def)
lemma transpose_comp_triple:
    〈transpose \(a b \circ\) transpose \(b c \circ\) transpose \(a b=\) transpose \(a c\) 〉
    if \(\langle a \neq c\rangle\) and \(\langle b \neq c\rangle\)
    using that by (simp add: fun_eq_iff transpose_triple)
```

```
lemma transpose_image_eq [simp]:
    <transpose a b '}A=A\rangle\mathrm{ if }\langlea\inA\longleftrightarrowb\inA
    using that by (auto simp add: transpose_def [abs_def])
lemma inj_on_transpose [simp]:
    <inj_on (transpose a b) A〉
    by rule (drule transpose_eq_imp_eq)
lemma inj_transpose:
    <inj (transpose a b)>
    by (fact inj_on_transpose)
lemma surj_transpose:
    <surj (transpose a b)`
    by simp
lemma bij_betw_transpose_iff [simp]:
    <bij_betw (transpose a b) A A > if <a\inA\longleftrightarrow < < < A>
    using that by (auto simp: bij_betw_def)
lemma bij_transpose [simp]:
    <bij (transpose a b)〉
    by (rule bij_betw_transpose_iff) simp
lemma bijection_transpose:
    <bijection (transpose a b)〉
    by standard (fact bij_transpose)
lemma inv_transpose_eq [simp]:
    <inv (transpose a b)= transpose a b>
    by (rule inv_unique_comp) simp_all
lemma transpose_apply_commute:
    <transpose a b (fc)=f(transpose (invfa)(invfb)c)>
    if <bij f>
proof -
    from that have <surj f>
        by (rule bij_is_surj)
    with that show ?thesis
        by (simp add: transpose_def bij_inv_eq_iff surj_f_inv_f)
qed
lemma transpose_comp_eq
    <transpose a b ○f=f\circtranspose (inv fa)(inv f b)>
    if <bij f>
    using that by (simp add: fun_eq_iff transpose_apply_commute)
lemma in_transpose_image_iff:
```

```
< \in transpose a b'S\longleftrightarrow transpose a b x G S`
```

by (auto intro!: image_eqI)

Legacy input alias
setup 〈Context．theory＿map（Name＿Space．map＿naming（Name＿Space．qualified＿path true binding 〈Fun〉））＞
abbreviation（input）swap ：：${ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b$＞ where \langle swap a $b f \equiv f \circ$ transpose $a b\rangle$
lemma swap＿def：
〈Fun．swap a b $f=f(a:=f b, b:=f a)$ 〉
by（simp add：fun＿eq＿iff）
setup \Context．theory＿map（Name＿Space．map＿naming（Name＿Space．parent＿path））$>$
lemma swap＿apply：
Fun．swap a $b f a=f b$
Fun．swap a $b f b=f a$
$c \neq a \Longrightarrow c \neq b \Longrightarrow$ Fun．swap a b $f c=f c$
by simp＿all
lemma swap＿self：Fun．swap a a $f=f$
by simp
lemma swap＿commute：Fun．swap a bf Fun．swap baf
by（simp add：ac＿simps）
lemma swap＿nilpotent：Fun．swap ab（Fun．swap a b f ）$=f$
by（simp add：comp＿assoc）
lemma swap＿comp＿involutory：Fun．swap $a b \circ$ Fun．swap $a b=i d$
by（simp add：fun＿eq＿iff）
lemma swap＿triple：
assumes $a \neq c$ and $b \neq c$
shows Fun．swap ab（Fun．swap bc（Fun．swap abf））＝Fun．swap acf
using assms transpose＿comp＿triple $\left[\begin{array}{lll}\text { of } & c & b\end{array}\right]$
by（simp add：comp＿assoc）
lemma comp＿swap：$f \circ$ Fun．swap a b $g=$ Fun．swap a b $(f \circ g)$
by（simp add：comp＿assoc）
lemma swap＿image＿eq：
assumes $a \in A b \in A$
shows Fun．swap abf＇$A=f^{\prime} A$
using assms by（metis image＿comp transpose＿image＿eq）
lemma inj＿on＿imp＿inj＿on＿swap：inj＿on $f A \Longrightarrow a \in A \Longrightarrow b \in A \Longrightarrow i n j$ on

```
(Fun.swap a b f) A
    by (simp add: comp_inj_on)
lemma inj_on_swap_iff:
    assumes A: a \inA b \inA
    shows inj_on (Fun.swap a bf) A\longleftrightarrow < inj_on f A
using assms by (metis inj_on_imageI inj_on_imp_inj_on_swap transpose_image_eq)
lemma surj_imp_surj_swap: surj f \Longrightarrow surj (Fun.swap a b f)
    by (meson comp_surj surj_transpose)
lemma surj_swap_iff: surj (Fun.swap a b f) \longleftrightarrow surj f
    by (metis fun.set_map surj_transpose)
lemma bij_betw_swap_iff: x \inA\Longrightarrowy\inA\Longrightarrowbij_betw(Fun.swap x y f) A B
\longleftrightarrow bij_betw f A B
    by (meson bij_betw_comp_iff bij_betw_transpose_iff)
lemma bij_swap_iff:bij (Fun.swap a b f) \longleftrightarrowbijf
    by (simp add: bij_betw_swap_iff)
lemma swap_image:
    <Fun.swap ijf`}A=f`(A-{i,j
        \cup(if i\inA then {j} else {}) \cup(if j\inA then {i} else {}))>
    by (auto simp add: Fun.swap_def)
lemma inv_swap_id: inv (Fun.swap a b id)= Fun.swap a b id
    by simp
lemma bij_swap_comp:
    assumes bij p
    shows Fun.swap a b id o p=Fun.swap (inv p a) (inv p b) p
    using assms by (simp add: transpose_comp_eq)
lemma swap_id_eq: Fun.swap a b id x = (if }x=a\mathrm{ then b else if }x=b\mathrm{ then a else
x)
    by (simp add: Fun.swap_def)
lemma swap_unfold:
    〈Fun.swap a b p=p ○ Fun.swap a b id`
    by simp
lemma swap_id_idempotent: Fun.swap a b id \circ Fun.swap a b id = id
    by simp
lemma bij_swap_compose_bij:
    〈bij (Fun.swap a b id ○ p)\rangle if <bij p\rangle
    using that by (rule bij_comp) simp
```

end

2 Stirling numbers of first and second kind

```
theory Stirling
imports Main
begin
```


2.1 Stirling numbers of the second kind

```
fun Stirling :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat
    where
        Stirling \(00=1\)
    | Stirling \(0(\) Suc \(k)=0\)
    | Stirling (Suc n) 0 = 0
    |Stirling (Suc n) (Suc k) \(=\) Suc \(k *\) Stirling \(n(\) Suc \(k)+\) Stirling \(n k\)
lemma Stirling_1 [simp]: Stirling (Suc n) (Suc 0) \(=1\)
    by (induct \(n\) ) simp_all
lemma Stirling_less [simp]: \(n<k \Longrightarrow\) Stirling \(n k=0\)
    by (induct \(n k\) rule: Stirling.induct) simp_all
lemma Stirling_same [simp]: Stirling \(n n=1\)
    by (induct n) simp_all
lemma Stirling_2_2: Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2^Suc \(n-1\)
proof (induct \(n\) )
    case 0
    then show ?case by simp
next
    case (Suc n)
    have Stirling (Suc (Suc (Suc n))) (Suc (Suc 0)) =
                2 * Stirling (Suc (Suc n)) (Suc (Suc 0)) + Stirling (Suc (Suc n)) (Suc 0)
        by \(\operatorname{simp}\)
    also have \(\ldots=2 *\left(\right.\) 2 \(\left.^{\text {^ Suc }} n-1\right)+1\)
    by (simp only: Suc Stirling_1)
    also have \(\ldots=2^{\wedge}\) Suc (Suc n) -1
    proof -
        have (2::nat) ~Suc \(n-1>0\)
            by (induct \(n\) ) simp_all
    then have \(2 *((2::\) nat \() ~ へ\) Suc \(n-1)>0\)
                by simp
    then have \(2 \leq 2 *\left((2:: n a t){ }^{\wedge}\right.\) Suc n)
                by \(\operatorname{simp}\)
    with add_diff_assoc2 [of 2 2 * 2 ^Suc n 1]
    have \(2 *\) 2 \(^{\text {^Suc } n-2}+(1::\) nat \()=2 * 2 へ S u c n+1\) - 2.
    then show ?thesis
                by (simp add: nat_distrib)
```

```
    qed
    finally show ?case by simp
qed
lemma Stirling_2: Stirling (Suc n) (Suc (Suc 0)) = 2 ^n - 1
    using Stirling_2_2 by (cases n) simp_all
```


2.2 Stirling numbers of the first kind

```
fun stirling \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat
    where
        stirling \(00=1\)
    | stirling \(0(\) Suc \(k)=0\)
    | stirling (Suc n) 0 = 0
    \(\mid\) stirling (Suc \(n)(\) Suc \(k)=n *\) stirling \(n(\) Suc \(k)+\operatorname{stirling~} n k\)
```

lemma stirling_0 $[$ simp $]: n>0 \Longrightarrow$ stirling $n 0=0$
by (cases n) simp_all
lemma stirling_less [simp]: $n<k \Longrightarrow$ stirling $n k=0$
by (induct $n k$ rule: stirling.induct) simp_all
lemma stirling_same [simp]: stirling $n n=1$
by (induct n) simp_all
lemma stirling_Suc_n_1: stirling (Suc n) (Suc 0) $=$ fact n
by (induct n) auto
lemma stirling_Suc_n_n: stirling (Suc n) $n=S u c n$ choose 2
by (induct n) (auto simp add: numerals(2))
lemma stirling_Suc_n_2:
assumes $n \geq$ Suc 0
shows stirling (Suc n) $2=\left(\sum k=1\right.$..n. fact n div $\left.k\right)$
using assms
proof (induct n)
case 0
then show? case by simp
next
case (Suc n)
show ?case
proof (cases n)
case 0
then show ?thesis
by (simp add: numerals(2))
next
case Suc
then have geq1: Suc $0 \leq n$
by simp

```
    have stirling (Suc (Suc n)) 2 = Suc n * stirling (Suc n) 2 + stirling (Suc n)
(Suc 0)
by (simp only: stirling.simps(4)[of Suc n] numerals(2))
    also have ... = Suc n* (\sumk=1..n. fact n div k) + fact n
        using Suc.hyps[OF geq1]
        by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult)
    also have ... = Suc n * (\sumk=1..n. fact n div k) + Suc n * fact n div Suc n
        by (metis nat.distinct(1) nonzero_mult_div_cancel_left)
    also have ... = (\sumk=1..n. fact (Suc n) div k) + fact (Suc n) div Suc n
        by (simp add: sum_distrib_left div_mult_swap dvd__fact)
    also have ... = ( \sumk=1..Suc n. fact (Suc n) div k)
        by simp
    finally show ?thesis.
    qed
qed
lemma of_nat_stirling_Suc_n_2:
    assumes n\geqSuc 0
    shows (of_nat (stirling (Suc n) 2)::'a::field_char_0) = fact n * (\sumk=1..n. (1
/ of_nat k))
    using assms
proof (induct n)
    case 0
    then show ?case by simp
next
    case (Suc n)
    show ?case
    proof (cases n)
    case 0
    then show ?thesis
        by (auto simp add: numerals(2))
    next
    case Suc
    then have geq1: Suc 0\leqn
        by simp
    have (of_nat (stirling (Suc (Suc n)) 2)::'a) =
                of_nat (Suc n* stirling (Suc n) 2 + stirling (Suc n) (Suc 0))
        by (simp only: stirling.simps(4)[of Suc n] numerals(2))
    also have ... = of_nat (Suc n)*(fact n*( \sumk=1..n. 1 / of_nat k))+fact
n
        using Suc.hyps[OF geq1]
        by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult)
    also have ... = fact (Suc n)* (\sumk=1..n. 1 / of_nat k) + fact (Suc n)*
(1 / of_nat (Suc n))
        using of_nat_neq_0 by auto
    also have ... = fact (Suc n)*(\sumk=1..Suc n. 1 / of_nat k)
        by (simp add: distrib_left)
    finally show ?thesis.
qed
```


qed

lemma sum_stirling: $\left(\sum k \leq n\right.$. stirling $\left.n k\right)=$ fact n
proof (induct n)
case 0
then show? case by simp
next
case (Suc n)
have $\left(\sum k \leq\right.$ Suc n. stirling $($ Suc $\left.n) k\right)=$ stirling (Suc n) $0+\left(\sum k \leq n\right.$. stirling
(Suc n) (Suc k))
by (simp only: sum.atMost_Suc_shift)
also have $\ldots=\left(\sum k \leq n\right.$. stirling $($ Suc $n)($ Suc $\left.k)\right)$
by simp
also have $\ldots=\left(\sum k \leq n . n * \operatorname{stirling} n(\right.$ Suc $\left.k)+\operatorname{stirling~} n k\right)$
by simp
also have $\ldots=n *\left(\sum k \leq n\right.$. stirling $n($ Suc $\left.k)\right)+\left(\sum k \leq n\right.$. stirling $\left.n k\right)$
by (simp add: sum.distrib sum_distrib_left)
also have $\ldots=n *$ fact $n+$ fact n
proof -
have $n *\left(\sum k \leq n\right.$. stirling $n($ Suc $\left.k)\right)=n *\left(\left(\sum k \leq\right.\right.$ Suc n. stirling $\left.n k\right)-$ stirling $n 0$)
by (metis add_diff_cancel_left' sum.atMost_Suc_shift)
also have $\ldots=n *\left(\sum k \leq n\right.$. stirling $\left.n k\right)$
by (cases n) simp_all
also have $\ldots=n *$ fact n
using Suc.hyps by simp
finally have $n *\left(\sum k \leq n\right.$. stirling $n($ Suc $\left.k)\right)=n *$ fact n.
moreover have $\left(\sum k \leq n\right.$. stirling $\left.n k\right)=$ fact n
using Suc.hyps .
ultimately show?thesis by simp
qed
also have $\ldots=$ fact (Suc n) by simp
finally show? case.
qed
lemma stirling_pochhammer:
$\left(\sum k \leq n\right.$. of_nat $\left.(\operatorname{stirling} n k) * x^{\wedge} k\right)=\left(\right.$ pochhammer $x n::{ }^{\prime} a::$ comm_semiring_1 $)$
proof (induct n)
case 0
then show? case by simp
next
case (Suc n)
have of_nat $(n *$ stirling $n 0)=\left(0::{ }^{\prime} a\right)$ by $($ cases $n)$ simp_all
then have $\left.\left(\sum k \leq S u c n \text {. of_nat (stirling (Suc n) k) }\right)^{\wedge}{ }^{\wedge} k\right)=$ (of_nat $(n *$ stirling $n 0) * x へ 0+$ $\left(\sum_{i \leq n}\right.$. of_nat $(n * \operatorname{stirling} n(S u c i)) *(x$-Suc $\left.\left.i)\right)\right)+$ ($\sum i \leq n$. of_nat (stirling $\left.n i\right) *\left(x^{\wedge}\right.$ Suc $\left.\left.i\right)\right)$
by (subst sum.atMost_Suc_shift) (simp add: sum.distrib ring_distribs)
also have $\ldots=$ pochhammer x (Suc n)

```
    by (subst sum.atMost_Suc_shift [symmetric])
    (simp add: algebra_simps sum.distrib sum_distrib_left pochhammer_Suc flip:
Suc)
    finally show ?case .
qed
```

A row of the Stirling number triangle
definition stirling_row :: nat \Rightarrow nat list
where stirling_row $n=[$ stirling $n k . k \leftarrow[0 . .<$ Suc $n]]$
lemma nth_stirling_row: $k \leq n \Longrightarrow$ stirling_row $n!k=$ stirling $n k$
by (simp add: stirling_row_def del: upt_Suc)
lemma length_stirling_row $[$ simp $]$: length $($ stirling_row $n)=S u c n$
by (simp add: stirling_row_def)
lemma stirling_row_nonempty $[$ simp $]$: stirling_row $n \neq[]$
using length_stirling_row $[$ of $n]$ by (auto simp del: length_stirling_row)

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind to compute them leads to exponential run time due to repeated computations. We can use memoisation to compute them row by row without repeating computations, at the cost of computing a few unneeded values.
As a bonus, this is very efficient for applications where an entire row of Stirling numbers is needed.

```
definition zip_with_prev :: (' \(\left.a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} b\) list
    where zip_with_prev \(f x x s=\operatorname{map2} f(x \# x s) x s\)
lemma zip_with_prev_altdef:
    zip__with_prev \(f x x s=\)
    (if \(x s=[]\) then [] else \(f x(h d x s) \#[f(x s!i)(x s!(i+1)) . i \leftarrow[0 . .<\) length \(x s-\)
1]])
proof (cases xs)
    case Nil
    then show ?thesis
        by (simp add: zip_with_prev_def)
next
    case (Cons y ys)
    then have zip_with_prev \(f x x s=f x(h d x s) \#\) zip_with_prev \(f y y s\)
        by (simp add: zip_with_prev_def)
    also have zip_with_prev \(f y\) ys \(=\operatorname{map}(\lambda i . f(x s!i)(x s!(i+1)))[0 . .<\) length
xs - 1]
    unfolding Cons
    by (induct ys arbitrary: y)
        (simp_all add: zip_with_prev_def upt_conv_Cons flip: map_Suc_upt del:
upt_Suc)
```

```
    finally show ?thesis
    using Cons by simp
qed
primrec stirling_row_aux
    where
        stirling_row_aux n y [] = [1]
    | stirling_row_aux n y (x#xs)=(y+n*x) # stirling_row_aux n x xs
lemma stirling_row_aux_correct:
    stirling_row_aux n y xs = zip_with_prev (\lambdaa b.a+n*b) y xs @ [1]
    by (induct xs arbitrary: y) (simp_all add: zip_with_prev_def)
lemma stirling_row_code [code]:
    stirling_row 0 = [1]
    stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)
proof goal_cases
    case 1
    show ?case by (simp add: stirling_row_def)
next
    case 2
    have stirling_row (Suc n) =
        0 # [stirling_row n!i+stirling_row n! (i+1)*n.i}\leftarrow[0..<n]]@ [1
    proof (rule nth_equalityI, goal_cases length nth)
    case (nth i)
    from nth have i\leqSuc n
        by simp
    then consider i=0\veei=Suc n| i>0i\leqn
        by linarith
    then show ?case
    proof cases
            case 1
            then show ?thesis
                by (auto simp: nth_stirling_row nth_append)
        next
                case 2
                then show ?thesis
                by (cases i) (simp_all add: nth_append nth_stirling_row)
        qed
    next
        case length
        then show ?case by simp
    qed
    also have 0# [stirling_row n!i+ stirling_row n! (i+1)*n.i\leftarrow[0..<n]]@
[1] =
        zip_with_prev (\lambdaab.a+n*b) 0(stirling_row n)@ [1]
    by (cases n) (auto simp add: zip_with_prev_altdef stirling_row_def hd_map
simp del: upt_Suc)
```

```
    also have ... = stirling_row_aux n 0 (stirling_row n)
    by (simp add: stirling_row_aux_correct)
    finally show ?case.
qed
lemma stirling_code [code]:
    stirling n k=
    (if k=0 then (if n=0 then 1 else 0)
        else if }k>n\mathrm{ then 0
        else if k=n then 1
        else stirling_row n!k)
    by (simp add: nth_stirling_row)
end
```


3 Permutations，both general and specifically on finite sets．

theory Permutations
imports
HOL－Library．Multiset
HOL－Library．Disjoint＿Sets
Transposition
begin

3．1 Auxiliary

abbreviation（input）fixpoints ：：〈（＇$\left.a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a$ set \rangle
where〈fixpoints $f \equiv\{x . f x=x\}$ 〉
lemma inj＿on＿fixpoints：
〈inj＿on f（fixpoints f）〉
by（rule inj＿onI）simp
lemma bij＿betw＿fixpoints：
〈bij＿betw f（fixpoints f）（fixpoints f）＞
using inj＿on＿fixpoints by（auto simp add：bij＿betw＿def）

3．2 Basic definition and consequences

definition permutes $::\left\langle\left(' a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a\right.$ set \Rightarrow bool〉（infixr 〈permutes〉41）
where $\langle p$ permutes $S \longleftrightarrow(\forall x . x \notin S \longrightarrow p x=x) \wedge(\forall y . \exists!x . p x=y)$ 〉
lemma bij＿imp＿permutes：
$\langle p$ permutes $S\rangle$ if $\left\langle b i j _\right.$betw $\left.p S S\right\rangle$ and stable：$\langle\backslash x . x \notin S \Longrightarrow p x=x\rangle$
proof－
note 〈bij＿betw $p S S\rangle$
moreover have 〈bij＿betw $p(-S)(-S)$ 〉
by（auto simp add：stable intro！：bij＿betw＿imageI inj＿onI）

```
    ultimately have «bij_betw p (S\cup-S) (S\cup-S)>
    by (rule bij_betw_combine) simp
    then have < }\exists\mathrm{ ! x. px=y> for y
    by (simp add: bij_iff)
    with stable show ?thesis
    by (simp add: permutes_def)
qed
context
    fixes p::<' }a>>'\mp@code{'a>}\mathrm{ and }S::<'a set
    assumes perm:<p permutes S〉
begin
lemma permutes_inj:
    <inj p`
    using perm by (auto simp: permutes_def inj_on_def)
lemma permutes_image:
    <p'S=S
proof (rule set_eqI)
    fix }
    show <x \in p'S\longleftrightarrowx\inS`
    proof
```



```
        then obtain }y\mathrm{ where }\langley\inS\rangle\langlepy=x
            by blast
        with perm show <x \inS>
            by (cases }\langley=x\rangle)(\mathrm{ auto simp add: permutes_def)
    next
        assume <x \inS\rangle
        with perm obtain }y\mathrm{ where }\langley\inS\rangle\langlepy=x
            by (metis permutes_def)
        then show \langlex\in p'S\rangle
            by blast
    qed
qed
lemma permutes_not_in:
    <x\not\inS\Longrightarrowpx=x\rangle
    using perm by (auto simp: permutes_def)
lemma permutes_image_complement:
    <p'(-S) = - S`
    by (auto simp add: permutes_not_in)
lemma permutes_in_image:
    < x \inS\longleftrightarrowx\inS>
    using permutes_image permutes_inj by (auto dest:inj_image_mem_iff)
```

```
lemma permutes_surj:
    <surj p>
proof -
    have <p'}(S\cup-S)=p'S\cupp'(-S)
        by (rule image_Un)
    then show ?thesis
        by (simp add: permutes_image permutes_image_complement)
qed
lemma permutes_inv_o:
    shows p\circinv p=id
    and inv p\circp=id
    using permutes_inj permutes_surj
    unfolding inj_iff [symmetric] surj_iff [symmetric] by auto
lemma permutes_inverses:
    shows p(inv p x) =x
    and inv p ( }px)=
using permutes_inv_o [unfolded fun_eq_iff o_def] by auto
lemma permutes_inv_eq:
    <inv p y=x \longleftrightarrowpx= y`
    by (auto simp add: permutes_inverses)
lemma permutes_inj_on:
    <inj_on p A>
    by (rule inj_on_subset [of _ UNIV]) (auto intro: permutes_inj)
lemma permutes_bij:
<bij p>
    unfolding bij_def by (metis permutes_inj permutes_surj)
lemma permutes_imp_bij
    <bij_betw p S S〉
    by (simp add: bij_betw_def permutes_image permutes_inj_on)
lemma permutes_subset:
    <p permutes T〉 if <S\subseteqT>
proof (rule bij_imp_permutes)
    define }R\mathrm{ where }\langleR=T-S
    with that have <T=R\cupS\rangle\langleR\capS={}\rangle
        by auto
    then have }\langlepx=x\rangle\mathrm{ if }\langlex\inR\rangle\mathrm{ for }
    using that by (auto intro: permutes_not_in)
then have <p' }R=R
    by simp
with }\langleT=R\cupS\rangle\mathrm{ show \bij_betw p T T〉
    by (simp add: bij_betw_def permutes_inj_on image_Un permutes_image)
fix }
```

```
    assume <x & T>
    with }\langleT=R\cupS\rangle\mathrm{ show }\langlepx=x
    by (simp add: permutes_not_in)
qed
lemma permutes_imp_permutes_insert:
    <p permutes insert x S`
    by (rule permutes_subset) auto
end
lemma permutes_id [simp]:
    <id permutes S`
    by (auto intro: bij_imp_permutes)
lemma permutes_empty [simp]:
    <p permutes }{}\longleftrightarrowp=id
proof
    assume <p permutes {}`
    then show <p =id>
        by (auto simp add: fun_eq_iff permutes_not_in)
next
    assume <p = id`
    then show <p permutes {}>
        by simp
qed
lemma permutes_sing [simp]:
    <p permutes }{a}\longleftrightarrowp=id
proof
    assume perm: <p permutes {a}`
    show <p = id`
    proof
    fix }
    from perm have <p'{a}={a}>
        by (rule permutes_image)
    with perm show < px=id x>
        by (cases <x = a`) (auto simp add: permutes_not_in)
    qed
next
    assume < p = id`
    then show <p permutes {a}〉
        by simp
qed
lemma permutes_univ: p permutes UNIV \longleftrightarrow(\forally.\exists!x.p x=y)
    by (simp add: permutes_def)
lemma permutes_swap_id: }a\inS\Longrightarrowb\inS\Longrightarrow\mathrm{ transpose a b permutes S
```

```
    by (rule bij_imp_permutes) (auto intro: transpose_apply_other)
lemma permutes_superset:
    <p permutes T\rangle if <p permutes S\rangle<\x. x 位S-T\Longrightarrowpx=x\rangle
proof -
    define R U where }\langleR=T\capS\rangle\mathrm{ and }\langleU=S-T
    then have }\langleT=R\cup(T-S)\rangle\langleS=R\cupU\rangle\langleR\capU={}
        by auto
    from that }\langleU=S-T\rangle\mathrm{ have }\langlep'U=U
        by simp
    from <p permutes S〉 have <bij_betw p (R\cupU) (R\cupU)>
        by (simp add: permutes_imp_bij <S = R\cupU`)
    moreover have \langlebij_betw p U U \
    using that }\langleU=S - T\rangle by (simp add: bij_betw_def permutes_inj_on
    ultimately have <bij_betw p R R>
        using<R\capU={}><R\capU={}> by (rule bij_betw_partition)
    then have <p permutes R`
    proof (rule bij_imp_permutes)
        fix }
        assume <x & R`
        with }\langleR=T\capS\rangle\langlep permutes S\rangle show <p x = x >
        by (cases }\langlex\inS\rangle)\mathrm{ (auto simp add: permutes_not_in that(2))
    qed
    then have <p permutes RU(T-S)\rangle
        by (rule permutes_subset) simp
    with }\langleT=R\cup(T-S)\rangle\mathrm{ show ?thesis
        by simp
qed
lemma permutes_bij_inv_into:
    fixes }A\mathrm{ :: 'a set
        and B :: 'b set
    assumes p permutes }
        and bij betw f A B
    shows (\lambdax. if x 隹 then f(p(inv_into A f x ) ) else x) permutes B
proof (rule bij_imp_permutes)
    from assms have bij_betw p A A bij_betw f A B bij_betw (inv_into A f) B A
        by (auto simp add: permutes_imp_bij bij_betw_inv_into)
    then have bij_betw (f\circp\circinv_into A f) B B
        by (simp add: bij_betw_trans)
    then show bij_betw ( }\lambdax\mathrm{ . if }x\inB\mathrm{ then f (p (inv_into A fx)) else x) B B
    by (subst bij_betw_cong[where g=f\circp\circinv_into A f]) auto
next
    fix }
    assume }x\not\in
    then show (if x G B then f(p(inv_into A fx)) else x)=x by auto
qed
lemma permutes_image_mset:
```

```
    assumes p permutes A
    shows image_mset p (mset_set A) = mset_set A
    using assms by (metis image_mset_mset_set bij_betw_imp_inj_on permutes_imp_bij
permutes_image)
lemma permutes_implies_image_mset_eq:
    assumes p permutes }A\x.x\inA\Longrightarrowfx=\mp@subsup{f}{}{\prime}(px
    shows image_mset f}\mp@subsup{f}{}{\prime}(mset_set A)= image_mset f (mset_set A)
proof -
    have f x = f' ( }px)\mathrm{ if }x\in# mset__set A for x
    using assms(2)[of x] that by (cases finite A) auto
    with assms have image_mset f (mset_set A) = image_mset (f'\circp)(mset_set
A)
    by (auto intro!: image_mset_cong)
    also have ... = image_mset f' (image_mset p (mset_set A))
    by (simp add: image_mset.compositionality)
    also have ... = image_mset f'(mset_set A)
    proof -
    from assms permutes_image_mset have image_mset p (mset_set A)=mset_set
A
            by blast
    then show ?thesis by simp
    qed
    finally show ?thesis ..
qed
```


3.3 Group properties

lemma permutes_compose: p permutes $S \Longrightarrow q$ permutes $S \Longrightarrow q \circ p$ permutes S
unfolding permutes_def o_def by metis
lemma permutes_inv:
assumes p permutes S
shows inv p permutes S
using assms unfolding permutes_def permutes_inv_eq[OF assms] by metis
lemma permutes_inv_inv:
assumes p permutes S
shows inv (inv p) $=p$
unfolding fun_eq_iff permutes_inv_eq[OF assms] permutes_inv_eq[OF per-
mutes_inv[OF assms]]
by blast
lemma permutes_invI:
assumes perm: p permutes S
and inv: $\wedge x . x \in S \Longrightarrow p^{\prime}(p x)=x$
and outside: $\bigwedge x . x \notin S \Longrightarrow p^{\prime} x=x$
shows inv $p=p^{\prime}$
proof

```
    show inv px= p' x for }
    proof (cases x }\inS\mathrm{ )
    case True
    from assms have p'x= p'(p(inv p x))
        by (simp add: permutes_inverses)
    also from permutes_inv[OF perm] True have ... = inv p x
        by (subst inv) (simp_all add: permutes_in_image)
    finally show ?thesis ..
    next
    case False
    with permutes_inv[OF perm] show ?thesis
        by (simp_all add: outside permutes_not_in)
    qed
qed
lemma permutes_vimage: f permutes }A\Longrightarrowf-\mp@subsup{}{}{`}A=
    by (simp add: bij_vimage_eq_inv_image permutes_bij permutes_image[OF per-
mutes_inv])
```


3.4 Mapping permutations with bijections

```
lemma bij_betw_permutations:
    assumes bij_betw f A B
    shows bij_betw ( }\lambda\pix\mathrm{ . if }x\inB\mathrm{ then f ( }\pi\mathrm{ (inv_into A f x)) else x)
        {\pi.\pi permutes }A}{\pi.\pi\mathrm{ permutes B} (is bij_betw ?f _ _)
proof -
    let ?g = ( \lambda\pi x. if x A A then inv_into A f (\pi (fx)) else x)
    show ?thesis
    proof (rule bij_betw_byWitness [of _ ?g], goal_cases)
        case 3
        show ?case using permutes_bij_inv_into[OF__ assms] by auto
    next
        case 4
    have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
    {
        fix }\pi\mathrm{ assume }\pi\mathrm{ permutes }
        from permutes_bij_inv_into[OF this bij_inv] and assms
            have ( }\lambdax\mathrm{ . if }x\inA\mathrm{ then inv_into A f( }\pi(fx))\mathrm{ else x) permutes A
            by (simp add: inv_into_inv_into_eq cong: if_cong)
    }
    from this show ?case by (auto simp: permutes_inv)
    next
        case 1
        thus ?case using assms
        by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left
                        dest: bij_betwE)
    next
    case 2
    moreover have bij_betw (inv_into A f) B A
```

```
        by (intro bij_betw_inv_into assms)
    ultimately show ?case using assms
    by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right
        dest: bij_betwE)
    qed
qed
lemma bij_betw_derangements:
    assumes bij_betw f A B
    shows bij_betw (\lambda\pix. if x\inB then f ( }\pi\mathrm{ (inv_into A f x )) else x)
        {\pi.\pi permutes }A\wedge(\forallx\inA.\pix\not=x)}{\pi.\pi\mathrm{ permutes }B\wedge(\forallx\inB.\pi
Fx)}
    (is bij_betw ?f _ __)
proof -
    let ?g = ( \lambda\pi x. if }x\inA\mathrm{ then inv_into A f ( }\pi(fx))\mathrm{ else }x
    show ?thesis
    proof (rule bij_betw_byWitness [of _ ?g], goal_cases)
        case 3
    have ?f }\pix\not=x\mathrm{ if }\pi\mathrm{ permutes }A\bigwedgex.x\inA\Longrightarrow\pix\not=xx\inB\mathrm{ for }\pi
        using that and assms by (metis bij_betwE bij_betw_imp_inj_on bij_betw_imp_surj_on
                        inv_into_f_finv_into_into permutes_imp_bij)
    with permutes_bij_inv_into[OF __ assms] show ?case by auto
    next
    case 4
    have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
    have ?g \pi permutes }A\mathrm{ if }\pi\mathrm{ permutes B for }
        using permutes_bij_inv_into[OF that bij_inv] and assms
        by (simp add: inv_into_inv_into_eq cong: if_cong)
    moreover have ?g \pix\not=x if \pi permutes B \x. x\inB\Longrightarrow\pix\not=x x 位
for }\pi
    using that and assms by (metis bij_betwE bij_betw_imp_surj_on f_inv_into_f
permutes_imp_bij)
    ultimately show ?case by auto
    next
    case 1
    thus ?case using assms
    by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left
                                    dest: bij_betwE)
    next
    case 2
    moreover have bij_betw (inv_into A f) B A
        by (intro bij_betw_inv_into assms)
    ultimately show ?case using assms
    by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right
                dest: bij_betwE)
    qed
qed
```


3.5 The number of permutations on a finite set

```
lemma permutes_insert_lemma:
    assumes p permutes (insert a S)
    shows transpose a (p a) ○ p permutes S
    apply (rule permutes_superset[where S = insert a S])
    apply (rule permutes_compose[OF assms])
    apply (rule permutes_swap_id, simp)
    using permutes_in_image[OF assms, of a]
    apply simp
    apply (auto simp add: Ball_def)
    done
lemma permutes_insert: {p.p permutes(insert a S)}=
    (\lambda(b, p). transpose a b\circp)'{(b, p).b\in insert a S\wedgep\in{p.p permutes S}}
proof -
    have p permutes insert a S \longleftrightarrow
        (\existsbq.p = transpose a b\circq\wedgeb\in insert a S ^q permutes S) for p
    proof -
        have \existsbq. p= transpose a b\circq\wedgeb\in\mathrm{ insert a S^q permutes S}
            if p: p permutes insert a S
        proof -
            let ?b = pa
            let ?q = transpose a (pa)\circp
            have *: p= transpose a ?b\circ?q
                    by (simp add: fun_eq_iff o_assoc)
            have **:?b \in insert a S
                unfolding permutes_in_image[OF p] by simp
            from permutes_insert_lemma[OF p]*** show ?thesis
                    by blast
        qed
        moreover have p permutes insert a S
            if bq: p= transpose a b\circqb\in insert aS q permutes S for b q
        proof -
            from permutes_subset[OF bq(3), of insert a S] have q: q permutes insert a S
                    by auto
            have a: a \in insert a S
                    by simp
            from bq(1) permutes_compose[OF q permutes_swap_id[OF a bq(2)]] show
?thesis
            by simp
        qed
        ultimately show ?thesis by blast
    qed
    then show ?thesis by auto
qed
lemma card_permutations:
    assumes card S=n
        and finite S
```

```
    shows card {p.p permutes S}= fact n
    using assms(2,1)
proof (induct arbitrary: n)
    case empty
    then show ?case by simp
next
    case (insert x F)
    {
    fix n
    assume card_insert:card (insert x F) = n
    let ?xF={p.p permutes insert x F}
    let ?pF={p.p permutes F}
    let ? pF'={(b,p).b\in insert x F^p\in?pF}
    let ?g=(\lambda(b,p). transpose x b ○ p)
    have xfgpF': ?xF=?g' ?pF'
        by (rule permutes_insert[of x F])
    from <x\not\inF\rangle\langlefinite F\rangle card__insert have Fs: card F=n-1
        by auto
    from〈finite F〉insert.hyps Fs have pFs:card ?pF = fact (n-1)
        by auto
    then have finite ?pF
        by (auto intro: card_ge_0_finite)
    with 〈finite F〉 card.insert_remove have pF'f: finite ?p F'
        apply (simp only: Collect_case_prod Collect_mem_eq)
        apply (rule finite_cartesian_product)
        apply simp_all
        done
    have ginj: inj_on ?g ?pF'
    proof -
        {
            fix b p cq
            assume bp:}(b,p)\in?p\mp@subsup{F}{}{\prime
            assume cq:}(c,q)\in?p\mp@subsup{F}{}{\prime
            assume eq: ?g (b,p)=?g(c,q)
            from bp cq have pF:p permutes F and qF:q permutes F
                by auto
            from pF\langlex\not\inF\rangleeq have b=?g (b,p)x
            by (auto simp: permutes_def fun_upd_def fun_eq_iff)
            also from qF<<x\not\inF〉eq have \ldots=?g (c,q)x
            by (auto simp: fun_upd_def fun_eq_iff)
            also from qF<<x\not\inF〉 have ...=c
                by (auto simp: permutes_def fun_upd_def fun_eq_iff)
            finally have b=c.
            then have transpose x b= transpose x c
                by simp
            with eq have transpose x b\circp= transpose x b\circq
                by simp
            then have transpose x b\circ(transpose x b\circp)= transpose x b\circ(transpose
```

```
xb\circq)
            by simp
            then have p=q
            by (simp add: o_assoc)
        with }\langleb=c>\mathrm{ have (b,p)=(c,q)
            by simp
    }
    then show ?thesis
        unfolding inj_on_def by blast
    qed
    from \langlex\not\inF\rangle\langlefinite F\rangle card__insert have n\not=0
        by auto
    then have }\existsm.n=Suc
        by presburger
    then obtain m}\mathrm{ where n: n=Suc m
        by blast
    from pFs card_insert have *: card ?xF = fact n
        unfolding xfgpF' card_image[OF ginj]
        using <finite F〉\langlefinite ?pF>
        by (simp only: Collect_case_prod Collect__mem_eq card_cartesian_product)
(simp add: n)
    from finite_imageI[OF pF'f,of ?g] have xFf: finite ?xF
        by (simp add: xfgpF' n)
    from * have card ?xF = fact n
        unfolding xFf by blast
    }
    with insert show ?case by simp
qed
lemma finite_permutations:
    assumes finite S
    shows finite {p. p permutes S}
    using card_permutations[OF refl assms] by (auto intro: card_ge_0_finite)
```


3.6 Hence a sort of induction principle composing by swaps

```
lemma permutes_induct [consumes 2, case_names id swap]:
    \(\langle P p\rangle\) if \(\langle p\) permutes \(S\rangle\langle f\) inite \(S\rangle\)
    and \(i d\) : \(\langle P i d\rangle\)
    and swap: \(\langle\bigwedge a b p . a \in S \Longrightarrow b \in S \Longrightarrow p\) permutes \(S \Longrightarrow P p \Longrightarrow P\) (transpose
\(a b \circ p\) ) >
using 〈finite \(S\rangle\langle p\) permutes \(S\rangle\) swap proof (induction \(S\) arbitrary: \(p\) )
    case empty
    with id show ?case
    by (simp only: permutes_empty)
next
    case (insert x \(S\) p)
    define \(q\) where \(\langle q=\) transpose \(x(p x) \circ p\rangle\)
    then have swap_q: <transpose \(x(p x) \circ q=p\rangle\)
```

```
    by (simp add: o_assoc)
    from <p permutes insert x S` have <q permutes S〉
    by (simp add: q_def permutes_insert_lemma)
    then have <q permutes insert x S`
    by (simp add: permutes_imp_permutes_insert)
    from <q permutes S\rangle have \langleP q\rangle
    by (auto intro: insert.IH insert.prems(2) permutes_imp_permutes_insert)
    have }\langlex\in\mathrm{ insert }x\mathrm{ S>
    by simp
    moreover from <p permutes insert x S` have < p x finsert x S>
    using permutes_in_image [of p<insert x S` x] by simp
    ultimately have <P (transpose x ( p x) ○q)>
        using <q permutes insert x S\rangle\langleP q>
    by (rule insert.prems(2))
    then show ?case
    by (simp add: swap_q)
qed
lemma permutes_rev_induct [consumes 2, case_names id swap]:
    \langleP p\rangle if <p permutes S\rangle\langlefinite S\rangle
    and id':}\langleP id
    and swap':<\a b p. a \inS \\Longrightarrowb\inS\Longrightarrowp permutes S\LongrightarrowP p\LongrightarrowP(p\circ
transpose a b)>
using\p permutes S〉<finite S> proof (induction rule: permutes_induct)
    case id
    from id' show ?case.
next
    case (swap a b p)
    then have <bij p>
        using permutes_bij by blast
    have \langleP(p\circ transpose (inv p a) (inv p b))\rangle
    by (rule swap') (auto simp add: swap permutes_in_image permutes_inv)
    also have < p\circ transpose (inv pa) (inv pb)= transpose a b ○ p>
    using 〈bij p> by (rule transpose_comp_eq [symmetric])
    finally show ?case .
qed
```


3．7 Permutations of index set for iterated operations

lemma（in comm＿monoid＿set）permute：
assumes p permutes S
shows $F g S=F(g \circ p) S$
proof－
from $\langle p$ permutes $S\rangle$ have inj p by（rule permutes＿inj）
then have inj＿on $p S$
by（auto intro：subset＿inj＿on）
then have $F g(p ' S)=F(g \circ p) S$
by（rule reindex）

```
    moreover from<p permutes S` have p'S=S
    by (rule permutes_image)
    ultimately show ?thesis
    by simp
qed
```


3.8 Permutations as transposition sequences

inductive swapidseq :: nat $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow$ bool
where
id[simp]: swapidseq 0 id
| comp_Suc: swapidseq $n p \Longrightarrow a \neq b \Longrightarrow$ swapidseq (Suc n) (transpose $a b \circ p$)
declare $i d\left[u n f o l d e d i d _d e f\right.$, simp]
definition permutation $p \longleftrightarrow(\exists n$. swapidseq $n p)$

3.9 Some closure properties of the set of permutations, with lengths

lemma permutation_id[simp]: permutation id unfolding permutation_def by (rule exI[where $x=0]$) simp
declare permutation_id[unfolded id_def, simp]
lemma swapidseq_swap: swapidseq (if $a=b$ then 0 else 1) (transpose $a b$)
apply clarsimp
using comp_Suc[of 0 id ab]
apply simp
done
lemma permutation_swap_id: permutation (transpose a b)
proof (cases $a=b$)
case True
then show ?thesis by simp
next
case False
then show?thesis
unfolding permutation_def
using swapidseq_swap[of ab] by blast
qed

```
lemma swapidseq_comp_add: swapidseq \(n p \Longrightarrow\) swapidseq \(m q \Longrightarrow\) swapidseq ( \(n\)
\(+m)(p \circ q)\)
proof (induct \(n\) p arbitrary: \(m\) q rule: swapidseq.induct)
    case (id mq)
    then show? case by simp
next
```

```
    case (comp_Suc n p a b mq)
    have eq:Suc n+m=Suc ( }n+m\mathrm{ )
    by arith
    show ?case
    apply (simp only: eq comp_assoc)
    apply (rule swapidseq.comp_Suc)
    using comp_Suc.hyps(2)[OF}\mathrm{ comp_Suc.prems] comp_Suc.hyps(3)
    apply blast+
    done
qed
lemma permutation_compose: permutation p permutation q > permutation
(p\circq)
    unfolding permutation_def using swapidseq_comp_add[of __ p_q] by metis
lemma swapidseq_endswap: swapidseq n p\Longrightarrowa\not=b\Longrightarrow swapidseq (Suc n) ( }p
transpose a b)
    by (induct n p rule: swapidseq.induct)
        (use swapidseq_swap[of a b] in <auto simp add: comp_assoc intro: swapid-
seq.comp_Suc>)
lemma swapidseq_inverse_exists: swapidseq n p\Longrightarrow\existsq. swapidseq n q}\wedgep\circq
id}\wedgeq\circp=i
proof (induct n p rule: swapidseq.induct)
    case id
    then show ?case
    by (rule exI[where x=id]) simp
next
    case (comp_Suc n p a b)
    from comp_Suc.hyps obtain q}\mathrm{ where q: swapidseq n q p}\circq=id q\circp=i
    by blast
    let ?q=q\circ transpose a b
    note H=comp_Suc.hyps
    from swapidseq_swap[of a b] H(3) have *: swapidseq 1 (transpose a b)
    by simp
    from swapidseq_comp_add[OF q(1)*] have **: swapidseq (Suc n) ?q
    by simp
    have transpose a b\circp\circ?q= transpose a b\circ(p\circq)\circ transpose a b
    by (simp add: o_assoc)
    also have ... = id
    by (simp add: q(2))
    finally have ***: transpose a b ○ p\circ? q = id .
    have ?q}\circ(\mathrm{ transpose a b ○ p)=q}\circ(\mathrm{ transpose a b ○ transpose a b) ○ p
    by (simp only: o_assoc)
    then have ?q}\circ(\mathrm{ transpose a b ○p)=id
    by (simp add: q(3))
    with ***** show ?case
    by blast
qed
```

```
lemma swapidseq_inverse:
    assumes swapidseq n p
    shows swapidseq n (inv p)
    using swapidseq_inverse_exists[OF assms] inv_unique_comp[of p] by auto
```

lemma permutation_inverse: permutation $p \Longrightarrow$ permutation (inv p)
using permutation_def swapidseq_inverse by blast

3.10 Various combinations of transpositions with 2,1 and 0 common elements

```
lemma swap id_common: \(a \neq c \Longrightarrow b \neq c \Longrightarrow\)
    transpose \(a b \circ\) transpose \(a c=\) transpose \(b c \circ\) transpose \(a b\)
    by (simp add: fun_eq_iff transpose_def)
lemma swap_id_common': \(a \neq b \Longrightarrow a \neq c \Longrightarrow\)
    transpose \(a c \circ\) transpose \(b c=\) transpose \(b c \circ\) transpose \(a b\)
    by (simp add: fun_eq_iff transpose_def)
lemma swap_id_independent: \(a \neq c \Longrightarrow a \neq d \Longrightarrow b \neq c \Longrightarrow b \neq d \Longrightarrow\)
    transpose \(a b \circ\) transpose \(c d=\) transpose \(c d \circ\) transpose \(a b\)
    by (simp add: fun_eq_iff transpose_def)
```


3.11 The identity map only has even transposition sequences

```
lemma symmetry_lemma:
    assumes \(\bigwedge a b c d . P a b c d \Longrightarrow P a b d c\)
    and \(\bigwedge a b c d . a \neq b \Longrightarrow c \neq d \Longrightarrow\)
        \(a=c \wedge b=d \vee a=c \wedge b \neq d \vee a \neq c \wedge b=d \vee a \neq c \wedge a \neq d \wedge b \neq c\)
\(\wedge b \neq d \Longrightarrow\)
        \(P a b c d\)
        shows \(\bigwedge a b c d . a \neq b \longrightarrow c \neq d \longrightarrow P a b c d\)
        using assms by metis
lemma swap_general: \(a \neq b \Longrightarrow c \neq d \Longrightarrow\)
    transpose a b ○ transpose c d \(=i d \vee\)
    \((\exists x y z . x \neq a \wedge y \neq a \wedge z \neq a \wedge x \neq y \wedge\)
        transpose \(a b \circ\) transpose \(c d=\) transpose \(x y \circ\) transpose \(a z\) )
proof -
    assume neq: \(a \neq b c \neq d\)
    have \(a \neq b \longrightarrow c \neq d \longrightarrow\)
            (transpose \(a b \circ\) transpose \(c d=i d \vee\)
                    \((\exists x y z . x \neq a \wedge y \neq a \wedge z \neq a \wedge x \neq y \wedge\)
                    transpose \(a b \circ\) transpose \(c d=\) transpose \(x y \circ\) transpose \(a z\) ))
            apply (rule symmetry_lemma[where \(a=a\) and \(b=b\) and \(c=c\) and \(d=d]\) )
            apply (simp_all only: ac_simps)
    apply (metis id_comp swap_id_common swap_id_common' swap_id_independent
transpose_comp_involutory)
```

done
with neq show ?thesis by metis
qed
lemma swapidseq_id_iff[simp]: swapidseq $0 p \longleftrightarrow p=i d$
using swapidseq.cases[of $0 p p=i d]$ by auto
lemma swapidseq_cases: swapidseq $n p \longleftrightarrow$
$n=0 \wedge p=i d \vee(\exists a b q m . n=$ Suc $m \wedge p=$ transpose $a b \circ q \wedge$ swapidseq $m q \wedge a \neq b)$
apply (rule iffI)
apply (erule swapidseq.cases $[$ of $n p]$)
apply simp
apply (rule disjİ)
apply (rule_tac $x=a$ in $e x I$)
apply (rule_tac $x=b$ in $e x I$)
apply (rule_tac $x=p a$ in $e x I$)
apply (rule_tac $x=n a$ in $e x I$)
apply simp
apply auto
apply (rule comp_Suc, simp_all)
done
lemma fixing_swapidseq_decrease:
assumes swapidseq $n p$
and $a \neq b$
and (transpose $a b \circ p$) $a=a$
shows $n \neq 0 \wedge$ swapidseq $(n-1)($ transpose $a b \circ p)$
using assms
proof (induct n arbitrary: $p a b$)
case 0
then show ?case
by (auto simp add: fun_upd_def)
next
case (Suc n pab)
from Suc.prems(1) swapidseq_cases[of Suc n p]
obtain $c d q m$ where
cdqm: Suc $n=$ Suc $m p=$ transpose $c d \circ q$ swapidseq $m q c \neq d n=m$
by auto
consider transpose $a b \circ$ transpose $c d=i d$
$\mid x y z$ where $x \neq a y \neq a z \neq a x \neq y$
transpose $a b \circ$ transpose $c d=$ transpose $x y \circ$ transpose $a z$
using swap_general[OF Suc.prems(2) cdqm(4)] by metis
then show?case
proof cases
case 1
then show ?thesis
by (simp only: cdqm o_assoc) (simp add: cdqm)
next

```
    case prems:2
    then have }az:a\not=
        by simp
    from prems have *:(transpose x y ○h) }a=a\longleftrightarrowha=a\mathrm{ for }
    by (simp add: transpose_def)
    from cdqm(2) have transpose a b ○ p= transpose a b ○(transpose c d ○q)
    by simp
    then have transpose ab\circp= transpose x y ○(transpose az\circq)
    by (simp add: o_assoc prems)
    then have (transpose a b ○p) a=(transpose x y ○(transpose a z\circq)) a
    by simp
    then have (transpose x y ○(transpose az\circq)) a=a
        unfolding Suc by metis
    then have (transpose az\circq) a=a
        by (simp only: *)
    from Suc.hyps[OF cdqm(3)[ unfolded cdqm(5)[symmetric]] az this]
    have **: swapidseq (n - 1) (transpose a zoq) n\not=0
        by blast+
    from }\langlen\not=0\rangle\mathrm{ have ***: Suc n-1=Suc (n-1)
        by auto
    show ?thesis
        apply (simp only: cdqm(2) prems o_assoc ***)
        apply (simp only:Suc_not_Zero simp_thms comp_assoc)
        apply (rule comp_Suc)
        using ** prems
        apply blast+
        done
    qed
qed
lemma swapidseq_identity_even:
    assumes swapidseq n (id :: ' }a>>\mp@subsup{}{}{\prime}a
    shows even n
    using <swapidseq n id`
proof (induct n rule: nat_less_induct)
    case H:(1n)
    consider n=0
        | ab ::' }a\mathrm{ and q m where }n=Sucm id= transpose ab\circq swapidseq m qa
\not=b
    using H(2)[unfolded swapidseq_cases[of n id]] by auto
    then show ?case
    proof cases
        case 1
        then show ?thesis by presburger
    next
    case h: 2
    from fixing_swapidseq_decrease[OF h(3,4), unfolded h(2)[symmetric]]
    have m: m\not=0 swapidseq (m-1) (id :: 'a m 'a)
            by auto
```

```
    from hm have mn:m-1<n
        by arith
    from H(1)[rule_format, OF mn m(2)] h(1)m(1) show ?thesis
        by presburger
    qed
qed
```


3.12 Therefore we have a welldefined notion of parity

definition evenperm $p=$ even (SOME n. swapidseq n p)
lemma swapidseq_even_even:
assumes m : swapidseq $m p$ and n : swapidseq $n p$
shows even $m \longleftrightarrow$ even n
proof -
from swapidseq_inverse_exists[OF n] obtain q where q : swapidseq $n q p \circ q$
$=i d q \circ p=i d$
by blast
from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded
q]] show ?thesis
by arith
qed
lemma evenperm_unique:
assumes p : swapidseq $n p$
and n :even $n=b$
shows evenperm $p=b$
unfolding n [symmetric] evenperm_def
apply (rule swapidseq_even_even $[$ where $p=p]$)
apply (rule someI $[$ where $x=n]$)
using p
apply blast+
done

3.13 And it has the expected composition properties

lemma evenperm_id[simp]: evenperm id $=$ True
by (rule evenperm_unique $[\mathbf{w h e r e} n=0]$) simp_all
lemma evenperm_identity [simp]:
〈evenperm $(\lambda x . x)$ 〉
using evenperm_id by (simp add: id_def [abs_def])
lemma evenperm_swap: evenperm (transpose a b) $=(a=b)$
by (rule evenperm_unique[where $n=$ if $a=b$ then 0 else 1]) (simp_all add:
swapidseq_swap)
lemma evenperm_comp:
assumes permutation p permutation q

```
    shows evenperm (p\circq)\longleftrightarrow evenperm p = evenperm q
proof -
    from assms obtain n m where n: swapidseq n p and m: swapidseq m q
        unfolding permutation_def by blast
    have even }(n+m)\longleftrightarrow(\mathrm{ even }n\longleftrightarrow\mathrm{ even m)
        by arith
    from evenperm_unique[OF n refl] evenperm_unique[OF m refl]
        and evenperm_unique[OF swapidseq_comp_add[OF n m] this] show ?thesis
        by blast
qed
lemma evenperm_inv:
    assumes permutation p
    shows evenperm (inv p)= evenperm p
proof -
    from assms obtain n where n: swapidseq n p
        unfolding permutation_def by blast
    show ?thesis
        by (rule evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF
n refl, symmetric]])
qed
```


3.14 A more abstract characterization of permutations

```
lemma permutation_bijective:
assumes permutation \(p\)
shows bij \(p\)
proof -
from assms obtain \(n\) where \(n\) : swapidseq \(n p\)
unfolding permutation_def by blast
from swapidseq_inverse_exists[OF \(n\) ] obtain \(q\) where \(q\) : swapidseq \(n q p \circ q\)
\(=i d q \circ p=i d\)
by blast
then show ?thesis unfolding bij_iff apply (auto simp add: fun_eq_iff) apply metis done
qed
lemma permutation_finite_support:
assumes permutation \(p\)
shows finite \(\{x . p x \neq x\}\)
proof -
from assms obtain \(n\) where swapidseq \(n p\)
unfolding permutation_def by blast
then show? thesis
proof (induct \(n\) p rule: swapidseq.induct)
case \(i d\)
```

```
    then show ?case by simp
    next
    case (comp_Suc n p a b)
    let ?S = insert a (insert b {x. px\not=x})
    from comp_Suc.hyps(2) have *: finite ?S
        by simp
    from <a\not=b\rangle have **: {x.(transpose a b ○ p) x\not= x}\subseteq?S
        by auto
    show ?case
        by (rule finite_subset[OF ** *])
    qed
qed
lemma permutation_lemma:
    assumes finite S
        and bij p
        and }\forallx.x\not\inS\longrightarrowpx=
    shows permutation p
    using assms
proof (induct S arbitrary: p rule: finite_induct)
    case empty
    then show ?case
        by simp
next
    case (insert a F p)
    let ?r = transpose a (pa)\circp
    let ?q = transpose a (p a) ○?r
    have *: ?r a =a
        by simp
    from insert * have **: \forallx. x &F\longrightarrow ?r x = x
    by (metis bij_pointE comp_apply id_apply insert_iff swap_apply(3))
    have bij ?r
    using insert by (simp add: bij_comp)
    have permutation ?r
    by (rule insert(3)[OF 〈bij ?r> **])
    then have permutation?q
    by (simp add: permutation_compose permutation_swap_id)
    then show ?case
    by (simp add: o_assoc)
qed
lemma permutation: permutation p\longleftrightarrow bij p\wedge finite {x. p x\not=x}
    (is ?lhs \longleftrightarrow?b ^?f)
proof
    assume ?lhs
    with permutation_bijective permutation_finite_support show ?b }\wedge\mathrm{ ?f
        by auto
next
    assume ?b \ ?f
```

```
    then have ?f ?b by blast+
    from permutation_lemma[OF this] show ?lhs
        by blast
qed
lemma permutation_inverse_works:
    assumes permutation p
    shows inv p\circp=id
    and }p\circinvp=i
    using permutation_bijective [OF assms] by (auto simp: bij_def inj_iff surj_iff)
lemma permutation_inverse_compose:
    assumes p: permutation p
        and q: permutation q
    shows inv (p\circq)=inv q\circinvp
proof -
    note ps= permutation_inverse_works[OF p]
    note qs = permutation_inverse_works[OF q]
    have }p\circq\circ(\mathrm{ inv q}\circ\mathrm{ inv p)=p
    by (simp add: o_assoc)
    also have ... = id
        by (simp add: ps qs)
    finally have *: p\circq\circ(inv q\circinv p)=id.
    have inv q\circinvp\circ(p\circq)=invq\circ(inv p\circp)\circq
    by (simp add: o_assoc)
    also have ... = id
        by (simp add: ps qs)
    finally have **: inv q\circinv p\circ(p\circq)=id.
    show ?thesis
    by (rule inv_unique_comp[OF***])
qed
```


3．15 Relation to permutes

```
lemma permutes＿imp＿permutation： \(\langle\) permutation \(p\rangle\) if 〈finite \(S\rangle\langle p\) permutes \(S\rangle\)
proof－
from \(\langle p\) permutes \(S\rangle\) have \(\langle\{x . p x \neq x\} \subseteq S\rangle\)
by（auto dest：permutes＿not＿in）
then have 〈finite \(\{x . p x \neq x\}\) 〉
using 〈finite \(S\) 〉 by（rule finite＿subset）
moreover from \(\langle p\) permutes \(S\rangle\) have \(\langle b i j p\rangle\)
by（auto dest：permutes＿bij）
ultimately show ？thesis
by（simp add：permutation）
qed
lemma permutation＿permutesE：
assumes 〈permutation \(p\) 〉
```

obtains S where 〈finite $S\rangle\langle p$ permutes $S\rangle$ proof－
from assms have fin：〈finite $\{x . p x \neq x\}$ 〉 by（simp add：permutation）
from assms have 〈bij p〉
by（simp add：permutation）
also have $\langle U N I V=\{x . p x \neq x\} \cup\{x . p x=x\}\rangle$
by auto
finally have $\left\langle b i j _\right.$betw $p\{x . p x \neq x\}\{x . p x \neq x\}$ 〉
by（rule bij＿betw＿partition）（auto simp add：bij＿betw＿fixpoints）
then have $\langle p$ permutes $\{x . p x \neq x\}$ 〉
by（auto intro：bij＿imp＿permutes）
with fin show thesis ．．
qed
lemma permutation＿permutes：permutation $p \longleftrightarrow(\exists S$ ．finite $S \wedge p$ permutes $S)$ by（auto elim：permutation＿permutesE intro：permutes＿imp＿permutation）

3．16 Sign of a permutation as a real number

definition sign ：：＜（＇a $\left.{ }^{\prime}{ }^{\prime} a\right) \Rightarrow$ int \rangle－TODO：prefer less generic name where \langle sign $p=($ if evenperm p then 1 else -1$)$ 〉
lemma sign＿cases［case＿names even odd］：
obtains $\langle\operatorname{sign} p=1\rangle \mid\langle\operatorname{sign} p=-1\rangle$
by（cases＜evenperm p〉）（simp＿all add：sign＿def）
lemma sign＿nz［simp］：sign $p \neq 0$
by（cases p rule：sign＿cases）simp＿all
lemma sign＿id $[\operatorname{simp}]:$ sign $i d=1$
by（simp add：sign＿def）
lemma sign＿identity［simp］：
$\langle\operatorname{sign}(\lambda x . x)=1\rangle$
by（simp add：sign＿def）
lemma sign＿inverse：permutation $p \Longrightarrow \operatorname{sign}($ inv $p)=\operatorname{sign} p$
by（simp add：sign＿def evenperm＿inv）
lemma sign＿compose：permutation $p \Longrightarrow$ permutation $q \Longrightarrow \operatorname{sign}(p \circ q)=\operatorname{sign}$ $p * \operatorname{sign} q$
by（simp add：sign＿def evenperm＿comp）
lemma sign＿swap＿id：sign（transpose $a b)=($ if $a=b$ then 1 else -1$)$
by（simp add：sign＿def evenperm＿swap）
lemma sign＿idempotent［simp］：sign $p * \operatorname{sign} p=1$
by（simp add：sign＿def）

```
lemma sign_left_idempotent [simp]:
    <sign p*(sign p*\operatorname{sign q)}=\operatorname{sign}q>
    by (simp add: sign_def)
term(bij,bij_betw, permutation)
```


3.17 Permuting a list

This function permutes a list by applying a permutation to the indices.

```
definition permute_list \(::(\) nat \(\Rightarrow\) nat \() \Rightarrow\) 'a list \(\Rightarrow\) 'a list
    where permute_list f xs \(=\operatorname{map}(\lambda i\). xs \(!(f i))[0 . .<\) length \(x s]\)
lemma permute_list_map:
    assumes \(f\) permutes \(\{. .<\) length \(x s\}\)
    shows permute_list \(f\) (map \(g\) xs \()=\) map \(g\) (permute_list \(f x s\) )
    using permutes_in_image[OF assms] by (auto simp: permute_list_def)
lemma permute_list_nth:
    assumes \(f\) permutes \(\{. .<\) length \(x s\} i<\) length \(x s\)
    shows permute_list \(f x s!i=x s!f i\)
    using permutes_in_image[OF assms(1)] assms(2)
    by (simp add: permute_list_def)
lemma permute_list_Nil [simp]: permute_list f[]=[]
    by (simp add: permute_list_def)
lemma length_permute_list [simp]: length (permute_list fxs) = length xs
    by (simp add: permute_list_def)
lemma permute_list_compose:
    assumes \(g\) permutes \(\{. .<\) length \(x s\}\)
    shows permute_list \((f \circ g) x s=\) permute_list \(g\) (permute_list \(f x s)\)
    using assms[THEN permutes_in_image] by (auto simp add: permute_list_def)
lemma permute_list_ident \([\) simp \(]\) : permute_list \((\lambda x . x) x s=x s\)
    by (simp add: permute_list_def map_nth)
lemma permute_list_id [simp]: permute_list id xs =xs
    by ( simp add: id_def)
lemma mset_permute_list [simp]:
    fixes \(x s\) :: 'a list
    assumes \(f\) permutes \(\{. .<\) length \(x s\}\)
    shows mset (permute_list \(f\) xs ) \(=\) mset \(x s\)
proof (rule multiset_eqI)
    fix \(y::^{\prime} a\)
    from assms have \([\) simp \(]: f x<\) length \(x s \longleftrightarrow x<\) length \(x s\) for \(x\)
    using permutes_in_image[OF assms] by auto
```

```
    have count (mset (permute_list f xs)) y = card ((\lambdai.xs!fi) -'` {y}\cap{..<length
xs})
    by (simp add: permute_list_def count_image_mset atLeast0LessThan)
    also have (\lambdai.xs!fi)-`{y}\cap{..<length xs} =f -`{i.i<length xs }\wedgey
xs!i}
    by auto
    also from assms have card \ldots. = card {i.i< length xs }\wedgey=xs!i
    by (intro card_vimage_inj) (auto simp: permutes_inj permutes_surj)
    also have ... = count (mset xs) y
    by (simp add: count_mset length_filter_conv_card)
    finally show count (mset (permute_list f xs)) y = count (mset xs) y
        by simp
qed
lemma set_permute_list [simp]:
    assumes f permutes {..<length xs}
    shows set (permute_list f xs) = set xs
    by (rule mset_eq_setD[OF mset_permute_list]) fact
lemma distinct_permute_list [simp]:
    assumes f permutes {..<length xs}
    shows distinct (permute_list f xs) = distinct xs
    by (simp add: distinct_count_atmost_1 assms)
lemma permute_list_zip:
    assumes f permutes A A ={..<length xs }
    assumes [simp]: length xs = length ys
    shows permute_list f(zip xs ys) = zip (permute_list f xs)(permute_list f ys)
proof -
    from permutes_in_image[OF assms(1)] assms(2) have *: fi<length ys \longleftrightarrow
i< length ys for i
            by simp
    have permute_list f (zip xs ys) = map (\lambdai.zip xs ys !f i) [0..<length ys]
    by (simp_all add: permute_list_def zip_map_map)
    also have ... = map (\lambda(x,y).(xs!fx,ys!fy))(zip [0..<length ys] [0..<length
ys])
    by (intro nth_equalityI) (simp__all add:*)
    also have ... = zip (permute_list f xs) (permute_list f ys)
    by (simp_all add: permute_list_def zip_map_map)
    finally show ?thesis .
qed
lemma map_of_permute:
    assumes \sigma permutes fst ' set xs
    shows map_of xs o \sigma = map_of (map ( }\lambda(x,y).(inv \sigmax,y))xs
        (is__ = map_of (map ?f _))
proof
    from assms have inj \sigma surj \sigma
            by (simp_all add: permutes_inj permutes_surj)
```

```
    then show (map_of xs o \sigma) x = map_of (map ?f xs) x for x
    by (induct xs) (auto simp: inv_f_f surj_f_inv_f)
qed
lemma list_all2_permute_list_iff:
<list_all2 P (permute_list p xs) (permute_list p ys) \longleftrightarrow list_all2 P xs ys`
if <p permutes {..<length xs}>
using that by (auto simp add: list__all2_iff simp flip: permute_list_zip)
```


3．18 More lemmas about permutations

```
lemma permutes_in funpow_image:
    assumes f permutes Sx\inS
    shows (f~n) x\inS
    using assms by (induction n) (auto simp: permutes_in_image)
```

lemma permutation_self:
assumes 〈permutation p 〉
obtains n where $\langle n>0\rangle\langle(p \sim n) x=x\rangle$
proof (cases $\langle p x=x\rangle$)
case True
with that [of 1] show thesis by simp
next
case False
from 〈permutation $p\rangle$ have \langle inj $p\rangle$
by (intro permutation_bijective bij_is_inj)
moreover from $\langle p x \neq x\rangle$ have $\left\langle\left(p^{\wedge}\right.\right.$ Suc $\left.n\right) x \neq(p$ ~ $\left.n) x\right\rangle$ for n
proof (induction n arbitrary: x)
case 0 then show? case by simp
next
case (Suc n)
have $p(p x) \neq p x$
proof (rule notI)
assume $p(p x)=p x$
then show False using $\langle p x \neq x\rangle\langle i n j p\rangle$ by (simp add: inj_eq)
qed
have (p ~ Suc (Suc n)) $x=(p \sim$ Suc n) $(p x)$
by (simp add: funpow_swap1)
also have $\ldots \neq\left(p^{\sim} n\right)(p x)$
by (rule Suc) fact
also have $(p \leadsto n)(p x)=(p \leadsto$ Suc n) x
by (simp add: funpow_swap1)
finally show? case by simp
qed
then have $\left\{y . \exists n . y=\left(p^{\sim} n\right) x\right\} \subseteq\{x . p x \neq x\}$
by auto
then have finite $\left\{y . \exists n . y=\left(p^{\wedge} n\right) x\right\}$
using permutation_finite_support $[O F$ assms $]$ by (rule finite_subset)
ultimately obtain n where $\langle n>0\rangle\langle(p \sim n) x=x\rangle$

```
    by (rule funpow_inj_finite)
    with that [of n] show thesis by blast
qed
```

The following few lemmas were contributed by Lukas Bulwahn．

```
lemma count_image_mset_eq_card_vimage:
    assumes finite \(A\)
    shows count (image_mset \(f(\) mset_set \(A)) b=\operatorname{card}\{a \in A . f a=b\}\)
    using assms
proof (induct \(A\) )
    case empty
    show ?case by simp
next
    case (insert \(x\) F)
    show? case
    proof (cases fx=b)
        case True
    with insert.hyps
    have count (image_mset \(f(\) mset_set \((\) insert \(x F))) b=S u c(c a r d\{a \in F . f\)
\(a=f x\}\) )
```

 by auto
 also from insert.hyps \((1, \mathcal{Q})\) have \(\ldots=\operatorname{card}\) (insert \(x\{a \in F . f a=f x\}\))
 by simp
 also from \(\langle f x=b\rangle\) have \(\operatorname{card}\) (insert \(x\{a \in F . f a=f x\})=\operatorname{card}\{a \in\) insert
 $x F$.fa=b\}
by (auto intro: arg_cong[where $f=$ card $]$)
finally show ?thesis
using insert by auto
next
case False
then have $\{a \in F . f a=b\}=\{a \in$ insert $x F . f a=b\}$
by auto
with insert False show ?thesis
by simp
qed
qed

- Prove image_mset_eq_implies_permutes ...
lemma image_mset_eq_implies_permutes:
fixes $f::$ ' $a \Rightarrow$ ' b
assumes finite A
and $m s e t _e q: i m a g e _m s e t f\left(m s e t _s e t ~ A\right)=i m a g e _m s e t f^{\prime}\left(m s e t _s e t A\right)$
obtains p where p permutes A and $\forall x \in A$. $f x=f^{\prime}(p x)$
proof -
from 〈finite $A\rangle$ have $[$ simp $]$: finite $\left\{a \in A . f a=\left(b::^{\prime} b\right)\right\}$ for $f b$ by auto
have f ' $A=f^{\prime}$ ' A
proof -
from 〈finite A 〉 have $f^{\prime} A=f^{\prime}\left(\right.$ set_mset $\left.\left(m s e t _s e t ~ A\right)\right)$
by simp

```
    also have \(\ldots=f^{\prime}\) ' set_mset ( \(\mathrm{mset} \_\)set \(A\) )
        by (metis mset_eq multiset.set_map)
    also from \(\langle\) finite \(A\rangle\) have \(\ldots=f^{\prime}{ }^{\prime} A\)
    by \(\operatorname{simp}\)
    finally show? ?thesis.
    qed
    have \(\forall b \in(f\) ' \(A) . \exists p\). bij_betw \(p\{a \in A . f a=b\}\left\{a \in A . f^{\prime} a=b\right\}\)
    proof
    fix \(b\)
    from mset_eq have count (image_mset f(mset_set \(A)) b=\) count \((\) image_mset
\(f^{\prime}(\) mset_set \(\left.A)\right) b\)
        by \(\operatorname{simp}\)
    with 〈finite \(A\rangle\) have card \(\{a \in A . f a=b\}=\operatorname{card}\left\{a \in A . f^{\prime} a=b\right\}\)
        by (simp add: count_image_mset_eq_card_vimage)
    then show \(\exists p\). bij_betw \(p\{a \in A . f a=b\}\left\{a \in A . f^{\prime} a=b\right\}\)
        by (intro finite_same_card_bij) simp_all
    qed
    then have \(\exists p . \forall b \in f\) ' \(A\). bij_betw ( \(p b\) ) \(\{a \in A . f a=b\}\left\{a \in A . f^{\prime} a=b\right\}\)
    by (rule bchoice)
    then obtain \(p\) where \(p: \forall b \in f\) ' \(A\). bij_betw \((p b)\{a \in A . f a=b\}\left\{a \in A . f^{\prime}\right.\)
\(a=b\}\)..
    define \(p^{\prime}\) where \(p^{\prime}=(\lambda a\). if \(a \in A\) then \(p(f a)\) a else \(a)\)
    have \(p^{\prime}\) permutes \(A\)
    proof (rule bij_imp_permutes)
    have disjoint family_on ( \(\left.\lambda i .\left\{a \in A . f^{\prime} a=i\right\}\right)\left(f^{\prime} A\right)\)
        by (auto simp: disjoint_family_on_def)
    moreover
    have bij_betw \((\lambda a . p(f a) a)\{a \in A . f a=b\}\left\{a \in A . f^{\prime} a=b\right\}\) if \(b \in f^{\prime} A\)
for \(b\)
            using \(p\) that by (subst bij_betw_cong \([\) where \(g=p b]\) ) auto
    ultimately
    have bij_betw \((\lambda a . p(f a) a)\left(\bigcup b \in f^{\prime} A .\{a \in A . f a=b\}\right)(\bigcup b \in f\) ' \(A .\{a \in\)
A. \(\left.f^{\prime} a=b\right\}\) )
            by (rule bij_betw_UNION_disjoint)
    moreover have \((\bigcup \bar{\bigcup} b \in f ‘ A . \bar{\prime}\{a \in A . f a=b\})=A\)
        by auto
    moreover from \(\left\langle f^{\prime} A=f^{\prime}{ }^{\prime} A\right\rangle\) have \(\left(\bigcup b \in f^{\prime} A .\left\{a \in A . f^{\prime} a=b\right\}\right)=A\)
        by auto
    ultimately show bij_betw \(p^{\prime} A A\)
        unfolding \(p^{\prime} \_\)def by (subst bij_betw_cong \([\)where \(\left.g=(\lambda a . p(f a) a)]\right)\) auto
    next
        show \(\bigwedge x . x \notin A \Longrightarrow p^{\prime} x=x\)
            by ( \(\operatorname{simp}\) add: \(p^{\prime} \_d e f\) )
    qed
    moreover from \(p\) have \(\forall x \in A . f x=f^{\prime}\left(p^{\prime} x\right)\)
        unfolding \(p^{\prime} \_d e f\) using bij_betwE by fastforce
        ultimately show ?thesis ..
qed
```

- ... and derive the existing property:

```
lemma mset_eq_permutation:
    fixes xs ys :: 'a list
    assumes mset_eq: mset \(x s=m s e t\) ys
    obtains \(p\) where \(p\) permutes \(\{. .<\) length ys\} permute_list \(p y s=x s\)
proof -
    from mset_eq have length_eq: length \(x s=\) length \(y s\)
        by (rule mset_eq_length)
    have mset_set \(\{. .<\) length \(y s\}=\) mset \([0 . .<\) length \(y s]\)
        by (rule mset_set_upto_eq_mset_upto)
    with mset_eq length_eq have image_mset ( \(\lambda i . x s!i)\left(m s e t \_s e t\{. .<l e n g t h y s\}\right)\)
\(=\)
    image_mset \((\lambda i . y s!i)(\) mset_set \(\{. .<\) length \(y s\})\)
    by (metis map_nth mset_map)
    from image_mset_eq_implies_permutes[OF _ this]
    obtain \(p\) where \(p\) : p permutes \(\{. .<\) length \(y s\}\) and \(\forall i \in\{. .<\) length \(y s\}\). . xs \(!i=\)
\(y s!(p i)\)
    by auto
    with length_eq have permute_list \(p\) ys \(=x s\)
    by (auto intro!: nth_equalityI simp: permute_list_nth)
    with \(p\) show thesis ..
qed
lemma permutes_natset_le:
    fixes \(S\) :: 'a::wellorder set
    assumes \(p\) permutes \(S\)
        and \(\forall i \in S . p i \leq i\)
    shows \(p=i d\)
proof -
    have \(p n=n\) for \(n\)
        using assms
    proof (induct \(n\) arbitrary: \(S\) rule: less_induct)
        case (less n)
        show ?case
        proof (cases \(n \in S\) )
            case False
            with less(2) show ?thesis
                unfolding permutes_def by metis
    next
                case True
                with less(3) have \(p n<n \vee p n=n\)
                    by auto
            then show? ?hesis
            proof
                            assume \(p n<n\)
                            with less have \(p(p n)=p n\)
                            by metis
                    with permutes_inj[OF less(2)] have \(p n=n\)
                        unfolding inj_def by blast
```

```
                    with <p n< n` have False
                    by simp
            then show ?thesis ..
                qed
    qed
    qed
    then show ?thesis by (auto simp: fun_eq_iff)
qed
lemma permutes_natset_ge:
    fixes S :: 'a::wellorder set
    assumes p: p permutes S
        and le: }\foralli\inS.pi\geq
    shows p=id
proof -
    have i\geqinv pi if i\inS for i
    proof -
    from that permutes_in_image[OF permutes_inv[OF p]] have inv p i\inS
                by simp
    with le have p(inv pi)\geqinv pi
                by blast
    with permutes_inverses[OF p] show ?thesis
            by simp
    qed
    then have }\foralli\inS\mathrm{ . inv pi
        by blast
    from permutes_natset_le[OF permutes_inv[OF p] this] have inv p = inv id
        by simp
    then show ?thesis
        apply (subst permutes_inv_inv[OF p,symmetric])
        apply (rule inv_unique_comp)
        apply simp_all
    done
qed
lemma image_inverse_permutations: {inv p |p.p permutes S}={p.p permutes
S}
    apply (rule set_eqI)
    apply auto
    using permutes_inv_inv permutes_inv
    apply auto
    apply (rule_tac x=inv x in exI)
    apply auto
    done
lemma image_compose_permutations_left:
    assumes q permutes S
    shows {q\circp|p.p permutes S}={p.p permutes S}
    apply (rule set_eqI)
```

```
    apply auto
    apply (rule permutes_compose)
    using assms
    apply auto
apply (rule_tac \(x=i n v q \circ x\) in exI)
apply (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o)
done
lemma image_compose_permutations_right:
    assumes \(q\) permutes \(S\)
    shows \(\{p \circ q \mid p . p\) permutes \(S\}=\{p . p\) permutes \(S\}\)
    apply (rule set_eqI)
    apply auto
    apply (rule permutes_compose)
    using assms
    apply auto
    apply (rule_tac \(x=x \circ i n v q\) in \(e x I\) )
    apply (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o
comp_assoc)
    done
lemma permutes_in_seg: \(p\) permutes \(\{1 . . n\} \Longrightarrow i \in\{1 . . n\} \Longrightarrow 1 \leq p i \wedge p i\)
\(\leq n\)
    by (simp add: permutes_def) metis
lemma sum_permutations_inverse: sum \(f\{p . p\) permutes \(S\}=s u m(\lambda p . f(i n v\)
p)) \(\{p . p\) permutes \(S\}\)
    (is ? lhs \(=\) ? \(r h s\) )
proof -
    let ? \(S=\{p . p\) permutes \(S\}\)
    have *: inj_on inv?S
    proof (auto simp add: inj_on_def)
        fix \(q r\)
        assume \(q\) : \(q\) permutes \(S\)
            and \(r\) : \(r\) permutes \(S\)
            and \(q r: \operatorname{inv} q=i n v r\)
        then have inv \((i n v q)=i n v(i n v r)\)
            by simp
        with permutes_inv_inv[OF q] permutes_inv_inv[OF \(r]\) show \(q=r\)
            by metis
    qed
    have \(* *\) : inv' ? \(S=\) ? \(S\)
        using image_inverse_permutations by blast
    have \(* * *\) : ?rhs \(=\operatorname{sum}(f \circ\) inv \()\) ?S
    by (simp add: o_def)
    from sum.reindex \([O F *\), of \(f]\) show ?thesis
        by (simp only: ** ***)
qed
```

```
lemma setum_permutations_compose_left:
    assumes q: q permutes S
    shows sum f {p.p permutes S}=sum (\lambdap.f(q\circp)) {p.p permutes S}
    (is ?lhs = ?rhs)
proof -
    let ?S = {p.p permutes S}
    have *: ?rhs = sum (f\circ ((o)q)) ?S
    by (simp add: o_def)
    have **: inj_on ((o) q) ?S
    proof (auto simp add: inj_on_def)
        fix pr
        assume p permutes S
            and r:r permutes S
            and rp:q\circp=q\circr
    then have inv q\circq\circp=inv q\circq\circr
                by (simp add: comp_assoc)
    with permutes_inj[OF q, unfolded inj_iff] show p =r
        by simp
    qed
    have ((o)q)' ?S = ?S
        using image_compose_permutations_left[OF q] by auto
    with * sum.reindex[OF **, of f] show ?thesis
        by (simp only:)
qed
lemma sum_permutations_compose_right:
    assumes q:q permutes S
    shows sum f {p.p permutes S}=\operatorname{sum}(\lambdap.f(p\circq)){p.p permutes S}
    (is ?lhs = ?rhs)
proof -
    let ?S = {p. p permutes S}
    have *: ?rhs = sum (f\circ (\lambdap.p\circq)) ?S
        by (simp add: o_def)
    have **: inj_on ( }\lambdap.p\circq)?
    proof (auto simp add: inj_on_def)
        fix }p
        assume p permutes S
        and r:r permutes S
        and rp:p\circq=r\circq
    then have p}\circ(q\circinvq)=r\circ(q\circinvq
        by (simp add: o_assoc)
    with permutes_surj[OF q, unfolded surj_iff] show p =r
        by simp
    qed
    from image_compose_permutations_right [OF q] have (\lambdap.p\circq)'?S=?S
        by auto
    with * sum.reindex[OF **, of f] show ?thesis
        by (simp only:)
qed
```

```
lemma inv_inj_on_permutes:
    <inj_on inv {p.p permutes S}>
proof (intro inj_onI, unfold mem_Collect_eq)
    fix pq
    assume p:p permutes S and q:q permutes S and eq:inv p=inv q
    have inv (inv p)=inv (inv q) using eq by simp
    thus }p=
        using inv_inv_eq[OF permutes_bij] p q by metis
qed
lemma permutes_pair_eq:
    <{(ps,s) |s.s\inS}={(s, inv ps) |s.s\inS}\rangle(is<?L=?R>) if <p permutes S>
proof
    show ?L\subseteq?R
    proof
    fix }x\mathrm{ assume }x\in
    then obtain s where }x:x=(ps,s)\mathrm{ and }s:s\inS\mathrm{ by auto
    note }
    also have (ps,s)=(ps, Hilbert_Choice.inv p (ps))
        using permutes_inj [OF that] inv_f_f by auto
    also have ... \in?R using s permutes_in_image[OF that] by auto
    finally show }x\in?R\mathrm{ .
    qed
    show ?R\subseteq?L
    proof
        fix }x\mathrm{ assume }x\in?
        then obtain }
            where x: x = (s, Hilbert_Choice.inv p s) (is __ = (s,?ips))
            and }s:s\inS\mathrm{ by auto
        note }
        also have ( }s,\mathrm{ ? ips) = ( p ?ips,?ips)
            using inv_f_f[OF permutes_inj[OF permutes_inv[OF that]]]
            using inv_inv_eq[OF permutes_bij[OF that]] by auto
        also have ... \in ?L
            using s permutes_in_image[OF permutes_inv[OF that]] by auto
        finally show }x\in?L\mathrm{ .
    qed
qed
context
    fixes p and n i :: nat
    assumes p:<p permutes {0..<n}> and i:<i<n>
begin
lemma permutes_nat_less:
    <pi<n`
proof -
    have\?thesis \longleftrightarrowpi\in{0..<n}>
```

```
    by simp
    also from p have <pi\in{0..<n}\longleftrightarrow \longleftrightarrowi\in{0..<n}>
    by (rule permutes_in_image)
    finally show ?thesis
    using i by simp
qed
lemma permutes_nat_inv_less:
    <nv pi<n`
proof -
    from p have <inv p permutes {0..<n}>
        by (rule permutes_inv)
    then show ?thesis
        using i by (rule Permutations.permutes_nat_less)
qed
end
context comm_monoid_set
begin
lemma permutes_inv:
    <F(\lambdas.g(ps)s)S=F(\lambdas.gs(inv ps))S\rangle(is<?l = ?r`)
    if <p permutes S\rangle
proof -
    let ?g = \lambda(x,y).g x y
    let ?ps=\lambdas. (ps,s)
    let ?ips = \lambdas. (s,inv p s)
    have inj1: inj_on ?ps S by (rule inj_onI) auto
    have inj2: inj_on ?ips S by (rule inj_onI) auto
    have ?l = F?g (?ps'S)
        using reindex [OF inj1, of ?g] by simp
    also have ?ps' }S={(ps,s)|s.s\inS} by aut
    also have ... ={(s, inv p s)|s.s\inS}
        unfolding permutes_pair_eq [OF that] by simp
    also have ... = ?ips' }S\mathrm{ by auto
    also have F?g .. = ?r
        using reindex [OF inj2, of ?g] by simp
    finally show ?thesis.
qed
end
```


3.19 Sum over a set of permutations (could generalize to iteration)

lemma sum_over_permutations_insert:
assumes $f S$: finite S and $a S: a \notin S$

```
    shows sum f {p.p permutes (insert a S)} =
    sum (\lambdab. sum (\lambdaq.f(transpose a b ○ q)) {p.p permutes S})(insert a S)
proof -
    have *: \bigwedgefab. (\lambda(b,p).f(transpose a b\circp))=f\circ(\lambda(b,p). transpose a b\circp)
        by (simp add: fun_eq_iff)
    have **: \PQ.{(a,b).a\inP\wedgeb\inQ}=P\timesQ
        by blast
    show ?thesis
        unfolding * ** sum.cartesian_product permutes_insert
    proof (rule sum.reindex)
        let ?f = (\lambda(b,y). transpose a b ○ y)
        let ?P}={p.p\mathrm{ permutes S}
        {
            fix b cpq
            assume b:b\in insert a S
            assume c:c\in insert a S
            assume p: p permutes S
            assume q:q permutes S
            assume eq: transpose ab\circp= transpose a c\circq
            from pqaS have pa: pa=a and qa: qa=a
                unfolding permutes_def by metis+
            from eq have (transpose a b\circp) a=(transpose a c\circq)a
                by simp
            then have bc: b=c
                by (simp add: permutes_def pa qa o_def fun_upd_def id_def
                    cong del: if_weak_cong split: if_split_asm)
            from eq[unfolded bc] have ( }\lambdap\mathrm{ p.transpose a c ○ p)(transpose a c ○ p)=
                ( }\lambdap\mathrm{ . transpose a c ○ p)(transpose a c ○ q) by simp
            then have p=q
                unfolding o_assoc swap_id_idempotent by simp
            with bc have b=c^p=q
                by blast
    }
    then show inj_on ?f (insert a S < ?P)
            unfolding inj_on_def by clarify metis
    qed
qed
```


3.20 Constructing permutations from association lists

```
definition list_permutes \(::\left({ }^{\prime} a \times{ }^{\prime} a\right)\) list \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow\) bool
    where list_permutes xs \(A \longleftrightarrow\)
    set (map fst xs) \(\subseteq A \wedge\)
    set \((\) map snd \(x s)=\) set \((\) map fst \(x s) \wedge\)
    distinct (map fst xs) ^
    distinct (map snd xs)
lemma list_permutesI [simp]:
    assumes set (map fst xs) \(\subseteq A\) set (map snd xs) \(=\) set (map fst xs) distinct (map
```

```
fst xs)
    shows list_permutes xs A
proof -
    from assms(2,3) have distinct (map snd xs)
        by (intro card_distinct) (simp_all add: distinct_card del: set_map)
    with assms show ?thesis
        by (simp add: list__permutes_def)
qed
definition permutation_of_list :: (' }a\times\mathrm{ ' 'a) list = ' }a>>'\mp@code{'a
    where permutation_of_list xs x = (case map_of xs x of None }=>x|\mathrm{ Some y }
y)
lemma permutation_of_list_Cons:
    permutation_of_list ((x,y)#xs) \mp@subsup{x}{}{\prime}=(\mathrm{ if }x=\mp@subsup{x}{}{\prime}\mathrm{ then y else permutation_of_list}
xs x')
    by (simp add: permutation_of_list_def)
fun inverse_permutation_of_list :: (' }a\times\mp@subsup{}{}{\prime}'a) list = ' a m 'a
    where
            inverse_permutation_of_list [] x = x
    | inverse_permutation_of_list ((y, x) # xs) x=
                (if }x=\mp@subsup{x}{}{\prime}\mathrm{ then y else inverse_permutation_of_list xs x)
declare inverse_permutation_of_list.simps [simp del]
lemma inj_on_map_of:
    assumes distinct (map snd xs)
    shows inj_on (map_of xs) (set (map fst xs))
proof (rule inj_onI)
    fix }x
    assume xy: x \in set (map fst xs) y \in set (map fst xs)
    assume eq: map_of xs x= map_of xs y
    from xy obtain }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}:\mathrm{ map_of xs }x=\mathrm{ Some }\mp@subsup{x}{}{\prime}\mathrm{ map_of xs y =Some
y'
    by (cases map_of xs x; cases map_of xs y) (simp_all add: map_of_eq_None_iff)
    moreover from }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ have }*:(x,\mp@subsup{x}{}{\prime})\in\mathrm{ set xs ( }y,\mp@subsup{y}{}{\prime})\in\mathrm{ set xs
        by (force dest: map_of_SomeD)+
    moreover from *eq x'y' have }\mp@subsup{x}{}{\prime}=\mp@subsup{y}{}{\prime
        by simp
    ultimately show }x=
        using assms by (force simp: distinct_map dest: inj_onD[of __ _ (x,\mp@subsup{x}{}{\prime})(y,\mp@subsup{y}{}{\prime})])
qed
lemma inj_on_the: None }\not\inA\Longrightarrowinj_on the 
    by (auto simp: inj_on_def option.the_def split:option.splits)
lemma inj_on_map_of':
    assumes distinct (map snd xs)
```

```
    shows inj_on (the o map_of xs) (set (map fst xs))
    by (intro comp_inj_on inj_on_map_of assms inj_on_the)
    (force simp: eq_commute[of None] map_of_eq_None_iff)
lemma image_map_of:
    assumes distinct (map fst xs)
    shows map_of xs 'set (map fst xs) = Some'set (map snd xs)
    using assms by (auto simp: rev_image_eqI)
lemma the_Some_image [simp]: the 'Some' A = A
    by (subst image_image) simp
lemma image_map_of':
    assumes distinct (map fst xs)
    shows (the o map_of xs)' set (map fst xs) = set (map snd xs)
    by (simp only: image_comp [symmetric] image_map_of assms the_Some_image)
lemma permutation_of_list_permutes [simp]:
    assumes list_permutes xs A
    shows permutation_of_list xs permutes A
        (is ?f permutes _)
proof (rule permutes_subset[OF bij_imp_permutes])
    from assms show set (map fst xs)\subseteqA
    by (simp add: list_permutes_def)
    from assms have inj_on (the o map_of xs) (set (map fst xs)) (is ?P)
    by (intro inj_on_map_of') (simp_all add: list_permutes_def)
    also have ?P \longleftrightarrow < inj_on ?f (set (map fst xs))
    by (intro inj_on_cong)
        (auto simp: permutation_of_list_def map_of_eq_None_iff split:option.splits)
    finally have bij_betw ?f (set (map fst xs)) (?f 'set (map fst xs))
    by (rule inj_on_imp_bij_betw)
    also from assms have ?f 'set (map fst xs)=(the o map_of xs)'set (map fst
xs)
    by (intro image_cong refl)
        (auto simp: permutation_of_list_def map_of_eq_None_iff split:option.splits)
    also from assms have ... = set (map fst xs)
    by (subst image_map_of') (simp_all add: list_permutes_def)
    finally show bij_betw ?f (set (map fst xs)) (set (map fst xs)) .
qed (force simp: permutation_of_list_def dest!: map_of_SomeD split: option.splits)+
lemma eval_permutation_of_list [simp]:
    permutation_of_list [] x=x
    x= '' \Longrightarrow permutation_of_list (( }\mp@subsup{x}{}{\prime},y)#xs)x=
    x\not=\mp@subsup{x}{}{\prime}\Longrightarrow permutation_of_list ((\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})#xs) x = permutation_of_list xs x
    by (simp_all add: permutation_of_list_def)
lemma eval_inverse_permutation_of_list [simp]:
    inverse_permutation_of_list [] x = x
    x = 和\Longrightarrow inverse_permutation_of_list ((y,\mp@subsup{x}{}{\prime})#xs)x=y
```

$x \neq x^{\prime} \Longrightarrow$ inverse_permutation_of_list $\left(\left(y^{\prime}, x^{\prime}\right) \# x s\right) x=$ inverse_permutation_of_list xs x
by (simp_all add: inverse_permutation_of_list.simps)
lemma permutation_of_list_id: $x \notin$ set $(\operatorname{map} f s t x s) \Longrightarrow$ permutation_of_list $x s$ $x=x$
by (induct xs) (auto simp: permutation_of_list_Cons)
lemma permutation_of_list_unique':
distinct $(\operatorname{map} f s t x s) \Longrightarrow(x, y) \in$ set $x s \Longrightarrow$ permutation_of_list $x s x=y$
by (induct xs) (force simp: permutation_of_list_Cons)+
lemma permutation_of_list_unique:
list_permutes xs $A \Longrightarrow(x, y) \in$ set $x s \Longrightarrow$ permutation_of_list $x s x=y$
by (intro permutation_of_list_unique') (simp_all add: list_permutes_def)
lemma inverse_permutation_of_list_id:
$x \notin$ set (map snd $x s) \Longrightarrow$ inverse_permutation_of_list $x s x=x$
by (induct xs) auto
lemma inverse_permutation_of_list_unique':
distinct (map snd $x s) \Longrightarrow(x, y) \in$ set $x s \Longrightarrow$ inverse_permutation_of_list xs y $=x$
by (induct x) (force simp: inverse_permutation_of_list.simps(2))+
lemma inverse_permutation_of_list_unique:
list_permutes xs $A \Longrightarrow(x, y) \in$ set $x s \Longrightarrow$ inverse_permutation_of_list xs $y=x$
by (intro inverse_permutation_of_list_unique') (simp_all add: list_permutes_def)
lemma inverse_permutation_of_list_correct:
fixes A :: 'a set
assumes list_permutes xs A
shows inverse_permutation_of_list $x s=i n v\left(p e r m u t a t i o n _o f _l i s t ~ x s\right) ~$
proof (rule ext, rule sym, subst permutes_inv_eq)
from assms show permutation_of_list xs permutes A
by simp
show permutation_of_list xs (inverse_permutation_of_list xs x) $=x$ for x
proof (cases $x \in \operatorname{set}($ map snd $x s)$)
case True
then obtain y where $(y, x) \in$ set $x s$ by auto
with assms show ?thesis
by (simp add: inverse_permutation_of_list_unique permutation_of_list_unique)
next
case False
with assms show ?thesis
by (auto simp: list_permutes_def inverse_permutation_of_list_id permuta-
tion_of_list_id)
qed
qed
end

4 Permuted Lists

theory List_Permutation
imports Permutations
begin

Note that multisets already provide the notion of permutated list and hence this theory mostly echoes material already logically present in theory Permutations; it should be seldom needed.

4.1 An existing notion

abbreviation (input) perm :: 〈'a list \Rightarrow 'a list \Rightarrow bool \rangle (infixr $\langle<\sim \sim>50$)
where $\left\langle x s<^{\sim \sim}\right\rangle y s \equiv$ mset $\left.x s=m s e t y s\right\rangle$

4.2 Nontrivial conclusions

```
proposition perm_swap:
    <xs[i:= xs!j,j:= xs!i] < ~~}> xs
    if <i< length xs><j < length xs>
    using that by (simp add: mset_swap)
proposition mset_le_perm_append: mset xs \subseteq# mset ys \longleftrightarrow (\existszs.xs @zs
<~~}>ys
    by (auto simp add: mset_subset_eq_exists_conv ex_mset dest: sym)
proposition perm_set_eq: xs < ~~}>>ys\Longrightarrow set xs = set y
    by (rule mset_eq_setD) simp
proposition perm_distinct_iff: xs < ~~}> ys \Longrightarrow distinct xs \longleftrightarrow distinct ys
    by (rule mset_eq_imp_distinct_iff) simp
theorem eq_set_perm_remdups: set xs = set ys \Longrightarrow remdups xs < ~~}> remdup
ys
    by (simp add: set_eq_iff_mset_remdups_eq)
proposition perm_remdups_iff_eq_set: remdups }x\mp@subsup{<}{}{~~}>> remdups y \longleftrightarrow set x
= set y
    by (simp add: set_eq_iff_mset_remdups_eq)
theorem permutation_Ex_bij:
    assumes }xs<\mp@subsup{<}{}{~~}>y
    shows \existsf.bij_betw f {..<length xs } {..<length ys }}\wedge(\foralli<length xs. xs !i=y
!(f i))
proof -
    from assms have <mset xs = mset ys〉<length xs = length ys`
```

```
        by (auto simp add: dest: mset_eq_length)
    from <mset xs = mset ys` obtain p where <p permutes {..<length ys}><per-
mute_list p ys = xs>
    by (rule mset_eq_permutation)
    then have <bij_betw p {..<length xs} {..<length ys}>
    by (simp add:<length xs = length ys` permutes_imp_bij)
    moreover have <\foralli<length xs. xs ! i= ys ! (pi)\rangle
    using<permute_list p ys = xs`<length xs=length ys〉<p permutes {..<length
ys}> permute_list_nth
    by auto
    ultimately show ?thesis
        by blast
qed
proposition perm_ finite: finite {B.B< < ~ > A}
    using mset_eq_finite by auto
```


4.3 Trivial conclusions:

proposition perm_empty_imp: []$<^{\sim \sim}>y s \Longrightarrow y s=[]$ by simp

This more general theorem is easier to understand!

```
proposition perm_length: \(x s<^{\sim \sim}>y s \Longrightarrow\) length \(x s=\) length \(y s\)
    by (rule mset_eq_length) simp
proposition perm_sym: \(x s<^{\sim \sim}>y s \Longrightarrow y s<^{\sim \sim}>x s\)
    by \(\operatorname{simp}\)
```

We can insert the head anywhere in the list.

```
proposition perm_append_Cons: a # xs @ ys < < ~}>xs@ a # y
    by simp
proposition perm_append_swap:xs @ ys < ~~}>ys @ xs
    by simp
proposition perm_append_single: a # xs < < ~}>xs @ [a
    by simp
proposition perm_rev: rev xs < ~~}> x
    by simp
proposition perm_append1:xs<< ~~}>ys\Longrightarrowl@ xs < ~~ > l@y
    by simp
proposition perm_append2:xs < ~~}>ys\Longrightarrowxs@l < ~~~ > ys @ l
    by simp
proposition perm_empty [iff]:[] < ~~}>xs\longleftrightarrowxs=[
```

```
    by simp
proposition perm_empty2 [iff]:xs < ~~}> []\longleftrightarrowxs= [
    by simp
proposition perm_sing_imp:ys < ~~}>xs\Longrightarrowxs=[y]\Longrightarrowys=[y
    by simp
proposition perm_sing_eq [iff]: ys < ~~}> [y]\longleftrightarrow \longleftrightarrowys=[y
    by simp
proposition perm_sing_eq2 [iff]: [y] < ~~}> ys \longleftrightarrowys=[y
    by simp
proposition perm_remove: }x\in\mathrm{ set ys ב ys < N~}>x# remove1 x ys
    by simp
Congruence rule
proposition perm_remove_perm: xs < ~~}> ys \Longrightarrow remove1 zxs < ~~> remove
z ys
    by simp
proposition remove_hd [simp]: remove1 z (z# xs) = xs
    by simp
proposition cons_perm_imp_perm: z # xs < ~~}> z # ys \Longrightarrowxs < ~~ > ys
    by simp
proposition cons_perm_eq [simp]:z#xs < ~~}>z#ys\longleftrightarrowxs<<~~ > y
    by simp
proposition append__perm_imp_perm:zs @ xs < < ~}>zs@ ys \Longrightarrow xs < < ~ > ys
    by simp
proposition perm_append1_eq [iff]:zs @ xs < ~~}>zs @ ys \longleftrightarrow ws < ~~ > ys
    by simp
proposition perm_append2_eq [iff]: xs @ zs < ~~}>>ys@zs\longleftrightarrow @ <s < ~~> y
    by simp
end
```


5 Permutations of a Multiset

```
theory Multiset_Permutations
imports
    Complex_Main
    Permutations
```


begin

```
lemma mset_tl: \(x s \neq[] \Longrightarrow \operatorname{mset}(t l x s)=m s e t x s-\{\# h d x s \#\}\)
    by (cases xs) simp_all
lemma mset_set_image_inj:
    assumes inj on \(f A\)
    shows mset_set \(\left(f^{\prime} A\right)=\operatorname{image\_ mset} f\left(m s e t \_s e t A\right)\)
proof (cases finite A)
    case True
    from this and assms show ?thesis by (induction A) auto
qed (insert assms, simp add: finite_image_iff)
lemma multiset_remove_induct [case_names empty remove]:
    assumes \(P\{\#\} \bigwedge A . A \neq\{\#\} \Longrightarrow(\bigwedge x . x \in \# A \Longrightarrow P(A-\{\# x \#\})) \Longrightarrow P\)
A
    shows \(P A\)
proof (induction A rule: full_multiset_induct)
    case (less A)
    hence \(I H: P B\) if \(B \subset \# A\) for \(B\) using that by blast
    show ?case
    proof (cases \(A=\{\#\}\) )
        case True
        thus ?thesis by (simp add: assms)
    next
        case False
        hence \(P(A-\{\# x \#\})\) if \(x \in \# A\) for \(x\)
            using that by (intro IH) (simp add: mset_subset_diff_self)
        from False and this show \(P A\) by (rule assms)
    qed
qed
lemma map_list_bind: map \(g(\) List.bind \(x s f)=\) List.bind xs \((\operatorname{map} g \circ f)\)
    by (simp add: List.bind_def map_concat)
lemma mset_eq_mset_set_imp_distinct:
    finite \(A \Longrightarrow\) mset_set \(A=\) mset \(x s \Longrightarrow\) distinct \(x s\)
proof (induction xs arbitrary: A)
    case (Cons x xs A)
    from Cons.prems(2) have \(x \in \#\) mset_set \(A\) by simp
    with Cons.prems(1) have \([\operatorname{simp}]: x \in A\) by simp
    from Cons.prems have \(x \notin \#\) mset_set \((A-\{x\})\) by simp
    also from Cons.prems have mset_set \((A-\{x\})=\) mset_set \(A-\{\# x \#\}\)
    by (subst mset_set_Diff) simp_all
    also have mset_set \(A=m s e t(x \# x s)\) by ( \(\operatorname{simp}\) add: Cons.prems)
    also have \(\ldots-\{\# x \#\}=\) mset \(x\) s by simp
    finally have \([\operatorname{simp}]: x \notin\) set \(x s\) by (simp add: in_multiset_in_set)
    from Cons.prems show ?case by (auto intro!: Cons.IH[of \(A-\{x\}]\) simp:
```

```
mset_set_Diff)
qed simp_all
```


5.1 Permutations of a multiset

definition permutations_of_multiset $::$ ' a multiset \Rightarrow ' a list set where permutations_of_multiset $A=\{x s$. mset $x s=A\}$
lemma permutations_of_multisetI: mset $x s=A \Longrightarrow x s \in$ permutations_of_multiset A by (simp add: permutations_of_multiset_def)
lemma permutations_of_multisetD: $x s \in$ permutations_of_multiset $A \Longrightarrow$ mset $x s=A$
by (simp add: permutations_of_multiset_def)
lemma permutations_of_multiset_Cons_iff:
$x \# x s \in$ permutations_of_multiset $A \longleftrightarrow x \in \# A \wedge x s \in$ permutations_of_multiset ($A-\{\# x \#\}$)
by (auto simp: permutations_of_multiset_def)
lemma permutations_of_multiset_empty [simp]: permutations_of_multiset \{\#\} $=\{[]\}$
unfolding permutations_of_multiset_def by simp
lemma permutations_of_multiset_nonempty:
assumes nonempty: $A \neq\{\#\}$
shows permutations_of_multiset $A=$
$(\bigcup x \in$ set_mset $A .((\#) x)$ 'permutations_of_multiset $(A-\{\# x \#\}))$
(is ${ }_{-}=$? $\left.r h s\right)$
proof safe
fix $x s$ assume $x s \in$ permutations_of_multiset A
hence mset_xs: mset $x s=A$ by (simp add: permutations_of_multiset_def)
hence $x s \neq[]$ by (auto simp: nonempty)
then obtain $x x^{\prime}{ }^{\prime}$ where $x s$: $x s=x \# x s^{\prime}$ by (cases xs) simp_all
with mset_xs have $x \in$ set_mset $A x s^{\prime} \in$ permutations_of_multiset $(A-$ \{\#x\#\})
by (auto simp: permutations_of_multiset_def)
with $x s$ show $x s \in$? rhs by auto
qed (auto simp: permutations_of_multiset_def)
lemma permutations_of_multiset_singleton $[$ simp $]$: permutations_of_multiset $\{\# x \#\}$
$=\{[x]\}$
by (simp add: permutations_of_multiset_nonempty)
lemma permutations_of_multiset_doubleton:
permutations_of_multiset $\{\# x, y \#\}=\{[x, y],[y, x]\}$
by (simp add: permutations_of_multiset_nonempty insert_commute)

```
lemma rev_permutations_of_multiset [simp]:
    rev'permutations_of_multiset A = permutations_of_multiset A
proof
    have rev'rev'permutations_of_multiset A\subseteqrev'permutations_of_multiset
A
    unfolding permutations_of_multiset_def by auto
    also have rev'rev'permutations_of_multiset A = permutations_of_multiset
A
    by (simp add: image_image)
    finally show permutations_of_multiset A\subseteqrev'permutations_of_multiset A
.
next
    show rev'permutations_of_multiset A\subseteq permutations_of_multiset A
        unfolding permutations_of_multiset_def by auto
qed
lemma length_finite_permutations_of_multiset:
    xs \in permutations_of_multiset A\Longrightarrow length xs = size A
    by (auto simp: permutations_of_multiset_def)
lemma permutations_of_multiset_lists: permutations_of_multiset A\subseteqlists (set_mset
A)
    by (auto simp: permutations_of_multiset_def)
lemma finite_permutations_of_multiset [simp]: finite (permutations_of_multiset
A)
proof (rule finite_subset)
    show permutations_of_multiset }A\subseteq{xs.set xs \subseteqset_mset A ^ length xs =
size A}
        by (auto simp: permutations_of_multiset_def)
    show finite {xs. set xs\subseteq set_mset A}\wedge length xs = size A
        by (rule finite_lists_length_eq) simp_all
qed
lemma permutations_of_multiset_not_empty [simp]: permutations_of_multiset
A\not={}
proof -
    from ex_mset[of A] obtain xs where mset xs = A ..
    thus ?thesis by (auto simp: permutations_of_multiset_def)
qed
lemma permutations_of_multiset_image:
    permutations_of_multiset (image_mset f A ) = map f'permutations_of_multiset
A
proof safe
    fix xs assume A:xs \in permutations_of_multiset (image_mset f A)
    from ex_mset[of A] obtain ys where ys: mset ys = A ..
    with A have mset xs = mset (map f ys)
    by (simp add: permutations_of_multiset_def)
```

then obtain σ where $\sigma: \sigma$ permutes $\{. .<$ length (map $f y s)\}$ permute_list σ $($ map $f y s)=x s$
by (rule mset_eq_permutation)
with ys have $x s=\operatorname{map} f$ (permute_list σ ys)
by (simp add: permute_list_map)
moreover from σ ys have permute_list σ ys \in permutations_of_multiset A
by (simp add: permutations_of_multiset_def)
ultimately show $x s \in \operatorname{map} f$ 'permutations_of_multiset A by blast
qed (auto simp: permutations_of_multiset_def)

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations of a multiset.

context

begin
private lemma multiset_prod_fact_insert:
$\left(\prod y \in \operatorname{set} \operatorname{mset}(A+\{\# x \#\})\right.$. fact $($ count $\left.(A+\{\# x \#\}) y)\right)=$ $($ count $A x+1) *\left(\prod y \in\right.$ set_mset A. fact $($ count $\left.A y)\right)$
proof -
have $\left(\prod y \in \operatorname{set}\right.$ _mset $(A+\{\# x \#\})$. fact $($ count $\left.(A+\{\# x \#\}) y)\right)=$
$\left(\prod y \in\right.$ set_mset $(A+\{\# x \#\})$. (if $y=x$ then count $A x+1$ else 1$) *$ fact
(count A y))
by (intro prod.cong) simp_all
also have $\ldots=($ count $A x+1) *\left(\prod y \in\right.$ set_mset $(A+\{\# x \#\})$. fact (count A
y))
by (simp add: prod.distrib)
also have $\left(\prod y \in\right.$ set_mset $(A+\{\# x \#\})$. fact $($ count $\left.A y)\right)=\left(\prod y \in\right.$ set_mset A.
fact (count A y))
by (intro prod.mono_neutral_right) (auto simp: not_in_iff)
finally show ?thesis.
qed
private lemma multiset_prod_fact_remove:

```
x\in# A\Longrightarrow(\prody\inset_mset A. fact (count A y)) =
                                    count A\overline{x}*(\prody\inset_mset (A-{#x#}). fact (count (A-{#x#})
```

y))
using multiset_prod_fact_insert[of $A-\{\# x \#\} x]$ by simp
lemma card_permutations_of_multiset_aux:
card $($ permutations_of_multiset $A) *\left(\overline{\prod x \in s e t _m s e t ~} A\right.$. fact $($ count $\left.A x)\right)=$ fact
(size A)
proof (induction A rule: multiset_remove_induct)
case (remove A)
have card (permutations_of_multiset A) $=$
card $(\bigcup x \in$ set_mset \bar{A}. (\#) x 'permutations_of_multiset $(A-\{\# x \#\}))$
by (simp add: permutations_of_multiset_nonempty remove.hyps)
also have $\ldots=\left(\sum x \in\right.$ set_mset A. card (permutations_of_multiset $\left.(A-\{\# x \#\})\right)$)

```
    by (subst card_UN_disjoint) (auto simp: card__image)
    also have \ldots. (\prodx\inset_mset A. fact (count A x)) =
                (\sumx\inset_mset A.card (permutations_of_multiset (A - {#x#})) *
                        (\prody\inset_mset A. fact (count A y)))
    by (subst sum_distrib_right) simp_all
    also have ... = (\sumx\inset_mset A. count A x* fact (size A - 1))
    proof (intro sum.cong refl)
    fix x assume x:x\in# A
    have card (permutations_of_multiset (A-{#x#}))*(\prody\inset_mset A. fact
(count A y)) =
            count A x * (card (permutations_of_multiset (A - {#x#})) *
            (\prody\inset_mset (A-{#x#}).fact (count (A-{#x#}) y))) (is ?lhs
=_)
            by (subst multiset_prod_fact_remove[OF x]) simp_all
    also note remove.IH[OF x]
    also from x have size (A-{#x#}) = size A - 1 by (simp add: size_Diff_submset)
    finally show ?lhs = count A x* fact (size A - 1).
    qed
    also have (\sumx\inset_mset A. count A x*fact (size A - 1))=
                size A* fact (size A - 1)
    by (simp add: sum_distrib_right size_multiset_overloaded_eq)
    also from remove.hyps have ... = fact (size A)
    by (cases size A) auto
    finally show ?case.
qed simp_all
theorem card_permutations_of_multiset:
    card (permutations_of_multiset A) = fact (size A) div (\x\inset_mset A. fact
(count A x))
    (Пx\inset_mset A. fact (count A x) :: nat) dvd fact (size A)
    by (simp_all flip: card_permutations_of_multiset_aux[of A])
lemma card_permutations_of_multiset_insert_aux:
    card (permutations_of_multiset }(A+{#x#}))*(\mathrm{ count A x + 1) =
        (size A+1)* card (permutations_of_multiset A)
proof -
    note card_permutations_of_multiset_aux[of A + {#x#}]
    also have fact (size }(A+{#x#}))=(\mathrm{ size A+1)* fact (size A) by simp
    also note multiset_prod_fact_insert[of A x]
    also note card_permutations_of_multiset_aux[of A, symmetric]
    finally have card (permutations_of_multiset (A+{#x#}))*(count A x + 1)
*
    (\prody\inset_mset A. fact (count A y)) =
    (size A+1)* card (permutations_of_multiset A)*
    (\prodx\inset_mset A.fact (count }\overline{A}x))\mathrm{ by (simp only:mult_ac)
    thus ?thesis by (subst (asm) mult_right_cancel) simp_all
qed
lemma card_permutations_of_multiset_remove_aux:
```

```
    assumes }x\in#
    shows card (permutations_of_multiset A)* count A x =
        size A * card (permutations_of_multiset (A-{#x#}))
proof -
    from assms have A:A-{#x#}+{#x#}=A by simp
    from assms have B: size A = size (A-{#x#})+1
        by (subst A [symmetric], subst size_union) simp
    show ?thesis
    using card_permutations_of_multiset_insert_aux[of A - {#x#} x, unfolded
A] assms
    by (simp add: B)
qed
lemma real_card_permutations_of_multiset_remove:
    assumes }x\in#
    shows real (card (permutations_of_multiset (A-{#x#})))=
        real (card (permutations_of_multiset A)* count A x) / real (size A)
    using assms by (subst card_permutations_of_multiset_remove_aux[OF assms])
auto
lemma real_card_permutations_of_multiset_remove':
    assumes }x\in#
    shows real (card (permutations_of_multiset A)) =
        real (size A* card (permutations_of_multiset (A-{#x#}))) / real
(count A x)
    using assms by (subst card_permutations_of_multiset_remove_aux[OF assms,
symmetric]) simp
end
```


5.3 Permutations of a set

```
definition permutations_of_set \(::\) ' \(a\) set \(\Rightarrow\) 'a list set where permutations_of_set \(A=\{x s\). set \(x s=A \wedge\) distinct \(x s\}\)
lemma permutations_of_set_altdef:
finite \(A \Longrightarrow\) permutations_of_set \(A=\) permutations_of_multiset ( \(m\) set_set \(A\) )
by (auto simp add: permutations_of_set_def permutations_of_multiset_def mset_set_set
```

```
    in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)
```

 in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)
 lemma permutations_of_setI [intro]:
assumes set $x s=A$ distinct xs
shows $\quad x s \in$ permutations_of_set A
using assms unfolding permutations_of_set_def by simp
lemma permutations_of_setD:
assumes $x s \in$ permutations_of_set A
shows set $x s=A$ distinct xs

```
using assms unfolding permutations_of_set_def by simp_all
lemma permutations_of_set_lists: permutations_of_set \(A \subseteq\) lists \(A\)
unfolding permutations_of_set_def by auto
lemma permutations_of_set_empty \([\) simp \(]\) : permutations_of_set \(\}=\{[]\}\)
by (auto simp: permutations_of_set_def)
lemma UN_set_permutations_of_set [simp]:
finite \(A \Longrightarrow(\bigcup x s \in\) permutations_of_set \(A\). set \(x s)=A\)
using finite_distinct_list by (auto simp: permutations_of_set_def)
lemma permutations_of_set_infinite:
\(\neg\) finite \(A \Longrightarrow\) permutations_of_set \(A=\{ \}\)
by (auto simp: permutations_of_set_def)
lemma permutations_of_set_nonempty:
\(A \neq\{ \} \Longrightarrow\) permutations_of_set \(A=\) \(\left(\bigcup x \in A .(\lambda x s . x \# x s) ' p e r m u t a t i o n s \_o f \_s e t(A-\{x\})\right)\)
by (cases finite \(A\) )
(simp_all add: permutations_of_multiset_nonempty mset_set_empty_iff mset_set_Diff
permutations_of_set_altdef permutations_of_set_infinite)
lemma permutations_of_set_singleton \([\) simp \(]\) : permutations_of_set \(\{x\}=\{[x]\}\) by (subst permutations_of_set_nonempty) auto
lemma permutations_of_set_doubleton:
\(x \neq y \Longrightarrow\) permutations_of_set \(\{x, y\}=\{[x, y],[y, x]\}\)
by (subst permutations_of_set_nonempty)
(simp_all add: insert_Diff_if insert_commute)
lemma rev_permutations_of_set [simp]:
rev ' permutations_of_set \(A=\) permutations_of_set \(A\)
by \((\) cases finite \(A) \overline{\left(s i m p \_a l l ~ a d d: ~ p e r m u t a t i o n s \_o f \_s e t \_a l t d e f ~ p e r m u t a t i o n s \_o f \_s e t \_i n f i n i t e\right) ~}\)
lemma length_finite_permutations_of_set:
\(x s \in\) permutations_of_set \(A \Longrightarrow\) length \(x s=\) card \(A\)
by (auto simp: permutations_of_set_def distinct_card)
lemma finite_permutations_of_set [simp]: finite (permutations_of_set A)
by (cases finite \(A)(\) simp_all add: permutations_of_set_infinite permutations_of_set_altdef)
lemma permutations_of_set_empty_iff [simp]:
permutations_of_set \(\bar{A}=\{\overline{\}} \longleftrightarrow\)-finite \(A\)
unfolding permutations_of_set_def using finite_distinct_list[of \(A]\) by auto
lemma card_permutations_of_set [simp]:
finite \(A \Longrightarrow\) card (permutations_of_set \(A)=\) fact \((\) card \(A)\)
```

by (simp add: permutations_of_set_altdef card_permutations_of_multiset del:
One_nat_def)
lemma permutations_of_set_image_inj:
assumes inj: inj_on f A
shows permutations_of_set (f`A) = map f`permutations_of_set A
by (cases finite A)
(simp_all add: permutations_of_set_infinite permutations_of_set_altdef
permutations_of_multiset_image mset_set_image_inj inj
finite_image_iff)
lemma permutations_of_set_image_permutes:
\sigma permutes }A\Longrightarrowmap \sigma'permutations_of_set A = permutations_of_set A
by (subst permutations_of_set_image_inj [symmetric])
(simp_all add: permutes_inj_on permutes_image)

```

\subsection*{5.4 Code generation}

First, we give code an implementation for permutations of lists.
```

declare length_remove1 [termination_simp]
fun permutations_of_list_impl where
permutations_of_list_impl xs $=($ if $x s=[]$ then []] else
List.bind (remdups xs) (λ x. map ((\#) x) (permutations_of_list_impl (remove1
$x x s))$)
fun permutations_of_list_impl_aux where
permutations_of_list_impl_aux acc $x s=($ if $x s=[]$ then $[$ acc] else
List.bind (remdups xs) (λ x. permutations_of_list_impl_aux (x\#acc) (remove1
(x $x s)$))
declare permutations_of_list_impl_aux.simps [simp del]
declare permutations_of_list_impl.simps [simp del]
lemma permutations_of_list_impl_Nil [simp]:
permutations_of_list_impl []$=[]]$
by (simp add: permutations_of_list_impl.simps)
lemma permutations_of_list_impl_nonempty:
xs $\neq[] \Longrightarrow$ permutations_of_list_impl $x s=$
List.bind (remdups xs) (λ x. map ((\#) x) (permutations_of_list_impl (remove1
x $x s$))
by (subst permutations_of_list_impl.simps) simp_all
lemma set_permutations_of_list_impl:
set $($ permutations_of_list_impl xs $)=$ permutations_of_multiset $($ mset xs $)$
by (induction xs rule: permutations_of_list_impl.induct)
(subst permutations_of_list_impl.simps,
simp_all add: permutations_of_multiset_nonempty set_list_bind)

```
```

lemma distinct_permutations_of_list_impl:
distinct (permutations_of_list_impl xs)
by (induction xs rule: permutations_of_list_impl.induct,
subst permutations_of_list_impl.simps)
(auto intro!: distinct_list_bind simp: distinct_map o_def disjoint_family_on_def)
lemma permutations_of_list_impl_aux_correct':
permutations_of_list_impl_aux acc xs =
map (\lambdaxs.rev xs @ acc) (permutations_of_list_impl xs)
by (induction acc xs rule: permutations_of_list_impl_aux.induct,
subst permutations_of_list_impl_aux.simps, subst permutations_of_list_impl.simps)
(auto simp: map_list_bind intro!: list_bind_cong)
lemma permutations_of_list_impl_aux_correct:
permutations_of_list_impl_aux [] xs = map rev (permutations_of_list_impl xs)
by (simp add: permutations_of_list_impl_aux_correct')
lemma distinct_permutations_of_list_impl_aux:
distinct (permutations_of_list_impl_aux acc xs)
by (simp add: permutations_of_list_impl_aux_correct' distinct_map
distinct_permutations_of_list_impl inj_on_def)
lemma set_permutations_of_list_impl_aux:
set (permutations_of_list_impl_aux [] xs) = permutations_of_multiset (mset
xs)
by (simp add: permutations_of_list_impl_aux_correct set_permutations_of_list_impl)
declare set_permutations_of_list_impl_aux [symmetric, code]
value [code] permutations_of_multiset {\# 1,2,3,4::int\#}
Now we turn to permutations of sets. We define an auxiliary version with an accumulator to avoid having to map over the results.
function permutations_of_set_aux where
permutations_of_set_aux acc $A=$ (if \neg finite A then $\}$ else if $A=\{ \}$ then $\{a c c\}$ else
$(\bigcup x \in A$. permutations_of_set_aux $(x \# a c c)(A-\{x\})))$
by auto
termination by (relation Wellfounded.measure (card \circ snd $)$) (simp_all add: card_gt_o_iff)
lemma permutations_of_set_aux_altdef:
permutations_of_set_aux acc $A=(\lambda x s . r e v x s @ a c c)$ 'permutations_of_set A
proof (cases finite A)
assume finite A
thus ?thesis
proof (induction A arbitrary: acc rule: finite_psubset_induct)
case (psubset A acc)
show ?case

```
```

 proof (cases A={})
 case False
 note [simp del] = permutations_of_set_aux.simps
 from psubset.hyps False
 have permutations_of_set_aux acc A=
 (\bigcupy\inA.permutations_of_set_aux (y#acc) (A-{y}))
 by (subst permutations_of_set_aux.simps) simp_all
 also have ...=(\bigcupy\inA. (\lambdaxs.rev xs @ acc)'`(\lambdaxs. y # xs)'permuta-
 tions_of_set (A - {y}))
apply (rule arg_cong [of _ _ Union], rule image_cong)
apply (simp_all add: image_image)
apply (subst psubset)
apply auto
done
also from False have ... = (}\lambdaxs.rev xs@ acc)'permutations_of_set A
by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)
finally show ?thesis .
qed simp_all
qed
qed (simp_all add: permutations_of_set_infinite)
declare permutations_of_set_aux.simps [simp del]
lemma permutations_of_set_aux_correct:
permutations_of_set_aux [] A = permutations_of_set A
by (simp add: permutations_of_set_aux_altdef)
In another refinement step, we define a version on lists.

```
```

declare length_remove1 [termination_simp]

```
declare length_remove1 [termination_simp]
fun permutations_of_set_aux_list where
fun permutations_of_set_aux_list where
    permutations_of_set_aux_list acc \(x s=\)
    permutations_of_set_aux_list acc \(x s=\)
    (if \(x s=[]\) then \([a c c]\) else
    (if \(x s=[]\) then \([a c c]\) else
            List.bind \(x s\) ( \(\lambda x\). permutations_of_set_aux_list (x\#acc) (List.remove1 \(x\)
            List.bind \(x s\) ( \(\lambda x\). permutations_of_set_aux_list (x\#acc) (List.remove1 \(x\)
\(x s)\) ))
\(x s)\) ))
definition permutations_of_set_list where
definition permutations_of_set_list where
    permutations_of_set_list \(x s=\) permutations_of_set_aux_list [] xs
    permutations_of_set_list \(x s=\) permutations_of_set_aux_list [] xs
declare permutations_of_set_aux_list.simps [simp del]
declare permutations_of_set_aux_list.simps [simp del]
lemma permutations_of_set_aux_list_refine:
lemma permutations_of_set_aux_list_refine:
    assumes distinct xs
    assumes distinct xs
    shows set (permutations_of_set_aux_list acc \(x s\) ) \(=\) permutations_of_set_aux
    shows set (permutations_of_set_aux_list acc \(x s\) ) \(=\) permutations_of_set_aux
acc (set xs)
acc (set xs)
    using assms
    using assms
    by (induction acc xs rule: permutations_of_set_aux_list.induct)
    by (induction acc xs rule: permutations_of_set_aux_list.induct)
        (subst permutations_of_set_aux_list.simps,
        (subst permutations_of_set_aux_list.simps,
        subst permutations_of_set_aux.simps,
```

 subst permutations_of_set_aux.simps,
    ```
```

simp_all add: set_list_bind)

```

The permutation lists contain no duplicates if the inputs contain no duplicates. Therefore, these functions can easily be used when working with a representation of sets by distinct lists. The same approach should generalise to any kind of set implementation that supports a monadic bind operation, and since the results are disjoint, merging should be cheap.
```

lemma distinct_permutations_of__set_aux_list:
distinct xs \Longrightarrow distinct (permutations_of_set_aux_list acc xs)
by (induction acc xs rule: permutations_of_set_aux_list.induct)
(subst permutations_of_set_aux_list.simps,
auto intro!: distinct_list_bind simp: disjoint_family_on_def
permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)

```
lemma distinct_permutations_of_set_list:
        distinct \(x s \Longrightarrow\) distinct (permutations_of_set_list \(x s\) )
    by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)
lemma permutations_of_list:
    permutations_of_set \((\) set \(x s)=\) set \((\) permutations_of_set_list \((\) remdups xs \())\)
    by (simp add: permutations_of_set_aux_correct [symmetric]
        permutations_of_set_aux_list_refine permutations_of_set_list_def)
lemma permutations_of_list_code [code]:
    permutations_of_set \((\) set \(x s)=\) set \((\) permutations_of_set_list \((\) remdups \(x s))\)
    permutations_of_set (List.coset xs) \(=\)
        Code.abort (STR "Permutation of set complement not supported")
            ( \(\lambda\) _. permutations_of_set (List.coset \(x s)\) )
    by (simp_all add: permutations_of_list)
value [code] permutations_of_set (set " abcd')
end
```

theory Cycles
imports
HOL-Library.FuncSet
Permutations
begin

```

\section*{6 Cycles}

\subsection*{6.1 Definitions}
abbreviation cycle :: 'a list \(\Rightarrow\) bool where cycle cs \(\equiv\) distinct cs
```

fun cycle_of_list :: ' a list $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
where
cycle_of_list $(i \# j \# c s)=$ transpose $i j \circ$ cycle_of_list $(j \# c s)$
| cycle_of_list cs = id

```

\subsection*{6.2 Basic Properties}

We start proving that the function derived from a cycle rotates its support list.
```

lemma id_outside_supp:
assumes $x \notin$ set cs shows (cycle_of_list cs) $x=x$
using assms by (induct cs rule: cycle_of_list.induct) (simp_all)
lemma permutation_of_cycle: permutation (cycle_of_list cs)
proof (induct cs rule: cycle_of_list.induct)
case 1 thus? ?case
using permutation_compose $[$ OF permutation_swap_id] unfolding comp_apply
by simp
qed simp_all
lemma cycle_permutes: (cycle_of_list cs) permutes (set cs)
using permutation_bijective[OF permutation_of_cycle] id_outside_supp[of _
cs]
by (simp add: bij_iff permutes_def)
theorem cyclic_rotation:
assumes cycle cs shows map ((cycle_of_list cs) ^n) cs = rotate n cs
proof -
\{ have map (cycle_of_list cs) cs = rotate1 cs using assms(1)
proof (induction cs rule: cycle_of_list.induct)
case (1 ijcs)
then have $\langle i \notin$ set $c s\rangle\langle j \notin$ set $c s\rangle$
by auto
then have \langle map (Transposition.transpose $i j$) $c s=c s\rangle$
by (auto intro: map_idI simp add: transpose_eq_iff)
show ?case
proof (cases)
assume $c s=$ Nil thus ?thesis by simp
next
assume $c s \neq$ Nil hence ge_two: length $(j \# c s) \geq 2$
using not_less by auto
have map (cycle_of_list $(i \# j \# c s))(i \# j \# c s)=$
map (transpose $i j)($ map (cycle_of_list $(j \# c s))(i \# j \# c s))$ by
simp
also have...$=$ map (transpose $i j)(i \#($ rotate $1(j \# c s)))$
by (metis 1.IH 1.prems distinct.simps(2) id_outside_supp list.simps(9))
also have...$=$ map (transpose $i j)(i \#(c s @[j]))$ by simp
also have $\ldots=j \#($ map (transpose $i j) c s) @[i]$ by simp
also have...$=j \# c s @[i]$

```
```

 using<map (Transposition.transpose i j) cs = cs〉 by simp
 also have ... = rotate1 (i#j# cs) by simp
 finally show ?thesis .
 qed
 qed simp__all }
 note cyclic_rotation' }=\mathrm{ this
 show ?thesis
 using cyclic__rotation' by (induct n) (auto, metis map__map rotate1__rotate_swap
 rotate__map)
qed
corollary cycle_is__surj:
assumes cycle cs shows (cycle__of_list cs) '(set cs) = (set cs)
using cyclic_rotation[OF assms, of Suc 0] by (simp add: image__set)
corollary cycle_is_id_root:
assumes cycle cs shows (cycle_of_list cs) ^ (length cs) = id
proof -
have map ((cycle_of__list cs) ^~ (length cs)) cs=cs
unfolding cyclic__rotation[OF assms] by simp
hence ((cycle_of_list cs) ^~ (length cs)) i=i if i\in set cs for i
using that map__eq_conv by fastforce
moreover have ((cycle__of_list cs) ~ n) i= i if i\not\in set cs for in
using id__outside_supp[OF that] by (induct n) (simp__all)
ultimately show ?thesis
by fastforce
qed
corollary cycle_of_list__rotate_independent:
assumes cycle cs shows (cycle__of_list cs) = (cycle__of_list (rotate n cs))
proof -
{ fix cs :: 'a list assume cs: cycle cs
have (cycle_of_list cs)=(cycle_of_list (rotate1 cs))
proof -
from cs have rotate1_cs: cycle (rotate1 cs) by simp
hence map (cycle_of_list (rotate1 cs)) (rotate1 cs) = (rotate 2 cs)
using cyclic_rotation[OF rotate1_cs, of 1] by (simp add: numeral__2_eq_2)
moreover have map (cycle_of_list cs) (rotate1 cs) = (rotate 2 cs)
using cyclic__rotation[OF cs]
by (metis One_nat__def Suc__ 1 funpow.simps(2) id__apply map__map rotate0
rotate_Suc)
ultimately have (cycle_of_list cs) i=(cycle_of_list (rotate1 cs)) i if i\in
set cs for i
using that map_eq__conv unfolding sym[OF set__rotate1[of cs]] by fastforce
moreover have (cycle_of__list cs) i=(cycle__of_list (rotate1 cs)) i if i\not\in
set cs for i
using that by (simp add:id__outside__supp)

```
ultimately show \((\) cycle_of_list \(c s)=(\) cycle_of_list \((r o t a t e 1 ~ c s))\)
by blast
qed \(\}\) note rotate \(1 \_\)lemma \(=\)this
show ?thesis
using rotate1_lemma[of rotate \(n c s]\) by (induct \(n\) ) (auto, metis assms distinct_rotate rotate1_lemma)
qed

\subsection*{6.3 Conjugation of cycles}
lemma conjugation_of_cycle:
assumes cycle cs and bij p
shows \(p \circ(\) cycle_of_list cs \() \circ(\) inv \(p)=\) cycle_of_list \((\) map \(p c s)\)
using assms
proof (induction cs rule: cycle_of_list.induct)
case ( \(1 i j c s\) )
have \(p \circ\) cycle_of_list \((i \# j \# c s) \circ\) inv \(p=\) \((p \circ(\) transpose \(i j) \circ i n v p) \circ(p \circ\) cycle_of_list \((j \# c s) \circ i n v p)\)
by (simp add: assms(2) bij_is_inj fun.map_comp)
also have \(\ldots=(\) transpose \((p i)(p j)) \circ(p \circ\) cycle_of_list \((j \# c s) \circ i n v p)\)
using 1.prems(2) by (simp add: bij_inv_eq_iff transpose_apply_commute fun_eq_iff bij_betw_inv_into_left)
finally have \(p \circ\) cycle_of_list \((i \# j \# c s) \circ\) inv \(p=\) (transpose \((p i)(p j)) \circ(\) cycle_of_list \((\operatorname{map} p(j \# c s)))\)
using 1.IH 1.prems(1) assms(2) by fastforce
thus ?case by (simp add: fun_eq_iff)
next
case 2_1 thus ?case
by (metis bij_is_surj comp_id cycle_of_list.simps(2) list.simps(8) surj_iff)
next
case 2_2 thus ?case
by (metis bij_is_surj comp_id cycle_of_list.simps(3) list.simps(8) list.simps(9) surj_iff)
qed

\subsection*{6.4 When Cycles Commute}
```

lemma cycles_commute:
assumes cycle p cycle q and set $p \cap$ set $q=\{ \}$
shows $($ cycle_of_list $p) \circ($ cycle_of_list $q)=($ cycle_of_list $q) \circ($ cycle_of_list
p)
proof
\{ fix $p::{ }^{\prime} a$ list and $q::{ }^{\prime} a$ list and $i::{ }^{\prime} a$
assume A : cycle p cycle q set $p \cap$ set $q=\{ \} i \in$ set $p i \notin$ set q
have $(($ cycle_of_list $p) \circ($ cycle_of_list $q)) i=$
$(($ cycle_of_list $q) \circ($ cycle_of_list $p)) i$
proof -
have $(($ cycle_of_list $p) \circ($ cycle_of_list $q)) i=($ cycle_of_list $p) i$
using id_outside_supp $[O F A(5)]$ by simp

```
also have \(\ldots=((\) cycle_of_list \(q) \circ(\) cycle_of_list \(p)) i\)
using id_outside_supp[of (cycle_of_list p) i] cycle_is_surj[OF A(1)]
\(A(3,4)\) by fastforce
finally show ?thesis . qed \(\}\) note aui_lemma \(=\) this
fix \(i\) consider \(i \in \operatorname{set} p i \notin\) set \(q \mid i \notin\) set \(p i \in \operatorname{set} q \mid i \notin\) set \(p i \notin\) set \(q\) using 〈set \(p \cap\) set \(q=\{ \}\) by blast
thus \(((\) cycle_of_list \(p) \circ(\) cycle_of_list \(q)) i=((\) cycle_of_list \(q) \circ(\) cycle_of_list
p)) \(i\)
proof cases
case 1 thus ?thesis
using aui_lemma[OF assms] by simp
next
case 2 thus ?thesis
using aui_lemma[OF assms(2,1)] assms(3) by (simp add: ac_simps)
next
case 3 thus ?thesis
by (simp add: id_outside_supp)
qed
qed

\subsection*{6.5 Cycles from Permutations}

\subsection*{6.5.1 Exponentiation of permutations}

Some important properties of permutations before defining how to extract its cycles.
lemma permutation funpow:
assumes permutation \(p\) shows permutation ( \(p\) ^ \(n\) )
using assms by (induct \(n\) ) (simp_all add: permutation_compose)
lemma permutes_funpow:
assumes \(p\) permutes \(S\) shows \(\left(p^{\sim} n\right)\) permutes \(S\)
using assms by (induct \(n\) ) (simp add: permutes_def, metis funpow_Suc_right permutes_compose)
lemma funpow_diff:
assumes \(\operatorname{inj} \bar{p}\) and \(i \leq j(p \sim i) a=\left(p^{\sim} j\right) a\) shows \(\left(p^{\sim}(j-i)\right) a=a\)
proof -
have \((p \leadsto i)((p \leadsto(j-i)) a)=(p \leadsto i) a\)
using assms(2-3) by (metis (no_types) add_diff_inverse_nat funpow_add
not_le o_def)
thus ?thesis
unfolding inj_eq[OF inj_fn[OF assms(1)], of \(i]\).
qed
lemma permutation_is_nilpotent:
assumes permutation \(p\) obtains \(n\) where \(\left(p^{\sim} n\right)=i d\) and \(n>0\)
```

proof -
obtain S where finite S and p permutes S
using assms unfolding permutation_permutes by blast
hence \existsn. (p~n n)=id^n>0
proof (induct S arbitrary: p)
case empty thus ?case
using id_funpow[of 1] unfolding permutes_empty by blast
next
case (insert s S)
have (\lambdan.((^^ n) s)' UNIV \subseteq(insert s S)
using permutes_in_image[OF permutes_funpow[OF insert(4)], of _ s] by
auto
hence \neginj_on (}\lambdan.(p^~n) s) UNI
using insert(1) infinite_iff_countable_subset unfolding sym[OF finite_insert,
of Ss] by metis
then obtain ij where ij: i<j(p^~ i) s=(p^^j) s
unfolding inj_on_def by (metis nat_neq_iff)
hence (}\mp@subsup{p}{}{^^}(j-i))s=
using funpow_diff[OF permutes_inj[OF insert(4)]] le_eq_less_or_eq by
blast
hence p^~}(j-i) permutes S
using permutes_superset[OF permutes_funpow[OF insert(4), of j - i], of S]
by auto
then obtain n where n: ((}\mp@subsup{p}{}{~}(j-i))~~n)=id n>
using insert(3) by blast
thus ?case
using ij(1) nat_0_less_mult_iff zero_less_diff unfolding funpow_mult by
metis
qed
thus thesis
using that by blast
qed
lemma permutation_is_nilpotent':
assumes permutation p obtains n where (}p~~n)=id\mathrm{ and n>m
proof -
obtain n where (}\mp@subsup{p}{~}{~}n)=id\mathrm{ and }n>
using permutation_is_nilpotent[OF assms] by blast
then obtain k where n*k>m
by (metis dividend_less_times_div mult__Suc_right)
from < (}\mp@subsup{p}{}{~^}n)=id\rangle\mathrm{ have }p^~(n*k)=i
by (induct k) (simp, metis funpow_mult id_funpow)
with <n*k> m〉 show thesis
using that by blast
qed

```

\subsection*{6.5.2 Extraction of cycles from permutations}
definition least_power \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow\) nat
where least_power \(f x=(\) LEAST \(n .(f \leadsto n) x=x \wedge n>0)\)
abbreviation support \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) list
where support \(p x \equiv \operatorname{map}(\lambda i .(p \sim i) x)[0 . .<(\) least_power \(p x)]\)
lemma least_powerI:
assumes \((f \leadsto n) x=x\) and \(n>0\)
shows \((f \leadsto\) (least_power \(f x)) x=x\) and least_power \(f x>0\)
using assms unfolding least_power_def by (metis (mono_tags, lifting) LeastI)+
lemma least_power_le:
assumes \((f \leadsto n) \bar{x}=x\) and \(n>0\) shows least_power \(f x \leq n\)
using assms unfolding least_power_def by (simp add: Least_le)
lemma least_power_of_permutation:
assumes permutation \(p\) shows ( \(p^{\wedge}(\) least_power \(\left.p a)\right) a=a\) and least_power pa>0
using permutation_is_nilpotent \([O F\) assms \(]\) least_powerI by (metis id_apply)+
lemma least_power_gt_one:
assumes permutation pand \(p a \neq a\) shows least_power pa>Suc 0
using least_power_of_permutation[OF assms(1)] assms(2)
by (metis Suc_lessI funpow.simps(2) funpow_simps_right(1) o_id)
lemma least_power_minimal:
assumes \((p \leadsto n) a=a\) shows (least_power \(p\) a) dvd \(n\)
proof (cases \(n=0\), simp)
let ?lpow \(=\) least_power \(p\)
assume \(n \neq 0\) then have \(n>0\) by simp
hence \((p \sim(\) ?lpow \(a)) a=a\) and least_power \(p a>0\)
using assms unfolding least_power_def by (metis (mono_tags, lifting) LeastI)+
hence aux_lemma: \((p\) ~ \(((\) ?lpow \(a) * k)) a=a\) for \(k::\) nat
by \((\) induct \(k)\) (simp_all add: funpow_add)
have \((p \sim(n\) mod ?lpow \(a))\left(\left(p^{\sim}(n-(n \bmod\right.\right.\) ?lpow \(\left.\left.a))\right) a\right)=\left(p^{\sim} n\right) a\)
by (metis add_diff_inverse_nat funpow_add mod_less_eq_dividend not_less o_apply)
with \(\langle(p \leadsto n) a=a\rangle\) have \((p \leadsto(n\) mod ?lpow \(a)) a=a\)
using aux_lemma by (simp add: minus_mod_eq_mult_div)
hence ?lpow \(a \leq n\) mod ?lpow \(a\) if \(n\) mod ?lpow \(a>0\)
using least_power_le \(\left[O F ~ \_~ t h a t, ~ o f ~ p a\right] ~ b y ~ s i m p ~\)
with 〈least_power p \(a>0\) 〉 show (least_power pa) dvd \(n\)
using mod_less_divisor not_le by blast
qed
lemma least_power_dvd:
assumes permutation \(p\) shows (least_power pa)dvd \(n \longleftrightarrow(p \leadsto n) a=a\)
```

proof
show $(p \sim n) a=a \Longrightarrow($ least_power $p a) d v d n$
using least_power_minimal $[o f$ _ $p]$ by simp
next
have $(p$ ~ $(($ least_power $p a) * k)) a=a$ for $k::$ nat
using least_power_of_permutation(1)[OF assms(1)] by (induct k) (simp_all
add: funpow_add)
thus (least_power p a) dvd $n \Longrightarrow\left(p^{\sim} n\right) a=a$ by blast
qed
theorem cycle_of_permutation:
assumes permutation p shows cycle (support $p a$)
proof -
have (least_power pa)dvd $(j-i)$ if $i \leq j j<l e a s t _p o w e r ~ p a$ and $\left(p^{\sim} i\right) a$
$=\left(p^{\wedge} j\right) a$ for $i j$
using funpow_diff[OF bij_is_inj that (1,3)] assms by (simp add: permutation
least_power_dvd)
moreover have $i=j$ if $i \leq j j<l e a s t _p o w e r ~ p a$ and (least_power pa)dvd
$(j-i)$ for $i j$
using that le_eq_less_or_eq nat_dvd_not_less by auto
ultimately have inj_on ($\left.\lambda i .\left(p^{\wedge} i\right) a\right)\{. .<($ least_power $p a)\}$
unfolding inj_on_def by (metis le_cases lessThan_iff)
thus ?thesis
by (simp add: atLeast_upt distinct_map)
qed

```

\subsection*{6.6 Decomposition on Cycles}

We show that a permutation can be decomposed on cycles

\subsection*{6.6.1 Preliminaries}
```

lemma support_set:
assumes permutation p shows set (support pa)=range (\lambdai. (p^~i)a)
proof
show set (support pa)\subseteqrange (\lambdai. (p^~ i) a)
by auto
next
show range (\lambdai. (p ^i)a)\subseteq set (support pa)
proof (auto)
fix }
have (p~ i) a=(p^~ (i mod (least_power p a))) ((p^~ (i - (i mod
(least_power p a)))) a)
by (metis add_diff_inverse_nat funpow_add mod_less_eq_dividend not_le
o_apply)
also have ... = (p~}(i\operatorname{mod}(least_power p a))) a
using least_power_dvd[OF assms] by (metis dvd__minus_mod)
also have ... \in(\lambdai. (p~i)a)'{0..< (least__power p a)}
using least_power_of_permutation(2)[OF assms] by fastforce

```
```

 finally show (p^^i) a\in(\lambdai. (p~ i) a)'{0..< (least_power pa)}.
 qed
 qed
lemma disjoint_support:
assumes permutation p shows disjoint (range (\lambdaa. set (support p a))) (is disjoint
?A)
proof (rule disjointI)
{ fix ijab
assume set (support p a)\cap set (support p b) }={}\mathrm{ have set (support p a) }
set (support p b)
unfolding support_set[OF assms]
proof (auto)
from <set (support pa) \cap set (support p b) \not={}>
obtain i j where ij:(p^^ i) a=(p^^ j)b
by auto
fix }
have (}\mp@subsup{p}{}{~}k)a=(p^^(k+(least_power pa)*l))a for
using least_power_dvd[OF assms] by (induct l) (simp, metis dvd_triv_left
funpow_add o_def)
then obtain m}\mathrm{ where m \i and (p^m) a=((p^k)a
using least_power_of_permutation(2)[OF assms]
by (metis dividend_less_times_div le_eq_less_or_eq mult_Suc_right
trans_less_add2)
hence (p^m)a=(p^~}(m-i))((p^i)a
by (metis Nat.le_imp_diff_is_add funpow_add o_apply)

```

```

 unfolding ij by (simp add: funpow_add)
 thus (p~~}k)a\in\operatorname{range}(\lambdai.(p~~i)b
 by blast
 qed } note aux_lemma = this
 fix supp_a supp_b
 assume supp_a\in?A and supp_b\in?A
 then obtain a b where a: supp_a= set (support pa) and b: supp_b = set
 (support p b)
by auto
assume supp_a\not= supp_b thus supp_a }\cap\mathrm{ supp_ b = {}
using aux_lemma unfolding a b by blast
qed
lemma disjoint_support':
assumes permutation p
shows set (support pa) \cap set (support p b)={} \longleftrightarrowa\not\in set (support p b)
proof -
have a fet (support p a)
using least_power_of_permutation(2)[OF assms] by force
show ?thesis

```
```

 proof
 assume set (support pa)\cap set (support p b)={}
 with «a\in set (support p a)> show a\not\in set (support p b)
 by blast
 next
 assume a& set (support pb) show set (support pa) \cap set (support pb)={}
 proof (rule ccontr)
 assume set (support p a)\cap set (support p b)}\not={
 hence set (support pa)= set (support p b)
 using disjoint_support[OF assms] by (meson UNIV_I disjoint_def im-
 age_iff)
with «a\in set (support pa)\rangle and <a\not\in set (support p b) show False
by simp
qed
qed
qed
lemma support_coverture:

```

```

\not=a}
proof
show {a.pa\not=a}\subseteq\bigcup{ set (support p a)|a.pa\not=a}
proof
fix a assume }a\in{a.pa\not=a
have a\in set (support p a)
using least_power_of_permutation(2)[OF assms, of a] by force
with}<a\in{a.pa\not=a}>\mathrm{ show }a\in\bigcup{\mathrm{ set (support pa)|a.pa\# a { }
by blast
qed
next
show \bigcup{ set (support pa)|a.pa\not=a}\subseteq{a.pa\not=a}
proof
fix b assume b U \{set (support p a)|a.pa\not=a}
then obtain }ai\mathrm{ where pa\#=a and (p^^i) a=b
by auto
have pa=a if (p^ i) a=(p^ Suci) a
using funpow_diff[OF bij_is_inj _ that] assms unfolding permutation by
simp
with }\langlepa\not=a\rangle\mathrm{ and }\langle(p~ ~) a=b\rangle\mathrm{ show b}\in{a.pa\not=a
by auto
qed
qed
theorem cycle_restrict:
assumes permutation p and $b \in \operatorname{set}($ support $p a)$ shows $p b=($ cycle_of_list
(support p a)) b
proof -
note least_power_props [simp] = least_power_of_permutation[OF assms(1)]

```
```

have map (cycle_of_list (support pa)) (support pa) = rotate1 (support pa)
using cyclic_rotation $[O F$ cycle_of_permutation $[O F \operatorname{assms}(1)]$, of 1 a] by simp
hence map $($ cycle_of_list $($ support $p a))($ support $p a)=t l($ support $p a) @[a]$
by (simp add: hd_map rotate1_hd_tl)
also have $\ldots=\operatorname{map} p$ (support $p a)$
proof (rule nth_equalityI, auto)
fix i assume $i<l e a s t _p o w e r p a \operatorname{show}(t l(\operatorname{support} p a) @[a])!i=p((p$ ~
i) a)
proof (cases)
assume i : $i=$ least_power p $a-1$
hence ($t l$ (support pa) @ [a])! $i=a$
by (metis (no_types, lifting) diff_zero length_map length_tl length_upt
nth_append_length)
also have $\ldots=p\left(\left(p^{\sim} i\right) a\right)$
by (metis (mono_tags, opaque_lifting) least_power_props i Suc_diff_1
funpow_simps_right(2) funpow_swap1 o_apply)
finally show ?thesis .
next
assume $i \neq$ least_power $p a-1$
with $\left\langle i<l e a s t _p o w e r p a\right\rangle$ have $i<l e a s t _p o w e r p a-1$
by simp
hence ($t l$ (support pa) @ [a])! $i=(p \sim(S u c i)) a$
by (metis One_nat_def Suc_eq_plus1 add.commute length_map length_upt
map_tl nth_append nth_map_upt tl_upt)
thus ?thesis
by simp
qed
qed
finally have map (cycle_of_list (support pa)) (support pa)= map p(support
$p a)$.
thus ?thesis
using assms(2) by auto
qed

```

\subsection*{6.6.2 Decomposition}
inductive cycle_decomp \(::\) 'a set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow\) bool
where
empty: cycle_decomp \{\} id
| comp: 【 cycle_decomp I p; cycle cs; set cs \(\cap I=\{ \} \rrbracket \Longrightarrow\) cycle_decomp \((\) set cs \(\cup I)\left(\left(c y c l e \_o f \_l i s t ~ c s\right) \circ p\right)\)
lemma semidecomposition:
assumes \(p\) permutes \(S\) and finite \(S\)
shows ( \(\lambda y\). if \(y \in(S-\) set (support \(p a)\) ) then \(p\) y else \(y\) ) permutes \((S-\) set (support pa))
proof (rule bij_imp_permutes)
show (if \(b \in(S-\) set (support \(p a)\) ) then \(p b\) else \(b)=b\) if \(b \notin S-\) set (support
```

p a) for b
using that by auto
next
have is_permutation: permutation p
using assms unfolding permutation_permutes by blast
let ?q}=\lambday. if y f(S-set (support pa)) then p y else y
show bij_betw ?q (S - set (support pa)) (S - set (support p a))
proof (rule bij_betw_imageI)
show inj_on ?q (S - set (support p a))
using permutes_inj[OF assms(1)] unfolding inj_on_def by auto
next
have aux_lemma: set (support p s)\subseteq(S - set (support p a)) if s\inS - set
(support p a) for s
proof -
have (p~~i)s\inS for i
using that unfolding permutes_in_image[OF permutes_funpow[OF assms(1)]]
by simp
thus ?thesis
using that disjoint_support'[OF is_permutation, of s a] by auto
qed
have (p^~ 1) s\in set (support p s) for s
unfolding support_set[OF is_permutation] by blast
hence ps\in set (support p s) for s
by simp
hence p'(S - set (support p a))\subseteqS - set (support pa)
using aux_lemma by blast
moreover have (p^ ((least_power p s) - 1)) s\in set (support p s) for s
unfolding support_set[OF is_permutation] by blast
hence }\exists\mp@subsup{s}{}{\prime}\in\mathrm{ set (support ps).p s}\mp@subsup{s}{}{\prime}=s\mathrm{ for s
using least_power_of_permutation[OF is_permutation] by (metis Suc_diff_1
funpow.simps(2) o_apply)
hence S - set (support pa)\subseteqp'(S - set (support pa))
using aux_lemma
by (clarsimp simp add: image_iff) (metis image_subset_iff)
ultimately show ?q'(S - set (support pa))}=(S-\operatorname{set}(\mathrm{ support pa)}
by auto
qed
qed
theorem cycle_decomposition:
assumes p permutes S and finite S shows cycle_decomp S p
using assms
proof(induct card S arbitrary: S p rule: less_induct)
case less show ?case
proof (cases)
assume S={} thus ?thesis
using empty less(2) by auto
next

```
```

 have is_permutation: permutation p
 using less(2-3) unfolding permutation_permutes by blast
 assume S\not={} then obtain s}\mathrm{ where }s\in
 by blast
 define q}\mathrm{ where q}=(\lambday\mathrm{ . if }y\in(S-\operatorname{set}(\mathrm{ support }p\mathrm{ s)) then p y else y)
 have (cycle_of_list (support p s) ○ q) = p
 proof
 fix }
 consider a \inS - set (support p s)| a\in set (support p s)| | & Sa\not\in set
 (support p s)
by blast
thus ((cycle_of_list (support p s)\circq)) a=pa
proof cases
case 1
have (p^1) a\in set (support pa)
unfolding support_set[OF is_permutation] by blast
with <a\inS - set (support p s)> have pa\not\in set (support p s)
using disjoint_support'[OF is_permutation, of a s] by auto
with <a \inS - set (support p s)\rangle show ?thesis
using id_outside_supp[of _ support p s] unfolding q_def by simp
next
case 2 thus ?thesis
using cycle_restrict[OF is_permutation] unfolding q_def by simp
next
case 3 thus ?thesis
using id_outside_supp[OF 3(2)] less(2) permutes_not_in unfolding
q_def by fastforce
qed
qed
moreover from }\langles\inS\rangle\mathrm{ have (}\mp@subsup{p}{}{~}i)s\inS\mathrm{ for i
unfolding permutes_in_image[OF permutes_funpow[OF less(2)]].
hence set (support p s)\cup(S - set (support p s))=S
by auto
moreover have s\in set (support p s)
using least_power_of_permutation[OF is_permutation] by force
with }\langles\inS`\mathrm{ have card (S - set (support p s)) < card S
using less(3) by (metis DiffE card_seteq linorder_not_le subsetI)
hence cycle_decomp (S - set (support p s)) q
using less(1)[OF _ semidecomposition[OF less(2-3)], of s] less(3) unfolding
q_def by blast
moreover show ?thesis
using comp[OF calculation(3) cycle_of_permutation[OF is_permutation], of
s]
unfolding calculation(1-2) by blast
qed

```
end

\section*{7 Permutations as abstract type}

\author{
theory Perm imports Transposition \\ begin
}

This theory introduces basics about permutations, i.e. almost everywhere fix bijections. But it is by no means complete. Grieviously missing are cycles since these would require more elaboration, e.g. the concept of distinct lists equivalent under rotation, which maybe would also deserve its own theory. But see theory src/HOL/ex/Perm_Fragments.thy for fragments on that.

\subsection*{7.1 Abstract type of permutations}
```

typedef 'a perm = {f:: 'a > 'a. bijf^ finite {a.f a\not=a}}
morphisms apply Perm
proof
show id \in?perm by simp
qed
setup_lifting type_definition_perm
notation apply (infixl <$> 999)
lemma bij_apply [simp]:
 bij (apply f)
 using apply [of f] by simp
lemma perm_eqI:
 assumes \a.f \langle$\ranglea=g\langle$\ranglea
 shows f}=
 using assms by transfer (simp add: fun_eq_iff)
lemma perm_eq_iff:
 f=g\longleftrightarrow(\foralla.f\langle$\ranglea=g\langle$\ranglea)
 by (auto intro: perm_eqI)
lemma apply_inj:
 f \langle$\ranglea=f\langle\$\rangleb\longleftrightarrowa=b
by (rule inj_eq) (rule bij_is_inj, simp)
lift_definition affected :: 'a perm = 'a set
is \lambdaf.{a.fa\not=a} .

```
```

lemma in_affected:
a\in affected f}\longleftrightarrow<\langle\langle$\ranglea\not=
 by transfer simp
lemma finite_affected [simp]:
 finite (affected f)
 by transfer simp
lemma apply_affected [simp]:
 f\langle$\ranglea}\in\mathrm{ affected }f\longleftrightarrowa\in\mathrm{ affected }
proof transfer
fix }f::''a=>''a and a ::' a
assume bij f ^ finite {b.fb\not=b}
then have bij f by simp
interpret bijection f by standard (rule <bij f>)
have fa\in{a.fa=a}\longleftrightarrowa\in{a.fa=a}(is ?P\longleftrightarrow ?Q)
by auto
then show fa\in{a.fa\not=a}\longleftrightarrowu}\longleftrightarrowa\in{a.fa\not=a
by simp
qed
lemma card_affected_not_one:
card (affected f)}\not=
proof
interpret bijection apply f
by standard (rule bij_apply)
assume card (affected f)=1
then obtain a where *: affected f={a}
by (rule card_1_singletonE)
then have **: f\langle$\ranglea\not=a
 by (simp flip: in_affected)
 with * have f \langle$\rangle a \not\in affected f
by simp
then have f <$\rangle(f\langle$\ranglea)=f\langle$\ranglea
 by (simp add: in_affected)
 then have inv (apply f) (f\langle$\rangle(f\langle$\ranglea))=inv (apply f) (f\langle$\ranglea)
by simp
with ** show False by simp
qed

```

\subsection*{7.2 Identity, composition and inversion}
```

instantiation Perm.perm :: (type) {monoid_mult, inverse}

```
instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin
begin
lift__definition one_perm :: 'a perm
    is id
    by simp
```

```
lemma apply_one [simp]:
    apply \(1=\) id
    by (fact one_perm.rep_eq)
lemma affected_one [simp]:
    affected \(1=\{ \}\)
    by transfer simp
lemma affected_empty_iff [simp]:
    affected \(f=\{ \} \longleftrightarrow f=1\)
    by transfer auto
lift__definition times_perm \(::\) ' \(a\) perm \(\Rightarrow{ }^{\prime} a\) perm \(\Rightarrow{ }^{\prime}\) 'a perm
    is comp
proof
    fix \(f g::{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
    assume bij \(f \wedge\) finite \(\{a . f a \neq a\}\)
        bij \(g \wedge\) finite \(\{a . g a \neq a\}\)
    then have finite \((\{a . f a \neq a\} \cup\{a . g a \neq a\})\)
        by \(\operatorname{simp}\)
    moreover have \(\{a .(f \circ g) a \neq a\} \subseteq\{a . f a \neq a\} \cup\{a . g a \neq a\}\)
        by auto
    ultimately show finite \(\{a .(f \circ g) a \neq a\}\)
        by (auto intro: finite_subset)
qed (auto intro: bij_comp)
lemma apply_times:
    apply \((f * g)=\) apply \(f \circ\) apply \(g\)
    by (fact times_perm.rep_eq)
lemma apply_sequence:
    \(f\langle \$\rangle(g\langle \$\rangle a)=\operatorname{apply}(f * g) a\)
    by (simp add: apply_times)
lemma affected_times [simp]:
    affected \((f * g) \subseteq\) affected \(f \cup\) affected \(g\)
    by transfer auto
lift_definition inverse_perm :: 'a perm \(\Rightarrow\) 'a perm
    is inv
proof transfer
    fix \(f::^{\prime} a \Rightarrow{ }^{\prime} a\) and \(a\)
    assume bij \(f \wedge\) finite \(\{b . f b \neq b\}\)
    then have bij \(f\) and fin: finite \(\{b . f b \neq b\}\)
        by auto
    interpret bijection \(f\) by standard (rule 〈bij f〉)
    from fin show bij \((\operatorname{inv} f) \wedge\) finite \(\{a . \operatorname{inv} f a \neq a\}\)
        by (simp add: bij_inv)
```


qed

```
instance
    by standard (transfer; simp add: comp_assoc)+
end
lemma apply_inverse:
    apply (inverse f) =inv (apply f)
    by (fact inverse_perm.rep_eq)
lemma affected_inverse [simp]:
    affected (inverse f) = affected f
proof transfer
    fix f :: 'a > ' }a\mathrm{ and }
    assume bij f ^ finite {b.fb\not=b}
    then have bij f by simp
    interpret bijection f by standard (rule 〈bij f>)
    show {a.inv fa\not=a}={a.fa\not=a}
        by simp
qed
global_interpretation perm: group times 1::'a perm inverse
proof
    fix f :: 'a perm
    show 1 *f =f
        by transfer simp
    show inverse f*f=1
    proof transfer
        fix f :: 'a 缶'a and }
        assume bij f^ finite {b.fb\not=b}
        then have bij f by simp
        interpret bijection f by standard (rule 〈bij f>)
        show inv f\circf=id
            by simp
    qed
qed
declare perm.inverse_distrib_swap [simp]
lemma perm_mult_commute:
    assumes affected f\cap affected g={}
    shows g*f=f*g
proof (rule perm_eqI)
    fix a
    from assms have *: a\inaffected f\Longrightarrowa\not< affected g
        a\in affected g\Longrightarrowa\not< affected f for a
        by auto
    consider a affected f ^a\not\in affected g
```

```
            \wedge f\langle$\ranglea = affected f
    | a\not\in affected f ^a\in affected g
            \wedgef\langle$\ranglea\not\in affected f
    | a\not\in affected f ^a\not\in affected g
    using assms by auto
    then show }(g*f)\langle$\ranglea=(f*g)\langle$\rangle
    proof cases
        case 1
        with * have f\langle$\ranglea & affected g
            by auto
        with 1 show ?thesis by (simp add: in_affected apply_times)
    next
        case 2
        with * have g}\langle$\ranglea\not\in\mathrm{ affected f
            by auto
        with 2 show ?thesis by (simp add: in_affected apply_times)
    next
        case 3
        then show ?thesis by (simp add: in_affected apply_times)
    qed
qed
lemma apply_power:
    apply (f^n) = apply f^n
    by (induct n) (simp_all add: apply_times)
lemma perm_power_inverse:
    inverse f^ n= inverse ((f :: 'a perm) ^ n)
proof (induct n)
    case 0 then show ?case by simp
next
    case (Suc n)
    then show ?case
        unfolding power_Suc2 [of f] by simp
qed
```


7.3 Orbit and order of elements

```
definition orbit :: 'a perm \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) set where
orbit \(f a=\) range \(\left(\lambda n .\left(f^{\wedge} n\right)\langle \$\rangle a\right)\)
lemma in_orbitI:
assumes \(\left(f^{\wedge} n\right)\langle \$\rangle a=b\)
shows \(b \in\) orbit \(f a\)
using assms by (auto simp add: orbit_def)
lemma apply_power_self_in_orbit [simp]:
\(\left(f^{\wedge} n\right)\langle \$\rangle a \in\) orbit \(f a\)
```

```
    by (rule in_orbitI) rule
lemma in_orbit_self [simp]:
    a}\in\mathrm{ orbit fa
    using apply_power__self_in_orbit [of_0] by simp
lemma apply_self_in_orbit [simp]:
    f \langle$\ranglea
    using apply_power_self_in_orbit [of _ 1] by simp
lemma orbit_not_empty [simp]:
    orbit f a\not={}
    using in_orbit_self [of a f] by blast
lemma not_in_affected_iff_orbit_eq_singleton:
    a\not\inaffected f}\longleftrightarrow\mathrm{ orbit f a={a} (is ?P }\longleftrightarrow\mathrm{ ?Q)
proof
    assume ?P
    then have f \langle$\rangle a=a
        by (simp add: in_affected)
    then have (f^n)
        by (induct n) (simp_all add: apply_times)
    then show?Q
        by (auto simp add: orbit_def)
next
    assume ?Q
    then show ?P
        by (auto simp add: orbit_def in__affected dest: range_eq_singletonD [of _ _ 
1])
qed
definition order :: 'a perm => 'a m nat
where
    order f = card \circ orbit f
lemma orbit_subset_eq_affected:
    assumes a G affected f
    shows orbit f a \subseteqaffected f
proof (rule ccontr)
    assume \neg orbit f a\subseteqaffected f
    then obtain b where b\in orbit f a and b}\not=\mathrm{ affected f
    by auto
    then have b f range ( }\lambdan.(\mp@subsup{f}{}{\wedge}n)\langle$\ranglea
    by (simp add: orbit_def)
    then obtain n where b=( f^n)\langle$\ranglea
    by blast
    with «b \not\in affected f
    have (f^n)\langle$\ranglea\not\in affected f
    by simp
```

```
    then have f \langle$\ranglea\not\in affected f
    by (induct n) (simp_all add: apply_times)
    with assms show False
    by simp
qed
lemma finite_orbit [simp]:
    finite (orbit fa)
proof (cases a f affected f)
    case False then show ?thesis
        by (simp add: not_in_affected_iff_orbit_eq_singleton)
next
    case True then have orbit f a\subseteqaffected f
        by (rule orbit_subset_eq_affected)
    then show ?thesis using finite_affected
        by (rule finite_subset)
qed
lemma orbit_1 [simp]:
    orbit 1 a = {a}
    by (auto simp add: orbit_def)
lemma order_1 [simp]:
    order 1 a = 1
    unfolding order_def by simp
lemma card_orbit_eq [simp]:
    card (orbit fa) = order fa
    by (simp add: order_def)
lemma order_greater_zero [simp]:
    order fa>0
    by (simp only: card_gt_0_iff order__def comp_def) simp
lemma order_eq_one_iff:
    order f a=Suc 0 \longleftrightarrowa\not\inaffected f(is ?P \longleftrightarrow?Q)
proof
    assume ?P then have card (orbit fa)=1
    by simp
    then obtain b where orbit fa={b}
    by (rule card_1_singletonE)
    with in_orbit_self [of a f]
        have b=a by simp
    with <orbit f a = {b}` show ?Q
    by (simp add: not_in_affected_iff_orbit_eq_singleton)
next
    assume ?Q
    then have orbit f a={a}
        by (simp add: not_in_affected_iff_orbit_eq_singleton)
```

```
    then have card (orbit fa)=1
    by simp
    then show ?P
    by simp
qed
lemma order_greater_eq_two_iff:
    order f a 2 2 \longleftrightarrowa\inaffected f
    using order_eq_one_iff [of f a]
    apply (auto simp add: neq_iff)
    using order_greater_zero [offa]
    apply simp
    done
lemma order_less_eq_affected:
    assumes f\not=1
    shows order f a < card (affected f)
proof (cases a f affected f)
    from assms have affected f}\not={
        by simp
    then obtain B b where affected f= insert b B
        by blast
    with finite_affected [of f] have card (affected f) \geq1
    by (simp add: card.insert_remove)
    case False then have order f a=1
    by (simp add: order_eq_one_iff)
    with <card (affected f)\geq1> show ?thesis
    by simp
next
    case True
    have card (orbit fa)\leqcard (affected f)
    by (rule card_mono) (simp_all add: True orbit_subset_eq_affected card_mono)
    then show ?thesis
        by simp
qed
lemma affected_order_greater_eq_two:
    assumes a f affected f
    shows order f a\geq2
proof (rule ccontr)
    assume \neg 2 \leqorder fa
    then have order fa<2
        by (simp add: not_le)
    with order_greater_zero [of fa] have order fa=1
    by arith
    with assms show False
        by (simp add: order_eq_one_iff)
qed
```

```
lemma order_witness_unfold:
    assumes \(n>0\) and \(\left(f^{\wedge} n\right)\langle \$\rangle a=a\)
    shows order \(f a=\operatorname{card}\left(\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right) \cdot\{0 . .<n\}\right)\)
proof -
    have orbit \(f a=\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right) \quad\{0 . .<n\} \quad\left(\right.\) is \(\left._{\sim}=? B\right)\)
    proof (rule set_eqI, rule)
        fix \(b\)
        assume \(b \in\) orbit fa
        then obtain \(m\) where \(\left(f^{\wedge} m\right)\langle \$\rangle a=b\)
        by (auto simp add: orbit_def)
    then have \(b=\left(f^{\wedge}(m \bmod n+n *(m\right.\) div \(\left.n))\right)\langle \$\rangle a\)
        by \(\operatorname{simp}\)
    also have \(\ldots=\left(f^{\wedge}(m \bmod n)\right)\langle \$\rangle\left(\left(f^{\wedge}(n *(m\right.\right.\) div \(\left.\left.n))\right)\langle \$\rangle a\right)\)
        by (simp only: power_add apply_times) simp
    also have \(\left(f^{\wedge}(n * q)\right)\langle \$\rangle a=a\) for \(q\)
        by (induct \(q\) )
            (simp_all add: power_add apply_times assms)
    finally have \(b=\left(f^{\wedge}(m \bmod n)\right)\langle \$\rangle a\).
    moreover from \(\langle n>0\) 〉
    have \(m \bmod n<n\)
        by \(\operatorname{simp}\)
        ultimately show \(b \in ? B\)
        by auto
    next
    fix \(b\)
    assume \(b \in\) ? \(B\)
    then obtain \(m\) where \(\left(f^{\wedge} m\right)\langle \$\rangle a=b\)
        by blast
    then show \(b \in \operatorname{orbit} f a\)
        by (rule in_orbitI)
    qed
    then have card (orbit fa) \(=\) card ? \(B\)
        by (simp only:)
    then show?thesis
    by \(\operatorname{simp}\)
qed
lemma inj_on_apply_range:
    inj_on \(\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right)\{. .<\operatorname{order} f a\}\)
proof -
    have inj_on \(\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right)\{. .<n\}\)
        if \(n \leq\) order \(f a\) for \(n\)
    using that proof (induct n)
        case 0 then show ?case by simp
    next
    case (Suc n)
    then have prem: \(n<\operatorname{order} f a\)
        by \(s i m p\)
    with Suc.hyps have hyp: inj_on \(\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right)\{. .<n\}\)
```

```
    by \(\operatorname{simp}\)
    have \((f\) へ \(n)\langle \$\rangle a \notin(\lambda m .(f \wedge m)\langle \$\rangle a) '\{. .<n\}\)
    proof
    assume \(\left(f^{\wedge} n\right)\langle \$\rangle a \in\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right)\) ' \(\{. .<n\}\)
    then obtain \(m\) where \(*:\left(f^{\wedge} m\right)\langle \$\rangle a=\left(f^{\wedge} n\right)\langle \$\rangle a\) and \(m<n\)
        by auto
    interpret bijection apply \(\left(f^{\wedge} m\right)\)
        by standard simp
    from \(\langle m<n\rangle\) have \(n=m+(n-m)\)
        and \(n m: 0<n-m n-m \leq n\)
        by arith +
    with \(*\) have \(\left(f^{\wedge} m\right)\langle \$\rangle a=\left(f^{\wedge}(m+(n-m))\right)\langle \$\rangle a\)
        by \(\operatorname{simp}\)
    then have \(\left(f^{\wedge} m\right)\langle \$\rangle a=\left(f^{\wedge} m\right)\langle \$\rangle\left(\left(f^{\wedge}(n-m)\right)\langle \$\rangle a\right)\)
        by (simp add: power_add apply_times)
    then have \(\left(f^{\wedge}(n-m)\right)\langle \$\rangle a=a\)
        by simp
    with \(\langle n-m>0\) 〉
    have order \(f a=\operatorname{card}\left(\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right) '\{0 . .<n-m\}\right)\)
        by (rule order_witness_unfold)
    also have \(\operatorname{card}\left(\left(\lambda m .\left(f^{\wedge} m\right)\langle \$\rangle a\right) '\{0 . .<n-m\}\right) \leq \operatorname{card}\{0 . .<n-m\}\)
        by (rule card_image_le) simp
    finally have order f \(a \leq n-m\)
        by \(\operatorname{simp}\)
        with prem show False by simp
    qed
    with hyp show ? case
    by (simp add: lessThan_Suc)
qed
then show? ?thesis by simp
qed
lemma orbit_unfold_image:
    orbit \(f a=\left(\lambda n .\left(f^{\wedge} n\right)\langle \$\rangle a\right) '\{. .<\operatorname{order} f a\}\left(\mathbf{i s}_{-}=? A\right)\)
proof (rule sym, rule card_subset_eq)
    show finite (orbit fa)
    by \(\operatorname{simp}\)
    show ?A \(\subseteq\) orbit fa
    by (auto simp add: orbit_def)
from inj_on_apply_range \([\) of \(f a]\)
have card ? A \(=\) order \(f a\)
    by (auto simp add: card_image)
    then show card ? \(A=\operatorname{card}(\) orbit \(f a)\)
    by \(\operatorname{simp}\)
qed
lemma in_orbitE:
assumes \(b \in\) orbit \(f a\)
obtains \(n\) where \(b=\left(f^{\wedge} n\right)\langle \$\rangle a\) and \(n<\operatorname{order} f a\)
```

```
    using assms unfolding orbit_unfold_image by blast
lemma apply_power_order [simp]:
    \((f\) ^order \(f a)\langle \$\rangle a=a\)
proof -
    have \((f\) へorder \(f a)\langle \$\rangle a \in \operatorname{orbit} f a\)
        by simp
    then obtain \(n\) where
        *: \(\left(f^{\wedge}\right.\) order \(\left.f a\right)\langle \$\rangle a=\left(f^{\wedge} n\right)\langle \$\rangle a\)
        and \(n<\operatorname{order} f a\)
        by (rule in_orbitE)
    show ?thesis
    proof (cases \(n\) )
        case 0 with \(*\) show ?thesis by simp
    next
        case (Suc m)
        from order_greater_zero [of fa]
            have Suc (order \(f a-1\) ) \(=\operatorname{order} f a\)
            by arith
        from Suc \(\langle n<\) order \(f a\rangle\)
            have \(m<\) order \(f a\)
            by \(\operatorname{simp}\)
    with Suc *
    have (inverse \(f)\langle \$\rangle\left(\left(f^{\wedge}\right.\right.\) Suc (order \(\left.\left.\left.f a-1\right)\right)\langle \$\rangle a\right)=\)
            (inverse \(f)\langle \$\rangle\left(\left(f^{\wedge}\right.\right.\) Suc m) \(\left.\langle \$\rangle a\right)\)
            by \(\operatorname{simp}\)
        then have \(\left(f^{\wedge}(\right.\) order \(\left.f a-1)\right)\langle \$\rangle a=\)
            \(\left(f^{\wedge} m\right)\langle \$\rangle a\)
            by (simp only: power_Suc apply_times)
            (simp add: apply_sequence mult.assoc [symmetric])
        with inj_on_apply_range
        have order fa-1=m
            by (rule inj_onD)
            (simp_all add: <m < order f a \(>\) )
        with Suc have \(n=\) order \(f a\)
                by auto
        with \(\langle n<\) order \(f a\rangle\)
        show ?thesis by simp
    qed
qed
lemma apply_power_left_mult_order [simp]:
    \(\left(f^{\wedge}(n * \operatorname{order} f a)\right)\langle \$\rangle a=a\)
    by (induct \(n\) ) (simp_all add: power_add apply_times)
lemma apply_power_right_mult_order [simp]:
    \(\left(f^{\wedge}(\right.\) order \(\left.f a * n)\right)\langle \$\rangle a=a\)
    by (simp add: ac_simps)
```

```
lemma apply_power_mod_order_eq [simp]:
    \((f \wedge(n\) mod order \(\overline{f a}))\left\langle\overline{\$\rangle} a=\overline{(f}{ }^{\wedge} n\right)\langle \$\rangle a\)
proof -
    have \(\left(f^{\wedge} n\right)\langle \$\rangle a=\left(f^{\wedge}(n \bmod\right.\) order \(f a+\operatorname{order} f a *(n \operatorname{div}\) order \(\left.f a))\right)\langle \$\rangle a\)
        by \(\operatorname{simp}\)
    also have \(\ldots=\left(f^{\wedge}(n\right.\) mod order \(f a) * f^{\wedge}(\) order \(f a *(n\) div order \(\left.f a))\right)\langle \$\rangle a\)
        by (simp flip: power_add)
    finally show ?thesis
        by (simp add: apply_times)
qed
lemma apply_power_eq_iff:
    \((f \wedge m)\langle \$\rangle a=\left(f^{\wedge} n\right)\langle \$\rangle a \longleftrightarrow m\) mod order \(f a=n \bmod\) order \(f a\) (is ?P
\(\longleftrightarrow ? Q)\)
proof
    assume ? \(Q\)
    then have \(\left(f^{\wedge}(m \bmod\right.\) order \(\left.f a)\right)\langle \$\rangle a=\left(f^{\wedge}(n \bmod\right.\) order \(\left.f a)\right)\langle \$\rangle a\)
        by simp
    then show ?P
        by \(\operatorname{simp}\)
next
    assume ?P
    then have \(\left(f^{\wedge}(m\right.\) mod order \(\left.f a)\right)\langle \$\rangle a=\left(f^{\wedge}(n \bmod\right.\) order \(\left.f a)\right)\langle \$\rangle a\)
        by \(\operatorname{simp}\)
    with inj_on_apply_range
    show ?Q
        by (rule inj_onD) simp_all
qed
lemma apply_inverse_eq_apply_power_order_minus_one:
    (inverse f) \(\langle \$\rangle a=\left(f^{\wedge}(\right.\) order \(\left.f a-1)\right)\langle \$\rangle a\)
proof (cases order fa)
    case 0 with order_greater_zero [of fa] show ?thesis
        by \(\operatorname{simp}\)
next
    case (Suc n)
    moreover have ( \(f^{\wedge}\) order \(f a\) ) \(\langle \$\rangle a=a\)
        by \(\operatorname{simp}\)
    then have \(*:(\) inverse \(f)\langle \$\rangle((f\) へorder \(f a)\langle \$\rangle a)=(\) inverse \(f)\langle \$\rangle a\)
        by simp
    ultimately show ?thesis
        by (simp add: apply_sequence mult.assoc [symmetric])
qed
lemma apply_inverse_self_in_orbit [simp]:
    (inverse f) \(\langle \$\rangle a \in\) orbit f \(a\)
    using apply_inverse_eq_apply_power_order_minus_one [symmetric]
    by (rule in_orbitI)
```

```
lemma apply_inverse_power_eq:
```



```
proof (induct n)
    case 0 then show ?case by simp
next
    case (Suc n)
    define m}\mathrm{ where m=order fa-n mod order fa-1
    moreover have order fa-n mod order f a>0
        by simp
    ultimately have *: order f a - n mod order f a =Suc m
        by arith
    moreover from * have m2: order f a - Suc n mod order f a = (if m=0 then
order f a else m)
    by (auto simp add: mod_Suc)
    ultimately show ?case
        using Suc
        by (simp_all add: apply_times power_Suc2 [of_n] power_Suc [of_m] del:
power_Suc)
        (simp add: apply_sequence mult.assoc [symmetric])
qed
lemma apply_power_eq_self_iff:
    (f^n)}\langle$\ranglea=a\longleftrightarrow order f a dvd n
    using apply_power_eq_iff [of f n a 0}
        by (simp add: mod_eq_0_iff_dvd)
lemma orbit_equiv:
    assumes b \in orbit f a
    shows orbit f b = orbit fa(is ?B=?A)
proof
    from assms obtain n where n < order f a and b: b=(f^n)\langle$\ranglea
        by (rule in_orbitE)
    then show ? B \subseteq? A
        by (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI
elim!: in_orbitE)
    from b have (inverse ( f^^n)) \langle$\rangleb=(inverse ( f^^n))\langle$\rangle((f^n)\langle$\ranglea)
        by simp
    then have a: a=(inverse ( f^n))}\langle$\rangle
        by (simp add: apply_sequence)
    then show ?A\subseteq? }
        apply (auto simp add: apply_sequence power__add [symmetric] intro: in_orbitI
elim!: in_orbitE)
    unfolding apply_times comp__def apply_inverse_power_eq
    unfolding apply_sequence power_add [symmetric]
    apply (rule in__orbitI) apply rule
    done
qed
lemma orbit_apply [simp]:
```

```
    orbit f (f\langle$\ranglea) = orbit fa
    by (rule orbit_equiv) simp
lemma order__apply [simp]:
    order f (f \langle$\rangle a) = order f a
    by (simp only: order_def comp_def orbit_apply)
lemma orbit_apply_inverse [simp]:
    orbit f (inverse f \langle$\rangle a) = orbit f a
    by (rule orbit_equiv) simp
lemma order_apply_inverse [simp]:
    order f(inverse f \langle$\rangle a)=order f a
    by (simp only:order_def comp_def orbit_apply_inverse)
lemma orbit_apply_power [simp]:
    orbit f ((f^n) <$\ranglea) = orbit f a
    by (rule orbit_equiv) simp
lemma order_apply_power [simp]:
    order f ((f^n) \langle$\ranglea) = order f a
    by (simp only: order_def comp_def orbit_apply_power)
lemma orbit_inverse [simp]:
    orbit (inverse f) = orbit f
proof (rule ext, rule set_eqI, rule)
    fix b a
    assume b \in orbit fa
    then obtain n where b:b=(f^n)\langle$\ranglea n<order fa
        by (rule in_orbitE)
    then have b=apply(inverse (inverse f)^n)a
        by simp
    then have b= apply (inverse (inverse f^n))a
    by (simp add: perm_power_inverse)
    then have b= apply (inverse f^
    by (simp add: apply_inverse_eq_apply_power_order_minus_one power_mult)
    then show b\inorbit (inverse f) a
        by simp
next
    fix b a
    assume b\in orbit (inverse f) a
    then show b}\in\mathrm{ orbit fa
        by (rule in_orbitE)
        (simp add: apply_inverse_eq_apply_power_order_minus_one
        perm_power_inverse power_mult [symmetric])
qed
lemma order_inverse [simp]:
    order (inverse f) = order f
```

```
    by (simp add: order_def)
lemma orbit_disjoint:
    assumes orbit f a\not= orbit f b
    shows orbit f a \cap orbit fb={}
proof (rule ccontr)
    assume orbit fa\cap orbit f b}\not={
    then obtain c}\mathrm{ where }c\in\mathrm{ orbit f a }\cap\mathrm{ orbit f b
    by blast
    then have c\inorbit fa and c\inorbit fb
    by auto
    then obtain m n where c=(f^m)\langle$\ranglea
    and c=apply ( f^n) b by (blast elim!: in_orbitE)
    then have (f^ m)\langle$\ranglea=apply ( }\mp@subsup{f}{}{\wedge}n)
    by simp
    then have apply (inverse f^m) ((f^m)\langle$\ranglea)=
        apply (inverse f^m)(apply (f^n) b)
    by simp
    then have *: apply (inverse f^ m*f^n)b=a
    by (simp add: apply_sequence perm_power_inverse)
    have a \in orbit f b
    proof (cases n m rule: linorder_cases)
    case equal with * show ?thesis
        by (simp add: perm_power_inverse)
    next
        case less
        moreover define q}\mathrm{ where q=m-n
    ultimately have m}=q+n\mathrm{ by arith
    with * have apply (inverse f ^q) b=a
        by (simp add: power_add mult.assoc perm_power_inverse)
    then have }a\in\mathrm{ orbit (inverse f) b
        by (rule in_orbitI)
    then show ?thesis
        by simp
    next
    case greater
    moreover define q}\mathrm{ where q=n-m
    ultimately have n=m+q by arith
    with * have apply ( }\mp@subsup{f}{}{\wedge}q)b=
        by (simp add: power_add mult.assoc [symmetric] perm_power_inverse)
    then show ?thesis
        by (rule in_orbitI)
    qed
    with assms show False
    by (auto dest:orbit_equiv)
qed
```


7.4 Swaps

```
lift_definition swap :: ' \(a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \operatorname{perm} \quad\left(\left\langle \_\leftrightarrow \_\right\rangle\right)\)
    is \(\lambda a b\). transpose \(a b\)
proof
    fix \(a b::\) ' \(a\)
    have \(\{c\). transpose a \(b c \neq c\} \subseteq\{a, b\}\)
        by (auto simp add: transpose_def)
    then show finite \(\{c\). transpose a \(b c \neq c\}\)
        by (rule finite_subset) simp
qed \(\operatorname{simp}\)
lemma apply_swap_simp [simp]:
    \(\langle a \leftrightarrow b\rangle\langle \$\rangle a=b\)
    \(\langle a \leftrightarrow b\rangle\langle \$\rangle b=a\)
    by (transfer; simp) +
lemma apply_swap_same [simp]:
    \(c \neq a \Longrightarrow c \neq b \Longrightarrow\langle a \leftrightarrow b\rangle\langle \$\rangle c=c\)
    by transfer simp
lemma apply_swap_eq_iff [simp]:
    \(\langle a \leftrightarrow b\rangle\langle \$\rangle c=a \longleftrightarrow c=b\)
    \(\langle a \leftrightarrow b\rangle\langle \$\rangle c=b \longleftrightarrow c=a\)
    by (transfer; auto simp add: transpose_def)+
lemma swap_1 [simp]:
    \(\langle a \leftrightarrow a\rangle=1\)
    by transfer simp
lemma swap_sym:
    \(\langle b \leftrightarrow a\rangle=\langle a \leftrightarrow b\rangle\)
    by (transfer; auto simp add: transpose_def)+
lemma swap_self [simp]:
    \(\langle a \leftrightarrow b\rangle *\langle a \leftrightarrow b\rangle=1\)
    by transfer simp
lemma affected_swap:
    \(a \neq b \Longrightarrow\) affected \(\langle a \leftrightarrow b\rangle=\{a, b\}\)
    by transfer (auto simp add: transpose_def)
lemma inverse_swap [simp]:
    inverse \(\langle a \leftrightarrow b\rangle=\langle a \leftrightarrow b\rangle\)
    by transfer (auto intro: inv_equality)
```


7.5 Permutations specified by cycles

fun cycle :: 'a list \Rightarrow 'a perm (〈_〉)
where

$$
\begin{aligned}
& \langle\square\rceil=1 \\
& \mid\langle[a]\rangle=1 \\
& \mid\langle a \# b \# a s\rangle=\langle a \# a s\rangle *\langle a \leftrightarrow b\rangle
\end{aligned}
$$

We do not continue and restrict ourselves to syntax from here．See also introductory note．

7．6 Syntax

```
bundle no_permutation_syntax
begin
```

 no__notation swap \(\quad\left(\left\langle _\leftrightarrow\right.\right.\) _ \(\left.\rangle\right)\)
 no__notation cycle (〈_〉)
 no_notation apply (infixl \(\langle \$\rangle\) 999)
 end
bundle permutation_syntax
begin
notation swap $\quad\left(\left\langle_{-} \leftrightarrow-\right\rangle\right)$
notation cycle (〈_〉)
notation apply (infixl $\langle \$\rangle$ 999)
end
unbundle no_permutation_syntax
end

8 Permutation orbits

```
theory Orbits
imports
    HOL-Library.FuncSet
    HOL-Combinatorics.Permutations
begin
```


8．1 Orbits and cyclic permutations

inductive＿set orbit ：：$\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ set for $f x$ where
base：$f x \in$ orbit $f x \mid$
step：$y \in$ orbit $f x \Longrightarrow f y \in$ orbit $f x$
definition cyclic＿on $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a$ set \Rightarrow bool where cyclic＿on $f S \longleftrightarrow(\exists s \in S . S=$ orbit $f s)$
lemma orbit＿altdef：orbit $f x=\{(f \sim n) x \mid n .0<n\}$（is ？$L=? R)$
proof（intro set＿eqI iffI）
fix y assume $y \in ? L$ then show $y \in ? R$
by（induct rule：orbit．induct）（auto simp：exI［where $x=1]$ exI $[$ where $x=$ Suc n for $n]$ ）

```
next
    fix }y\mathrm{ assume }y\in?
    then obtain n where y=( f^n n) x 0<n by blast
    then show }y\in
    proof (induction n arbitrary: y)
        case (Suc n) then show ?case by (cases n=0) (auto intro: orbit.intros)
    qed simp
qed
lemma orbit_trans:
    assumes s\in orbit ftt\in orbit fu shows s \in orbit fu
    using assms by induct (auto intro: orbit.intros)
lemma orbit_subset:
    assumes s\in orbit f(ft) shows s\in orbit ft
    using assms by (induct) (auto intro: orbit.intros)
lemma orbit_sim_step:
    assumes s\in orbit ft shows fs\in orbit f (ft)
    using assms by induct (auto intro: orbit.intros)
lemma orbit_step:
    assumes y forbit fxfx\not=y shows y\inorbit f(fx)
    using assms
proof induction
    case (step y) then show ?case by (cases x = y) (auto intro: orbit.intros)
qed simp
lemma self_in_orbit_trans:
    assumes s}\in\mathrm{ orbit fst orbit fs shows t orbit ft
    using assms(2,1) by induct (auto intro: orbit_sim_step)
lemma orbit_swap:
    assumes s\in orbit f s t\in orbit f s shows s\in orbit ft
    using assms(2,1)
proof induction
    case base then show ?case by (cases fs=s) (auto intro: orbit_step)
next
    case (step x) then show ?case by (cases f x = s) (auto intro: orbit_step)
qed
lemma permutation_self_in_orbit:
    assumes permutation f shows }s\in\mathrm{ orbit f s
    unfolding orbit_altdef using permutation_self[OF assms, of s] by simp metis
lemma orbit_altdef_self_in:
    assumes }s\in\mathrm{ orbit f s shows orbit f s={(f^nn)s|n. True}
proof (intro set_eqI iffI)
    fix }x\mathrm{ assume }x\in{(f~n)s|n\mathrm{ . True }
```

```
    then obtain n where }x=(f~n)s\mathrm{ by auto
    then show }x\in\mathrm{ orbit fs using assms by (cases n=0) (auto simp:orbit_altdef)
qed (auto simp: orbit_altdef)
lemma orbit_altdef_permutation:
    assumes permutation f shows orbit fs={(f^~n)s|n. True}
    using assms by (intro orbit_altdef_self_in permutation_self_in_orbit)
lemma orbit_altdef_bounded:
    assumes (f^n) s=s 0<n shows orbit f s={(f^m) s|m.m<n}
proof -
    from assms have s\in orbit fs
    by (auto simp add: orbit_altdef) metis
    then have orbit fs={(f~m)s|m. True} by (rule orbit_altdef_self_in)
    also have ... ={(f^m)s|m.m<n}
    using assms
    by (auto simp: funpow_mod_eq intro: exI[where }x=m\mathrm{ mod n for m])
    finally show ?thesis.
qed
lemma funpow_in_orbit:
    assumes s\in orbit ft shows (f~~n)s\inorbit ft
    using assms by (induct n) (auto intro: orbit.intros)
lemma finite_orbit:
    assumes }s\in\mathrm{ orbit fs shows finite (orbit f s)
proof -
    from assms obtain n where n:0<n(f^~n)s=s
        by (auto simp: orbit_altdef)
    then show ?thesis by (auto simp: orbit_altdef_bounded)
qed
lemma self_in_orbit_step:
    assumes }s\in\mathrm{ orbit f s shows orbit f (fs)=orbit fs
proof (intro set_eqI iffI)
    fix t assume t\inorbit fs then show t\in orbit f (fs)
        using assms by (auto intro: orbit_step orbit_sim_step)
qed (auto intro: orbit_subset)
lemma permutation_orbit_step:
    assumes permutation f shows orbit f}(fs)=\mathrm{ orbit fs
    using assms by (intro self_in_orbit_step permutation_self_in_orbit)
lemma orbit_nonempty:
    orbit f s\not={}
    using orbit.base by fastforce
lemma orbit_inv_eq:
    assumes permutation f
```

```
    shows orbit (inv f) x = orbit fx (is ?L = ?R)
proof -
    { fix g y assume A: permutation g y forbit (inv g) x
    have }y\in\mathrm{ orbit }g
    proof -
        have inv_g:\bigwedgey.x=g y\Longrightarrow inv g x=y \bigwedgey.inv g (g y)=y
                by (metis A(1) bij_inv_eq_iff permutation_bijective)+
            { fix y assume y f orbit g x
                then have inv g y f orbit g x
                by (cases) (simp_all add:inv_g A(1) permutation_self_in_orbit)
        } note inv_g_in_orb = this
            from A(2) show ?thesis
                by induct (simp_all add: inv_g_in_orb A permutation__self_in__orbit)
    qed
    } note orb_inv_ss = this
    have inv (invf)=f
    by (simp add: assms inv_inv_eq permutation_bijective)
    then show ?thesis
        using orb_inv_ss[OF assms] orb_inv_ss[OF permutation_inverse[OF assms]]
by auto
qed
lemma cyclic_on_alldef:
    cyclic_on f S \longleftrightarrowS\not={}\wedge(\foralls\inS.S=orbit f s)
    unfolding cyclic_on_def by (auto intro: orbit.step orbit_swap orbit_trans)
lemma cyclic_on_funpow_in:
    assumes cyclic_on f S s\inS shows (f^n) s\inS
    using assms unfolding cyclic_on_def by (auto intro: funpow_in_orbit)
lemma finite_cyclic_on:
    assumes cyclic_on f S shows finite S
    using assms by (auto simp: cyclic_on_def finite_orbit)
lemma cyclic_on_singleI:
    assumes }s\inSS=orbit fs\mathrm{ shows cyclic_on f S
    using assms unfolding cyclic_on_def by blast
lemma cyclic_on_inI:
    assumes cyclic_on f S s\inS shows f s \inS
    using assms by (auto simp: cyclic_on_def intro: orbit.intros)
lemma orbit_inverse:
    assumes self: a forbit g a
```



```
    shows f' orbit g a = orbit g' (fa) (is ?L = ?R)
```

```
proof (intro set_eqI iffI)
    fix }x\mathrm{ assume }x\in\mathrm{ ? L
    then obtain x0 where x0\in orbit gax=fx0 by auto
    then show }x\in\mathrm{ ?R
    proof (induct arbitrary: x)
        case base then show ?case by (auto simp: self orbit.base eq[symmetric])
    next
        case step then show ?case by cases (auto simp: eq[symmetric] orbit.intros)
    qed
next
    fix }x\mathrm{ assume }x\in?,
    then show }x\in\mathrm{ ?L
    proof (induct arbitrary:)
        case base then show ?case by (auto simp: self orbit.base eq)
    next
        case step then show ?case by cases (auto simp: eq orbit.intros)
    qed
qed
lemma cyclic_on_image:
    assumes cyclic_on f S
    assumes }\x.x\inS\Longrightarrowg(hx)=h(fx
    shows cyclic_on g(h'S)
    using assms by (auto simp: cyclic_on_def) (meson orbit_inverse)
lemma cyclic_on_f_in:
    assumes f permutes S cyclic_on f Af x f A
    shows }x\in
proof -
    from assms have fx_in_orb: fx\inorbit f(fx) by (auto simp: cyclic_on_alldef)
    from assms have }A=\mathrm{ orbit f(fx) by (auto simp:cyclic_on_alldef)
    moreover
    then have ... = orbit fx using }\langlefx\inA\rangle\mathrm{ by (auto intro: orbit_step orbit_subset)
    ultimately
    show ?thesis by (metis (no_types) orbit.simps permutes_inverses(2)[OF assms(1)])
qed
lemma orbit_cong0:
    assumes }x\inAf\inA->A\bigwedgey.y\inA\Longrightarrowfy=gy\mathrm{ shows orbit f x = orbit g
x
proof -
    { fix n have (f~~n)x=(g^~n)x^(f~~}n)x\in
        by (induct n rule: nat.induct) (insert assms, auto)
    } then show ?thesis by (auto simp:orbit_altdef)
qed
lemma orbit_cong:
    assumes self_in: t\in orbit ft and eq: \s.s \in orbit ft\Longrightarrowgs=fs
    shows orbit gt=orbit ft
```

```
    using assms(1) _ assms(2) by (rule orbit_cong0) (auto simp: orbit.step eq)
lemma cyclic_cong:
    assumes \s.s\inS\Longrightarrowfs=gs shows cyclic_on f S = cyclic_on g S
proof -
    have (\existss\inS.orbit fs = orbitg s)\Longrightarrowcyclic_on f S = cyclic_ong S
        by (metis cyclic_on_alldef cyclic_on_def)
    then show ?thesis by (metis assms orbit_cong cyclic_on_def)
qed
lemma permutes_comp_preserves_cyclic1:
    assumes g permutes B cyclic_on f C
    assumes }A\capB={}C\subseteq
    shows cyclic_on (fog)C
proof -
    have *: \c.c\inC\Longrightarrowf(gc)=fc
        using assms by (subst permutes_not_in [of g]) auto
    with assms(2) show ?thesis by (simp cong: cyclic_cong)
qed
lemma permutes_comp_preserves_cyclic2:
    assumes f permutes A cyclic_on g C
    assumes }A\capB={}C\subseteq
    shows cyclic_on (fog) C
proof -
    obtain c where c: c\inC C = orbit g c c < orbit g c
    using \cyclic_on g C` by (auto simp: cyclic_on_def)
    then have \c. c\inC\Longrightarrowf(gc)=gc
        using assms c by (subst permutes_not_in [of f]) (auto intro: orbit.intros)
    with assms(2) show ?thesis by (simp cong: cyclic_cong)
qed
lemma permutes_orbit_subset:
    assumes f permutes S x S S shows orbit f x\subseteqS
proof
    fix }y\mathrm{ assume }y\in\mathrm{ orbit f }
    then show y\inS by induct (auto simp: permutes_in_image assms)
qed
lemma cyclic_on_orbit':
    assumes permutation f shows cyclic_on f(orbit f x )
    unfolding cyclic_on_alldef using orbit_nonempty[of f x]
    by (auto intro: assms orbit_swap orbit_trans permutation_self_in_orbit)
lemma cyclic_on_orbit:
    assumes f permutes S finite S shows cyclic_on f (orbit f x )
    using assms by (intro cyclic_on_orbit') (auto simp: permutation_permutes)
lemma orbit_cyclic_eq3:
```

```
    assumes cyclic_on f S y \inS shows orbit f y =S
    using assms unfolding cyclic_on_alldef by simp
lemma orbit_eq_singleton_iff:orbit f x={x}\longleftrightarrow \longleftrightarrow < < = (is ?L\longleftrightarrow ?R)
proof
    assume A:?R
    { fix y assume y\in orbit f x then have }y=
        by induct (auto simp: A)
    } then show ?L by (metis orbit_nonempty singletonI subsetI subset_singletonD)
next
    assume A: ?L
    then have }\bigwedgey.y\in\mathrm{ orbit f}x\Longrightarrowfx=
        by - (erule orbit.cases, simp_all)
    then show ?R using A by blast
qed
lemma eq_on_cyclic_on_iff1:
    assumes cyclic_on f Sx\inS
    obtains fx\inSfx=x\longleftrightarrow card S=1
proof
    from assms show fx\inS by (auto simp: cyclic_on_def intro: orbit.intros)
    from assms have S = orbit f x by (auto simp: cyclic_on_alldef)
    then have fx=x\longleftrightarrowS={x} by (metis orbit_eq_singleton_iff)
    then show f}x=x\longleftrightarrow\mathrm{ card S=1 using <x SS> by (auto simp:card_Suc_eq)
qed
lemma orbit_eqI:
    y=fx\Longrightarrowy\in orbit f}
    z=fy\Longrightarrowy\inorbit fx\Longrightarrowz\inorbit f}
    by (metis orbit.base) (metis orbit.step)
```


8.2 Decomposition of arbitrary permutations

definition perm_restrict $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right)$ where perm_restrict $f S x \equiv$ if $x \in S$ then $f x$ else x
lemma perm_restrict_comp:
assumes $A \cap B=\{ \}$ cyclic_on $f B$
shows perm_restrict $f A$ o perm_restrict $f B=\operatorname{perm} _r e s t r i c t ~ f(A \cup B)$
proof -
have $\bigwedge x . x \in B \Longrightarrow f x \in B$ using <cyclic_on $f B$ by (rule cyclic_on_inI)
with assms show ?thesis by (auto simp: perm_restrict_def fun_eq_iff)
qed
lemma perm_restrict_simps:
$x \in S \Longrightarrow$ perm_restrict $f S x=f x$
$x \notin S \Longrightarrow$ perm_restrict f $S x=x$
by (auto simp: perm_restrict_def)

```
lemma perm_restrict_perm_restrict:
    perm_restrict (perm_restrict f A) B= perm_restrict f (A\capB)
    by (auto simp: perm_restrict_def)
lemma perm_restrict_union:
    assumes perm_restrict f A permutes A perm_restrict f B permutes B A\capB=
{}
    shows perm_restrict f A o perm_restrict f B = perm_restrict f (A\cupB)
    using assms by (auto simp: fun_eq_iff perm_restrict_def permutes_def) (metis
Diff_iff Diff_triv)
lemma perm_restrict_id[simp]:
    assumes f permutes S shows perm_restrict f S=f
    using assms by (auto simp: permutes_def perm_restrict_def)
lemma cyclic_on_perm_restrict:
    cyclic_on (perm_restrict fS)S S cyclic_on f S
    by (simp add: perm_restrict_def cong: cyclic_cong)
lemma perm_restrict_diff_cyclic:
    assumes f permutes S cyclic_on f A
    shows perm_restrict f (S-A) permutes (S-A)
proof -
    {fix y
        have }\existsx\mathrm{ . perm_restrict f(S-A) x=y
        proof cases
            assume A: y \inS-A
            with <f permutes S〉 obtain x where f x = y x \inS
                    unfolding permutes_def by auto metis
            moreover
            with A have }x\not\inA\mathrm{ by (metis Diff_iff assms(2) cyclic_on_inI)
            ultimately
            have perm_restrict f (S - A) x=y by (simp add: perm_restrict_simps)
            then show ?thesis ..
        next
            assume }y\not\inS-
        then have perm_restrict f (S-A) y=y by (simp add: perm_restrict_simps)
            then show ?thesis ..
        qed
    } note }X=\mathrm{ this
    { fix x y assume perm_restrict f (S-A) x = perm_restrict f (S-A) y
        with assms have }x=
        by (auto simp: perm_restrict_def permutes_def split: if_splits intro: cyclic_on_f_in)
    } note }Y=\mathrm{ this
    show ?thesis by (auto simp: permutes_def perm_restrict_simps X intro: Y)
qed
```

```
lemma permutes_decompose:
    assumes \(f\) permutes \(S\) finite \(S\)
    shows \(\exists C .(\forall c \in C\). cyclic_on \(f c) \wedge \bigcup C=S \wedge(\forall c 1 \in C . \forall c \mathcal{Z} \in C . c 1 \neq\)
\(c 2 \longrightarrow c 1 \cap c \mathcal{2}=\{ \})\)
    using \(\operatorname{assms}(2,1)\)
proof (induction arbitrary: \(f\) rule: finite_psubset_induct)
    case (psubset \(S\) )
    show ? case
    proof (cases \(S=\{ \}\) )
        case True then show ?thesis by (intro exI \([\) where \(x=\{ \}]\) ) auto
    next
    case False
    then obtain \(s\) where \(s \in S\) by auto
    with \(\langle f\) permutes \(S\) 〉 have orbit \(f s \subseteq S\)
        by (rule permutes_orbit_subset)
    have cyclic_orbit: cyclic_on \(f\) (orbit f s)
        using 〈f permutes \(S\) 〉〈finite \(S\rangle\) by (rule cyclic_on_orbit)
    let \(? f^{\prime}=\) perm_restrict \(f(S-\) orbit \(f s)\)
    have \(f s \in S\) using \(\langle f\) permutes \(S\rangle\langle s \in S\rangle\) by (auto simp: permutes_in_image)
    then have \(S\) - orbit \(f s \subset S\) using orbit.base[of \(f s]\langle s \in S\rangle\) by blast
    moreover
    have ? \(f^{\prime}\) permutes ( \(S-\) orbit \(f s\) )
        using 〈f permutes \(S\rangle\) cyclic_orbit by (rule perm_restrict_diff_cyclic)
    ultimately
    obtain \(C\) where \(C: \bigwedge c . c \in C \Longrightarrow\) cyclic_on? \(f^{\prime} c \bigcup C=S-\) orbit \(f s\)
                \(\forall c 1 \in C . \forall c \mathcal{2} \in C . c 1 \neq c \mathcal{2} \longrightarrow c 1 \cap c \mathcal{2}=\{ \}\)
            using psubset.IH by metis
    \{ fix \(c\) assume \(c \in C\)
        then have \(*: \bigwedge x . x \in c \Longrightarrow\) perm_restrict \(f(S-\) orbit \(f s) x=f x\)
            using \(C(2)<f\) permutes \(S\rangle\) by (auto simp add: perm_restrict_def)
    then have cyclic_on \(f c\) using \(C(1)[O F\langle c \in C\rangle]\) by (simp cong: cyclic_cong
add: *)
    \(\}\) note in_C_cyclic \(=\) this
    have Un_ins: \(\bigcup(\) insert (orbit fs) \(C)=S\)
        using \(\backslash \bigcup C=\_\)<orbit \(\left.f s \subseteq S\right\rangle\) by blast
    have Disj_ins: \((\forall c 1 \in \operatorname{insert}(\) orbit f s) \(C . \forall c 2 \in \operatorname{insert}(\) orbit f s) C.c1 \(\neq\)
\(c 2 \longrightarrow c 1 \cap c \mathcal{2}=\{ \})\)
        using \(C\) by auto
    show ?thesis
        by (intro conjI Un_ins Disj_ins exI[where \(x=\) insert (orbit f s) C])
        (auto simp: cyclic_orbit in_C_cyclic)
    qed
```


8.3 Function-power distance between values

definition funpow_dist :: (' $\left.a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ nat where funpow_dist $f x y \equiv \operatorname{LEAST} n .(f \sim n) x=y$
abbreviation funpow_dist1 $::\left({ }^{\prime} a \Rightarrow^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow n a t$ where funpow_dist1 $f x y \equiv \operatorname{Suc}\left(f u n p o w _d i s t f(f x) y\right)$
lemma funpow_dist_0:
assumes $x=y$ shows funpow_dist $f x y=0$
using assms unfolding funpow_dist_def by (intro Least_eq_0) simp
lemma funpow_dist_least:
assumes $n<$ funpow_dist $f x y$ shows $(f \sim n) x \neq y$
proof (rule notI)
assume $(f \leadsto n) x=y$
then have funpow_dist $f x y \leq n$ unfolding funpow_dist_def by (rule Least_le)
with assms show False by linarith
qed
lemma funpow_dist1_least:
assumes $0<n n<$ funpow_dist1 $f x y$ shows $(f \leadsto n) x \neq y$
proof (rule notI)
assume (f ~~n) $x=y$
then have $(f \sim(n-1))(f x)=y$
using $\langle 0<n\rangle$ by (cases n) (simp_all add: funpow_swap1)
then have funpow_dist $f(f x) y \leq n-1$ unfolding funpow_dist_def by (rule Least_le)
with assms show False by simp
qed
lemma funpow_dist_prop:
$y \in \operatorname{orbit} f x \Longrightarrow(f$ ヘ funpow_dist $f x y) x=y$
unfolding funpow_dist_def by (rule LeastI_ex) (auto simp: orbit_altdef)
lemma funpow_dist_0_eq:
assumes $y \in \operatorname{orbit} f x$ shows funpow_dist $f x y=0 \longleftrightarrow x=y$
using assms by (auto simp: funpow_dist_0 dest: funpow_dist_prop)
lemma funpow_dist_step:
assumes $x \neq y y \in$ orbit $f x$ shows funpow_dist $f x y=$ Suc (funpow_dist $f(f$
x) y)
proof -
from $\left\langle y \in _\right.$obtain n where $\left(f^{\wedge} n\right) x=y$ by (auto simp: orbit_altdef)
with $\langle x \neq y\rangle$ obtain n^{\prime} where $[$ simp $]: n=$ Suc n^{\prime} by (cases n) auto
show ?thesis

```
    unfolding funpow_dist_def
    proof (rule Least_Suc2)
    show (f^^n) x= y by fact
    then show ( }f~~~n')(fx)=y\mathrm{ by (simp add: funpow__swap1)
    show (f^^0) x\not=y using <x\not=y> by simp
    show }\forallk.((f~~~Suck)x=y)=((f^~~k) (fx)=y
        by (simp add: funpow_swap1)
    qed
qed
lemma funpow_dist1_prop:
    assumes y \in orbit f x shows (f^~funpow_dist1 f x y) x=y
    by (metis assms funpow_dist_prop funpow_dist_step funpow_simps_right(2)
o_apply self_in_orbit_step)
lemma funpow_neq_less_funpow_dist:
    assumes y\in orbit fx m\leq funpow_dist f x y n\leq funpow_dist f x y m\not=n
    shows (f^~m)x\not=(f^~n)x
proof (rule notI)
    assume A: (f^~m)x=(f^~n)x
    define m' }\mp@subsup{m}{}{\prime}\mathrm{ where m'= min mn and n'= max mn
    with A assms have }\mp@subsup{A}{}{\prime}:\mp@subsup{m}{}{\prime}<\mp@subsup{n}{}{\prime}(f~~m') x=(f~~n')x n'\leqfunpow_dist f
y
    by (auto simp: min_def max_def)
    have }y=(f~\mathrm{ funpow_dist f x y) x
    using<y\in_> by (simp only: funpow__dist_prop)
    also have ... =( f~~}((\mathrm{ funpow_dist f x y - n') + n'}))
    using < n' \leq _> by simp
    also have ... =( f~~}((funpow_dist fxy-n')+m'))
    by (simp add: funpow_add«(f^~}\mp@subsup{m}{}{\prime})x=_>)
    also have (f~
    using A' by (intro funpow_dist_least) linarith
    finally show False by simp
qed
lemma funpow_neq_less_funpow_dist1:
    assumes y forbit fx m<funpow_dist1 f x y n < funpow_dist1 f x y m\not=n
    shows (f^~m)x\not=(f^~n)x
proof (rule notI)
    assume A:(f^~m)x=(f^~}n)
    define }\mp@subsup{m}{}{\prime}\mp@subsup{n}{}{\prime}\mathrm{ where }\mp@subsup{m}{}{\prime}=\operatorname{min}mn\mathrm{ and }\mp@subsup{n}{}{\prime}=\operatorname{max}m
    with A assms have }\mp@subsup{A}{}{\prime}:\mp@subsup{m}{}{\prime}<\mp@subsup{n}{}{\prime}(f~~m')x=(f~~n')x n'< funpow_dist1 
x y
    by (auto simp: min_def max_def)
```

```
    have }y=(f^\mathrm{ funpow_dist1 fxy)x
    using <y \in _> by (simp only: funpow_dist1__prop)
    also have ... = (f^~}((\mathrm{ funpow__dist1 fx y - n') + n'}))
        using < n'< _> by simp
    also have ... =(f^~}((\mathrm{ funpow_dist1 f x y - n') + m')) x
        by (simp add: funpow_add <( f~~}\mp@subsup{m}{}{\prime})x=_>
    also have (f^~}((funpow_dist1 fxy-n')+ m')) x\not=y 
        using }\mp@subsup{A}{}{\prime}\mathrm{ by (intro funpow_dist1_least) linarith+
    finally show False by simp
qed
lemma inj_on_funpow_dist:
    assumes y forbit fx shows inj_on (\lambdan. (f~nn)x) {0..funpow_dist fxy}
    using funpow_neq_less_funpow_dist[OF assms] by (intro inj_onI) auto
lemma inj_on_funpow_dist1:
    assumes }y\in\mathrm{ orbit f x shows inj_on ( }\lambdan.(f~n)x){0..<funpow_dist1 fxy
    using funpow_neq_less_funpow_dist1[OF assms] by (intro inj_onI) auto
lemma orbit_conv_funpow_dist1:
    assumes x\in orbit f }
    shows orbit f x = (\lambdan. (f~n) x)'{0..<funpow_dist1 fx x} (is ?L=?R)
    using funpow_dist1_prop[OF assms]
    by (auto simp:orbit_altdef_bounded[where n=funpow_dist1 f x x] )
lemma funpow_dist1_prop1:
    assumes (f^n) x= y 0<n shows (f^funpow_dist1 f x y) x=y
proof -
    from assms have }y\in\mathrm{ orbit f }x\mathrm{ by (auto simp: orbit_altdef)
    then show ?thesis by (rule funpow_dist1_prop)
qed
lemma funpow_dist1_dist:
    assumes funpow_dist1 f x y < funpow_dist1 f x z
    assumes {y,z}\subseteqorbit fx
    shows funpow_dist1 f x z = funpow_dist1 f x y + funpow_dist1 fyz(is ?L=
?R)
proof -
    define n where <n= funpow_dist1 f x z-funpow_dist1 fxy-1>
    with assms have *: <funpow_dist1 f x z = Suc (funpow_dist1 f x y + n)>
            by simp
    have x_z:(f ^~ funpow_dist1 f x z) x=z using assms by (blast intro: fun-
pow_dist1_prop)
    have x_y:(f~ funpow_dist1 f x y) x=y using assms by (blast intro: fun-
pow_dist1_prop)
have \((f\) ~ \((\) funpow_dist1 \(f x z\) - funpow_dist1 \(f x y)) y\)
        =(f^~(funpow_dist1 f x z - funpow_dist1 f x y )) ((f^~funpow_dist1 f x
```

```
y) x)
    using x_y by simp
    also have ... = z
        using assms x_z by (simp add:* funpow_add ac_simps funpow_swap1)
    finally have y_z_diff:( (f^(funpow_dist1 f x z - funpow__dist1 f x y)) y=z.
    then have (f^~ funpow_dist1 fyz) y=z
        using assms by (intro funpow_dist1_prop1) auto
    then have (f^~unpow_dist1 fyz)((f^~funpow_dist1 fxy)x)=z
        using }x\_y\mathrm{ by simp
    then have (f^~(funpow_dist1 fyz+funpow_dist1 f x y)) x=z
        by (simp add: * funpow_add funpow__swap1)
    show ?thesis
    proof (rule antisym)
        from y_z_diff have (f^~funpow__dist1 f y z) y=z
            using assms by (intro funpow_dist1_prop1) auto
        then have (f^~ funpow_dist1 fyz)((f`^funpow_dist1 f x y) x)=z
            using }x\_y\mathrm{ by simp
        then have (f~
            by (simp add: * funpow_add funpow_swap1)
        then have funpow_dist1 f x z \leqfunpow_dist1 f y z + funpow_dist1 f x y
            using funpow_dist1_least not_less by fastforce
        then show ?L \leq?R by presburger
    next
        have funpow_dist1 fyz\leq funpow_dist1 f x z - funpow_dist1 f x y
        using y_z_diff assms(1) by (metis not_less zero_less_diff funpow_dist1_least)
        then show ?R \leq?L by linarith
    qed
qed
lemma funpow_dist1_le_self:
    assumes (f^m)x=x ^< my\inorbit fx
    shows funpow_dist1 f x y \leqm
proof (cases x = y)
    case True with assms show ?thesis by (auto dest!: funpow_dist1_least)
next
    case False
    have (f^~funpow_dist1 f x y) x=(f^^(funpow_dist1 f x y mod m)) x
        using assms by (simp add: funpow_mod_eq)
    with False }\langley\in\mathrm{ orbit f }x\rangle\mathrm{ have funpow_dist1 f x y sfunpow_dist1 f x y mod m
        by auto (metis«(f^^ funpow_dist1 f x y) x=( f^^ (funpow_dist1 f x y mod
m)) x> funpow_dist1_prop funpow_dist_least funpow_dist_step leI)
    with <m> 0\rangle show ?thesis
        by (auto intro: order_trans)
qed
end
```


9 Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

theory Combinatorics
imports
Transposition
Stirling
Permutations
List_Permutation
Multiset Permutations
Cycles
Perm
Orbits
begin
end

