Theory Transcendental
section ‹Power Series, Transcendental Functions etc.›
theory Transcendental
imports Series Deriv NthRoot
begin
text ‹A theorem about the factcorial function on the reals.›
lemma square_fact_le_2_fact: "fact n * fact n ≤ (fact (2 * n) :: real)"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
by (simp add: field_simps)
also have "… ≤ of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
by (rule mult_left_mono [OF Suc]) simp
also have "… ≤ of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
by (rule mult_right_mono)+ (auto simp: field_simps)
also have "… = fact (2 * Suc n)" by (simp add: field_simps)
finally show ?case .
qed
lemma fact_in_Reals: "fact n ∈ ℝ"
by (induction n) auto
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
by (metis of_nat_fact of_real_of_nat_eq)
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
by (simp add: pochhammer_prod)
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
proof -
have "(fact n :: 'a) = of_real (fact n)"
by simp
also have "norm … = fact n"
by (subst norm_of_real) simp
finally show ?thesis .
qed
lemma root_test_convergence:
fixes f :: "nat ⇒ 'a::banach"
assumes f: "(λn. root n (norm (f n))) ⇢ x"
and "x < 1"
shows "summable f"
proof -
have "0 ≤ x"
by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
from ‹x < 1› obtain z where z: "x < z" "z < 1"
by (metis dense)
from f ‹x < z› have "eventually (λn. root n (norm (f n)) < z) sequentially"
by (rule order_tendstoD)
then have "eventually (λn. norm (f n) ≤ z^n) sequentially"
using eventually_ge_at_top
proof eventually_elim
fix n
assume less: "root n (norm (f n)) < z" and n: "1 ≤ n"
from power_strict_mono[OF less, of n] n show "norm (f n) ≤ z ^ n"
by simp
qed
then show "summable f"
unfolding eventually_sequentially
using z ‹0 ≤ x› by (auto intro!: summable_comparison_test[OF _ summable_geometric])
qed
subsection ‹More facts about binomial coefficients›
text ‹
These facts could have been proven before, but having real numbers
makes the proofs a lot easier.
›
lemma central_binomial_odd:
"odd n ⟹ n choose (Suc (n div 2)) = n choose (n div 2)"
proof -
assume "odd n"
hence "Suc (n div 2) ≤ n" by presburger
hence "n choose (Suc (n div 2)) = n choose (n - Suc (n div 2))"
by (rule binomial_symmetric)
also from ‹odd n› have "n - Suc (n div 2) = n div 2" by presburger
finally show ?thesis .
qed
lemma binomial_less_binomial_Suc:
assumes k: "k < n div 2"
shows "n choose k < n choose (Suc k)"
proof -
from k have k': "k ≤ n" "Suc k ≤ n" by simp_all
from k' have "real (n choose k) = fact n / (fact k * fact (n - k))"
by (simp add: binomial_fact)
also from k' have "n - k = Suc (n - Suc k)" by simp
also from k' have "fact … = (real n - real k) * fact (n - Suc k)"
by (subst fact_Suc) (simp_all add: of_nat_diff)
also from k have "fact k = fact (Suc k) / (real k + 1)" by (simp add: field_simps)
also have "fact n / (fact (Suc k) / (real k + 1) * ((real n - real k) * fact (n - Suc k))) =
(n choose (Suc k)) * ((real k + 1) / (real n - real k))"
using k by (simp add: field_split_simps binomial_fact)
also from assms have "(real k + 1) / (real n - real k) < 1" by simp
finally show ?thesis using k by (simp add: mult_less_cancel_left)
qed
lemma binomial_strict_mono:
assumes "k < k'" "2*k' ≤ n"
shows "n choose k < n choose k'"
proof -
from assms have "k ≤ k' - 1" by simp
thus ?thesis
proof (induction rule: inc_induct)
case base
with assms binomial_less_binomial_Suc[of "k' - 1" n]
show ?case by simp
next
case (step k)
from step.prems step.hyps assms have "n choose k < n choose (Suc k)"
by (intro binomial_less_binomial_Suc) simp_all
also have "… < n choose k'" by (rule step.IH)
finally show ?case .
qed
qed
lemma binomial_mono:
assumes "k ≤ k'" "2*k' ≤ n"
shows "n choose k ≤ n choose k'"
using assms binomial_strict_mono[of k k' n] by (cases "k = k'") simp_all
lemma binomial_strict_antimono:
assumes "k < k'" "2 * k ≥ n" "k' ≤ n"
shows "n choose k > n choose k'"
proof -
from assms have "n choose (n - k) > n choose (n - k')"
by (intro binomial_strict_mono) (simp_all add: algebra_simps)
with assms show ?thesis by (simp add: binomial_symmetric [symmetric])
qed
lemma binomial_antimono:
assumes "k ≤ k'" "k ≥ n div 2" "k' ≤ n"
shows "n choose k ≥ n choose k'"
proof (cases "k = k'")
case False
note not_eq = False
show ?thesis
proof (cases "k = n div 2 ∧ odd n")
case False
with assms(2) have "2*k ≥ n" by presburger
with not_eq assms binomial_strict_antimono[of k k' n]
show ?thesis by simp
next
case True
have "n choose k' ≤ n choose (Suc (n div 2))"
proof (cases "k' = Suc (n div 2)")
case False
with assms True not_eq have "Suc (n div 2) < k'" by simp
with assms binomial_strict_antimono[of "Suc (n div 2)" k' n] True
show ?thesis by auto
qed simp_all
also from True have "… = n choose k" by (simp add: central_binomial_odd)
finally show ?thesis .
qed
qed simp_all
lemma binomial_maximum: "n choose k ≤ n choose (n div 2)"
proof -
have "k ≤ n div 2 ⟷ 2*k ≤ n" by linarith
consider "2*k ≤ n" | "2*k ≥ n" "k ≤ n" | "k > n" by linarith
thus ?thesis
proof cases
case 1
thus ?thesis by (intro binomial_mono) linarith+
next
case 2
thus ?thesis by (intro binomial_antimono) simp_all
qed (simp_all add: binomial_eq_0)
qed
lemma binomial_maximum': "(2*n) choose k ≤ (2*n) choose n"
using binomial_maximum[of "2*n"] by simp
lemma central_binomial_lower_bound:
assumes "n > 0"
shows "4^n / (2*real n) ≤ real ((2*n) choose n)"
proof -
from binomial[of 1 1 "2*n"]
have "4 ^ n = (∑k≤2*n. (2*n) choose k)"
by (simp add: power_mult power2_eq_square One_nat_def [symmetric] del: One_nat_def)
also have "{..2*n} = {0<..<2*n} ∪ {0,2*n}" by auto
also have "(∑k∈…. (2*n) choose k) =
(∑k∈{0<..<2*n}. (2*n) choose k) + (∑k∈{0,2*n}. (2*n) choose k)"
by (subst sum.union_disjoint) auto
also have "(∑k∈{0,2*n}. (2*n) choose k) ≤ (∑k≤1. (n choose k)⇧2)"
by (cases n) simp_all
also from assms have "… ≤ (∑k≤n. (n choose k)⇧2)"
by (intro sum_mono2) auto
also have "… = (2*n) choose n" by (rule choose_square_sum)
also have "(∑k∈{0<..<2*n}. (2*n) choose k) ≤ (∑k∈{0<..<2*n}. (2*n) choose n)"
by (intro sum_mono binomial_maximum')
also have "… = card {0<..<2*n} * ((2*n) choose n)" by simp
also have "card {0<..<2*n} ≤ 2*n - 1" by (cases n) simp_all
also have "(2 * n - 1) * (2 * n choose n) + (2 * n choose n) = ((2*n) choose n) * (2*n)"
using assms by (simp add: algebra_simps)
finally have "4 ^ n ≤ (2 * n choose n) * (2 * n)" by simp_all
hence "real (4 ^ n) ≤ real ((2 * n choose n) * (2 * n))"
by (subst of_nat_le_iff)
with assms show ?thesis by (simp add: field_simps)
qed
subsection ‹Properties of Power Series›
lemma powser_zero [simp]: "(∑n. f n * 0 ^ n) = f 0"
for f :: "nat ⇒ 'a::real_normed_algebra_1"
proof -
have "(∑n<1. f n * 0 ^ n) = (∑n. f n * 0 ^ n)"
by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
then show ?thesis by simp
qed
lemma powser_sums_zero: "(λn. a n * 0^n) sums a 0"
for a :: "nat ⇒ 'a::real_normed_div_algebra"
using sums_finite [of "{0}" "λn. a n * 0 ^ n"]
by simp
lemma powser_sums_zero_iff [simp]: "(λn. a n * 0^n) sums x ⟷ a 0 = x"
for a :: "nat ⇒ 'a::real_normed_div_algebra"
using powser_sums_zero sums_unique2 by blast
text ‹
Power series has a circle or radius of convergence: if it sums for ‹x›,
then it sums absolutely for ‹z› with \<^term>‹¦z¦ < ¦x¦›.›
lemma powser_insidea:
fixes x z :: "'a::real_normed_div_algebra"
assumes 1: "summable (λn. f n * x^n)"
and 2: "norm z < norm x"
shows "summable (λn. norm (f n * z ^ n))"
proof -
from 2 have x_neq_0: "x ≠ 0" by clarsimp
from 1 have "(λn. f n * x^n) ⇢ 0"
by (rule summable_LIMSEQ_zero)
then have "convergent (λn. f n * x^n)"
by (rule convergentI)
then have "Cauchy (λn. f n * x^n)"
by (rule convergent_Cauchy)
then have "Bseq (λn. f n * x^n)"
by (rule Cauchy_Bseq)
then obtain K where 3: "0 < K" and 4: "∀n. norm (f n * x^n) ≤ K"
by (auto simp: Bseq_def)
have "∃N. ∀n≥N. norm (norm (f n * z ^ n)) ≤ K * norm (z ^ n) * inverse (norm (x^n))"
proof (intro exI allI impI)
fix n :: nat
assume "0 ≤ n"
have "norm (norm (f n * z ^ n)) * norm (x^n) =
norm (f n * x^n) * norm (z ^ n)"
by (simp add: norm_mult abs_mult)
also have "… ≤ K * norm (z ^ n)"
by (simp only: mult_right_mono 4 norm_ge_zero)
also have "… = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
by (simp add: x_neq_0)
also have "… = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
by (simp only: mult.assoc)
finally show "norm (norm (f n * z ^ n)) ≤ K * norm (z ^ n) * inverse (norm (x^n))"
by (simp add: mult_le_cancel_right x_neq_0)
qed
moreover have "summable (λn. K * norm (z ^ n) * inverse (norm (x^n)))"
proof -
from 2 have "norm (norm (z * inverse x)) < 1"
using x_neq_0
by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
then have "summable (λn. norm (z * inverse x) ^ n)"
by (rule summable_geometric)
then have "summable (λn. K * norm (z * inverse x) ^ n)"
by (rule summable_mult)
then show "summable (λn. K * norm (z ^ n) * inverse (norm (x^n)))"
using x_neq_0
by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
power_inverse norm_power mult.assoc)
qed
ultimately show "summable (λn. norm (f n * z ^ n))"
by (rule summable_comparison_test)
qed
lemma powser_inside:
fixes f :: "nat ⇒ 'a::{real_normed_div_algebra,banach}"
shows
"summable (λn. f n * (x^n)) ⟹ norm z < norm x ⟹
summable (λn. f n * (z ^ n))"
by (rule powser_insidea [THEN summable_norm_cancel])
lemma powser_times_n_limit_0:
fixes x :: "'a::{real_normed_div_algebra,banach}"
assumes "norm x < 1"
shows "(λn. of_nat n * x ^ n) ⇢ 0"
proof -
have "norm x / (1 - norm x) ≥ 0"
using assms by (auto simp: field_split_simps)
moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
using ex_le_of_int by (meson ex_less_of_int)
ultimately have N0: "N>0"
by auto
then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
using N assms by (auto simp: field_simps)
have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) ≤
real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N ≤ int n" for n :: nat
proof -
from that have "real_of_int N * real_of_nat (Suc n) ≤ real_of_nat n * real_of_int (1 + N)"
by (simp add: algebra_simps)
then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) ≤
(real_of_nat n * (1 + N)) * (norm x * norm (x ^ n))"
using N0 mult_mono by fastforce
then show ?thesis
by (simp add: algebra_simps)
qed
show ?thesis using *
by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
(simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
qed
corollary lim_n_over_pown:
fixes x :: "'a::{real_normed_field,banach}"
shows "1 < norm x ⟹ ((λn. of_nat n / x^n) ⤏ 0) sequentially"
using powser_times_n_limit_0 [of "inverse x"]
by (simp add: norm_divide field_split_simps)
lemma sum_split_even_odd:
fixes f :: "nat ⇒ real"
shows "(∑i<2 * n. if even i then f i else g i) = (∑i<n. f (2 * i)) + (∑i<n. g (2 * i + 1))"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "(∑i<2 * Suc n. if even i then f i else g i) =
(∑i<n. f (2 * i)) + (∑i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
using Suc.hyps unfolding One_nat_def by auto
also have "… = (∑i<Suc n. f (2 * i)) + (∑i<Suc n. g (2 * i + 1))"
by auto
finally show ?case .
qed
lemma sums_if':
fixes g :: "nat ⇒ real"
assumes "g sums x"
shows "(λ n. if even n then 0 else g ((n - 1) div 2)) sums x"
unfolding sums_def
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
from ‹g sums x›[unfolded sums_def, THEN LIMSEQ_D, OF this]
obtain no where no_eq: "⋀n. n ≥ no ⟹ (norm (sum g {..<n} - x) < r)"
by blast
let ?SUM = "λ m. ∑i<m. if even i then 0 else g ((i - 1) div 2)"
have "(norm (?SUM m - x) < r)" if "m ≥ 2 * no" for m
proof -
from that have "m div 2 ≥ no" by auto
have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
using sum_split_even_odd by auto
then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
using no_eq unfolding sum_eq using ‹m div 2 ≥ no› by auto
moreover
have "?SUM (2 * (m div 2)) = ?SUM m"
proof (cases "even m")
case True
then show ?thesis
by (auto simp: even_two_times_div_two)
next
case False
then have eq: "Suc (2 * (m div 2)) = m" by simp
then have "even (2 * (m div 2))" using ‹odd m› by auto
have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
also have "… = ?SUM (2 * (m div 2))" using ‹even (2 * (m div 2))› by auto
finally show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
then show "∃no. ∀ m ≥ no. norm (?SUM m - x) < r"
by blast
qed
lemma sums_if:
fixes g :: "nat ⇒ real"
assumes "g sums x" and "f sums y"
shows "(λ n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
proof -
let ?s = "λ n. if even n then 0 else f ((n - 1) div 2)"
have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
for B T E
by (cases B) auto
have g_sums: "(λ n. if even n then 0 else g ((n - 1) div 2)) sums x"
using sums_if'[OF ‹g sums x›] .
have if_eq: "⋀B T E. (if ¬ B then T else E) = (if B then E else T)"
by auto
have "?s sums y" using sums_if'[OF ‹f sums y›] .
from this[unfolded sums_def, THEN LIMSEQ_Suc]
have "(λn. if even n then f (n div 2) else 0) sums y"
by (simp add: lessThan_Suc_eq_insert_0 sum.atLeast1_atMost_eq image_Suc_lessThan
if_eq sums_def cong del: if_weak_cong)
from sums_add[OF g_sums this] show ?thesis
by (simp only: if_sum)
qed
subsection ‹Alternating series test / Leibniz formula›
lemma sums_alternating_upper_lower:
fixes a :: "nat ⇒ real"
assumes mono: "⋀n. a (Suc n) ≤ a n"
and a_pos: "⋀n. 0 ≤ a n"
and "a ⇢ 0"
shows "∃l. ((∀n. (∑i<2*n. (- 1)^i*a i) ≤ l) ∧ (λ n. ∑i<2*n. (- 1)^i*a i) ⇢ l) ∧
((∀n. l ≤ (∑i<2*n + 1. (- 1)^i*a i)) ∧ (λ n. ∑i<2*n + 1. (- 1)^i*a i) ⇢ l)"
(is "∃l. ((∀n. ?f n ≤ l) ∧ _) ∧ ((∀n. l ≤ ?g n) ∧ _)")
proof (rule nested_sequence_unique)
have fg_diff: "⋀n. ?f n - ?g n = - a (2 * n)" by auto
show "∀n. ?f n ≤ ?f (Suc n)"
proof
show "?f n ≤ ?f (Suc n)" for n
using mono[of "2*n"] by auto
qed
show "∀n. ?g (Suc n) ≤ ?g n"
proof
show "?g (Suc n) ≤ ?g n" for n
using mono[of "Suc (2*n)"] by auto
qed
show "∀n. ?f n ≤ ?g n"
proof
show "?f n ≤ ?g n" for n
using fg_diff a_pos by auto
qed
show "(λn. ?f n - ?g n) ⇢ 0"
unfolding fg_diff
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
with ‹a ⇢ 0›[THEN LIMSEQ_D] obtain N where "⋀ n. n ≥ N ⟹ norm (a n - 0) < r"
by auto
then have "∀n ≥ N. norm (- a (2 * n) - 0) < r"
by auto
then show "∃N. ∀n ≥ N. norm (- a (2 * n) - 0) < r"
by auto
qed
qed
lemma summable_Leibniz':
fixes a :: "nat ⇒ real"
assumes a_zero: "a ⇢ 0"
and a_pos: "⋀n. 0 ≤ a n"
and a_monotone: "⋀n. a (Suc n) ≤ a n"
shows summable: "summable (λ n. (-1)^n * a n)"
and "⋀n. (∑i<2*n. (-1)^i*a i) ≤ (∑i. (-1)^i*a i)"
and "(λn. ∑i<2*n. (-1)^i*a i) ⇢ (∑i. (-1)^i*a i)"
and "⋀n. (∑i. (-1)^i*a i) ≤ (∑i<2*n+1. (-1)^i*a i)"
and "(λn. ∑i<2*n+1. (-1)^i*a i) ⇢ (∑i. (-1)^i*a i)"
proof -
let ?S = "λn. (-1)^n * a n"
let ?P = "λn. ∑i<n. ?S i"
let ?f = "λn. ?P (2 * n)"
let ?g = "λn. ?P (2 * n + 1)"
obtain l :: real
where below_l: "∀ n. ?f n ≤ l"
and "?f ⇢ l"
and above_l: "∀ n. l ≤ ?g n"
and "?g ⇢ l"
using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
let ?Sa = "λm. ∑n<m. ?S n"
have "?Sa ⇢ l"
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
with ‹?f ⇢ l›[THEN LIMSEQ_D]
obtain f_no where f: "⋀n. n ≥ f_no ⟹ norm (?f n - l) < r"
by auto
from ‹0 < r› ‹?g ⇢ l›[THEN LIMSEQ_D]
obtain g_no where g: "⋀n. n ≥ g_no ⟹ norm (?g n - l) < r"
by auto
have "norm (?Sa n - l) < r" if "n ≥ (max (2 * f_no) (2 * g_no))" for n
proof -
from that have "n ≥ 2 * f_no" and "n ≥ 2 * g_no" by auto
show ?thesis
proof (cases "even n")
case True
then have n_eq: "2 * (n div 2) = n"
by (simp add: even_two_times_div_two)
with ‹n ≥ 2 * f_no› have "n div 2 ≥ f_no"
by auto
from f[OF this] show ?thesis
unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
next
case False
then have "even (n - 1)" by simp
then have n_eq: "2 * ((n - 1) div 2) = n - 1"
by (simp add: even_two_times_div_two)
then have range_eq: "n - 1 + 1 = n"
using odd_pos[OF False] by auto
from n_eq ‹n ≥ 2 * g_no› have "(n - 1) div 2 ≥ g_no"
by auto
from g[OF this] show ?thesis
by (simp only: n_eq range_eq)
qed
qed
then show "∃no. ∀n ≥ no. norm (?Sa n - l) < r" by blast
qed
then have sums_l: "(λi. (-1)^i * a i) sums l"
by (simp only: sums_def)
then show "summable ?S"
by (auto simp: summable_def)
have "l = suminf ?S" by (rule sums_unique[OF sums_l])
fix n
show "suminf ?S ≤ ?g n"
unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
show "?f n ≤ suminf ?S"
unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
show "?g ⇢ suminf ?S"
using ‹?g ⇢ l› ‹l = suminf ?S› by auto
show "?f ⇢ suminf ?S"
using ‹?f ⇢ l› ‹l = suminf ?S› by auto
qed
theorem summable_Leibniz:
fixes a :: "nat ⇒ real"
assumes a_zero: "a ⇢ 0"
and "monoseq a"
shows "summable (λ n. (-1)^n * a n)" (is "?summable")
and "0 < a 0 ⟶
(∀n. (∑i. (- 1)^i*a i) ∈ { ∑i<2*n. (- 1)^i * a i .. ∑i<2*n+1. (- 1)^i * a i})" (is "?pos")
and "a 0 < 0 ⟶
(∀n. (∑i. (- 1)^i*a i) ∈ { ∑i<2*n+1. (- 1)^i * a i .. ∑i<2*n. (- 1)^i * a i})" (is "?neg")
and "(λn. ∑i<2*n. (- 1)^i*a i) ⇢ (∑i. (- 1)^i*a i)" (is "?f")
and "(λn. ∑i<2*n+1. (- 1)^i*a i) ⇢ (∑i. (- 1)^i*a i)" (is "?g")
proof -
have "?summable ∧ ?pos ∧ ?neg ∧ ?f ∧ ?g"
proof (cases "(∀n. 0 ≤ a n) ∧ (∀m. ∀n≥m. a n ≤ a m)")
case True
then have ord: "⋀n m. m ≤ n ⟹ a n ≤ a m"
and ge0: "⋀n. 0 ≤ a n"
by auto
have mono: "a (Suc n) ≤ a n" for n
using ord[where n="Suc n" and m=n] by auto
note leibniz = summable_Leibniz'[OF ‹a ⇢ 0› ge0]
from leibniz[OF mono]
show ?thesis using ‹0 ≤ a 0› by auto
next
let ?a = "λn. - a n"
case False
with monoseq_le[OF ‹monoseq a› ‹a ⇢ 0›]
have "(∀ n. a n ≤ 0) ∧ (∀m. ∀n≥m. a m ≤ a n)" by auto
then have ord: "⋀n m. m ≤ n ⟹ ?a n ≤ ?a m" and ge0: "⋀ n. 0 ≤ ?a n"
by auto
have monotone: "?a (Suc n) ≤ ?a n" for n
using ord[where n="Suc n" and m=n] by auto
note leibniz =
summable_Leibniz'[OF _ ge0, of "λx. x",
OF tendsto_minus[OF ‹a ⇢ 0›, unfolded minus_zero] monotone]
have "summable (λ n. (-1)^n * ?a n)"
using leibniz(1) by auto
then obtain l where "(λ n. (-1)^n * ?a n) sums l"
unfolding summable_def by auto
from this[THEN sums_minus] have "(λ n. (-1)^n * a n) sums -l"
by auto
then have ?summable by (auto simp: summable_def)
moreover
have "¦- a - - b¦ = ¦a - b¦" for a b :: real
unfolding minus_diff_minus by auto
from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
have move_minus: "(∑n. - ((- 1) ^ n * a n)) = - (∑n. (- 1) ^ n * a n)"
by auto
have ?pos using ‹0 ≤ ?a 0› by auto
moreover have ?neg
using leibniz(2,4)
unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
by auto
moreover have ?f and ?g
using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
by auto
ultimately show ?thesis by auto
qed
then show ?summable and ?pos and ?neg and ?f and ?g
by safe
qed
subsection ‹Term-by-Term Differentiability of Power Series›
definition diffs :: "(nat ⇒ 'a::ring_1) ⇒ nat ⇒ 'a"
where "diffs c = (λn. of_nat (Suc n) * c (Suc n))"
text ‹Lemma about distributing negation over it.›
lemma diffs_minus: "diffs (λn. - c n) = (λn. - diffs c n)"
by (simp add: diffs_def)
lemma diffs_equiv:
fixes x :: "'a::{real_normed_vector,ring_1}"
shows "summable (λn. diffs c n * x^n) ⟹
(λn. of_nat n * c n * x^(n - Suc 0)) sums (∑n. diffs c n * x^n)"
unfolding diffs_def
by (simp add: summable_sums sums_Suc_imp)
lemma lemma_termdiff1:
fixes z :: "'a :: {monoid_mult,comm_ring}"
shows "(∑p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
(∑p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
by (auto simp: algebra_simps power_add [symmetric])
lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (∑i<n. f i - r)"
for r :: "'a::ring_1"
by (simp add: sum_subtractf)
lemma lemma_termdiff2:
fixes h :: "'a::field"
assumes h: "h ≠ 0"
shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
h * (∑p< n - Suc 0. ∑q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
(is "?lhs = ?rhs")
proof (cases n)
case (Suc m)
have 0: "⋀x k. (∑n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
(∑j<Suc k. h * ((h + z) ^ j * z ^ (x + k - j)))"
by (auto simp add: power_add [symmetric] mult.commute intro: sum.cong)
have *: "(∑i<m. z ^ i * ((z + h) ^ (m - i) - z ^ (m - i))) =
(∑i<m. ∑j<m - i. h * ((z + h) ^ j * z ^ (m - Suc j)))"
by (force simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
simp del: sum.lessThan_Suc power_Suc intro: sum.cong)
have "h * ?lhs = (z + h) ^ n - z ^ n - h * of_nat n * z ^ (n - Suc 0)"
by (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
also have "... = h * ((∑p<Suc m. (z + h) ^ p * z ^ (m - p)) - of_nat (Suc m) * z ^ m)"
by (simp add: Suc diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
del: power_Suc sum.lessThan_Suc of_nat_Suc)
also have "... = h * ((∑p<Suc m. (z + h) ^ (m - p) * z ^ p) - of_nat (Suc m) * z ^ m)"
by (subst sum.nat_diff_reindex[symmetric]) simp
also have "... = h * (∑i<Suc m. (z + h) ^ (m - i) * z ^ i - z ^ m)"
by (simp add: sum_subtractf)
also have "... = h * ?rhs"
by (simp add: lemma_termdiff1 sum_distrib_left Suc *)
finally have "h * ?lhs = h * ?rhs" .
then show ?thesis
by (simp add: h)
qed auto
lemma real_sum_nat_ivl_bounded2:
fixes K :: "'a::linordered_semidom"
assumes f: "⋀p::nat. p < n ⟹ f p ≤ K" and K: "0 ≤ K"
shows "sum f {..<n-k} ≤ of_nat n * K"
proof -
have "sum f {..<n-k} ≤ (∑i<n - k. K)"
by (rule sum_mono [OF f]) auto
also have "... ≤ of_nat n * K"
by (auto simp: mult_right_mono K)
finally show ?thesis .
qed
lemma lemma_termdiff3:
fixes h z :: "'a::real_normed_field"
assumes 1: "h ≠ 0"
and 2: "norm z ≤ K"
and 3: "norm (z + h) ≤ K"
shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) ≤
of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
proof -
have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
norm (∑p<n - Suc 0. ∑q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
also have "… ≤ of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
proof (rule mult_right_mono [OF _ norm_ge_zero])
from norm_ge_zero 2 have K: "0 ≤ K"
by (rule order_trans)
have le_Kn: "norm ((z + h) ^ i * z ^ j) ≤ K ^ n" if "i + j = n" for i j n
proof -
have "norm (z + h) ^ i * norm z ^ j ≤ K ^ i * K ^ j"
by (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
also have "... = K^n"
by (metis power_add that)
finally show ?thesis
by (simp add: norm_mult norm_power)
qed
then have "⋀p q.
⟦p < n; q < n - Suc 0⟧ ⟹ norm ((z + h) ^ q * z ^ (n - 2 - q)) ≤ K ^ (n - 2)"
by (simp del: subst_all)
then
show "norm (∑p<n - Suc 0. ∑q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) ≤
of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
by (intro order_trans [OF norm_sum]
real_sum_nat_ivl_bounded2 mult_nonneg_nonneg of_nat_0_le_iff zero_le_power K)
qed
also have "… = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
by (simp only: mult.assoc)
finally show ?thesis .
qed
lemma lemma_termdiff4:
fixes f :: "'a::real_normed_vector ⇒ 'b::real_normed_vector"
and k :: real
assumes k: "0 < k"
and le: "⋀h. h ≠ 0 ⟹ norm h < k ⟹ norm (f h) ≤ K * norm h"
shows "f ─0→ 0"
proof (rule tendsto_norm_zero_cancel)
show "(λh. norm (f h)) ─0→ 0"
proof (rule real_tendsto_sandwich)
show "eventually (λh. 0 ≤ norm (f h)) (at 0)"
by simp
show "eventually (λh. norm (f h) ≤ K * norm h) (at 0)"
using k by (auto simp: eventually_at dist_norm le)
show "(λh. 0) ─(0::'a)→ (0::real)"
by (rule tendsto_const)
have "(λh. K * norm h) ─(0::'a)→ K * norm (0::'a)"
by (intro tendsto_intros)
then show "(λh. K * norm h) ─(0::'a)→ 0"
by simp
qed
qed
lemma lemma_termdiff5:
fixes g :: "'a::real_normed_vector ⇒ nat ⇒ 'b::banach"
and k :: real
assumes k: "0 < k"
and f: "summable f"
and le: "⋀h n. h ≠ 0 ⟹ norm h < k ⟹ norm (g h n) ≤ f n * norm h"
shows "(λh. suminf (g h)) ─0→ 0"
proof (rule lemma_termdiff4 [OF k])
fix h :: 'a
assume "h ≠ 0" and "norm h < k"
then have 1: "∀n. norm (g h n) ≤ f n * norm h"
by (simp add: le)
then have "∃N. ∀n≥N. norm (norm (g h n)) ≤ f n * norm h"
by simp
moreover from f have 2: "summable (λn. f n * norm h)"
by (rule summable_mult2)
ultimately have 3: "summable (λn. norm (g h n))"
by (rule summable_comparison_test)
then have "norm (suminf (g h)) ≤ (∑n. norm (g h n))"
by (rule summable_norm)
also from 1 3 2 have "(∑n. norm (g h n)) ≤ (∑n. f n * norm h)"
by (simp add: suminf_le)
also from f have "(∑n. f n * norm h) = suminf f * norm h"
by (rule suminf_mult2 [symmetric])
finally show "norm (suminf (g h)) ≤ suminf f * norm h" .
qed
lemma termdiffs_aux:
fixes x :: "'a::{real_normed_field,banach}"
assumes 1: "summable (λn. diffs (diffs c) n * K ^ n)"
and 2: "norm x < norm K"
shows "(λh. ∑n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) ─0→ 0"
proof -
from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
by fast
from norm_ge_zero r1 have r: "0 < r"
by (rule order_le_less_trans)
then have r_neq_0: "r ≠ 0" by simp
show ?thesis
proof (rule lemma_termdiff5)
show "0 < r - norm x"
using r1 by simp
from r r2 have "norm (of_real r::'a) < norm K"
by simp
with 1 have "summable (λn. norm (diffs (diffs c) n * (of_real r ^ n)))"
by (rule powser_insidea)
then have "summable (λn. diffs (diffs (λn. norm (c n))) n * r ^ n)"
using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
then have "summable (λn. of_nat n * diffs (λn. norm (c n)) n * r ^ (n - Suc 0))"
by (rule diffs_equiv [THEN sums_summable])
also have "(λn. of_nat n * diffs (λn. norm (c n)) n * r ^ (n - Suc 0)) =
(λn. diffs (λm. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
by (simp add: diffs_def r_neq_0 fun_eq_iff split: nat_diff_split)
finally have "summable
(λn. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
by (rule diffs_equiv [THEN sums_summable])
also have
"(λn. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
(λn. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
by (rule ext) (simp add: r_neq_0 split: nat_diff_split)
finally show "summable (λn. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
next
fix h :: 'a and n
assume h: "h ≠ 0"
assume "norm h < r - norm x"
then have "norm x + norm h < r" by simp
with norm_triangle_ineq
have xh: "norm (x + h) < r"
by (rule order_le_less_trans)
have "norm (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))
≤ real n * (real (n - Suc 0) * (r ^ (n - 2) * norm h))"
by (metis (mono_tags, lifting) h mult.assoc lemma_termdiff3 less_eq_real_def r1 xh)
then show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) ≤
norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
by (simp only: norm_mult mult.assoc mult_left_mono [OF _ norm_ge_zero])
qed
qed
lemma termdiffs:
fixes K x :: "'a::{real_normed_field,banach}"
assumes 1: "summable (λn. c n * K ^ n)"
and 2: "summable (λn. (diffs c) n * K ^ n)"
and 3: "summable (λn. (diffs (diffs c)) n * K ^ n)"
and 4: "norm x < norm K"
shows "DERIV (λx. ∑n. c n * x^n) x :> (∑n. (diffs c) n * x^n)"
unfolding DERIV_def
proof (rule LIM_zero_cancel)
show "(λh. (suminf (λn. c n * (x + h) ^ n) - suminf (λn. c n * x^n)) / h
- suminf (λn. diffs c n * x^n)) ─0→ 0"
proof (rule LIM_equal2)
show "0 < norm K - norm x"
using 4 by (simp add: less_diff_eq)
next
fix h :: 'a
assume "norm (h - 0) < norm K - norm x"
then have "norm x + norm h < norm K" by simp
then have 5: "norm (x + h) < norm K"
by (rule norm_triangle_ineq [THEN order_le_less_trans])
have "summable (λn. c n * x^n)"
and "summable (λn. c n * (x + h) ^ n)"
and "summable (λn. diffs c n * x^n)"
using 1 2 4 5 by (auto elim: powser_inside)
then have "((∑n. c n * (x + h) ^ n) - (∑n. c n * x^n)) / h - (∑n. diffs c n * x^n) =
(∑n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
then show "((∑n. c n * (x + h) ^ n) - (∑n. c n * x^n)) / h - (∑n. diffs c n * x^n) =
(∑n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
by (simp add: algebra_simps)
next
show "(λh. ∑n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) ─0→ 0"
by (rule termdiffs_aux [OF 3 4])
qed
qed
subsection ‹The Derivative of a Power Series Has the Same Radius of Convergence›
lemma termdiff_converges:
fixes x :: "'a::{real_normed_field,banach}"
assumes K: "norm x < K"
and sm: "⋀x. norm x < K ⟹ summable(λn. c n * x ^ n)"
shows "summable (λn. diffs c n * x ^ n)"
proof (cases "x = 0")
case True
then show ?thesis
using powser_sums_zero sums_summable by auto
next
case False
then have "K > 0"
using K less_trans zero_less_norm_iff by blast
then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
using K False
by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
have to0: "(λn. of_nat n * (x / of_real r) ^ n) ⇢ 0"
using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
obtain N where N: "⋀n. n≥N ⟹ real_of_nat n * norm x ^ n < r ^ n"
using r LIMSEQ_D [OF to0, of 1]
by (auto simp: norm_divide norm_mult norm_power field_simps)
have "summable (λn. (of_nat n * c n) * x ^ n)"
proof (rule summable_comparison_test')
show "summable (λn. norm (c n * of_real r ^ n))"
apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
using N r norm_of_real [of "r + K", where 'a = 'a] by auto
show "⋀n. N ≤ n ⟹ norm (of_nat n * c n * x ^ n) ≤ norm (c n * of_real r ^ n)"
using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
qed
then have "summable (λn. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
using summable_iff_shift [of "λn. of_nat n * c n * x ^ n" 1]
by simp
then have "summable (λn. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
using False summable_mult2 [of "λn. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
by (simp add: mult.assoc) (auto simp: ac_simps)
then show ?thesis
by (simp add: diffs_def)
qed
lemma termdiff_converges_all:
fixes x :: "'a::{real_normed_field,banach}"
assumes "⋀x. summable (λn. c n * x^n)"
shows "summable (λn. diffs c n * x^n)"
by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)
lemma termdiffs_strong:
fixes K x :: "'a::{real_normed_field,banach}"
assumes sm: "summable (λn. c n * K ^ n)"
and K: "norm x < norm K"
shows "DERIV (λx. ∑n. c n * x^n) x :> (∑n. diffs c n * x^n)"
proof -
have "norm K + norm x < norm K + norm K"
using K by force
then have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
by (auto simp: norm_triangle_lt norm_divide field_simps)
then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
by simp
have "summable (λn. c n * (of_real (norm x + norm K) / 2) ^ n)"
by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
moreover have "⋀x. norm x < norm K ⟹ summable (λn. diffs c n * x ^ n)"
by (blast intro: sm termdiff_converges powser_inside)
moreover have "⋀x. norm x < norm K ⟹ summable (λn. diffs(diffs c) n * x ^ n)"
by (blast intro: sm termdiff_converges powser_inside)
ultimately show ?thesis
by (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
(use K in ‹auto simp: field_simps simp flip: of_real_add›)
qed
lemma termdiffs_strong_converges_everywhere:
fixes K x :: "'a::{real_normed_field,banach}"
assumes "⋀y. summable (λn. c n * y ^ n)"
shows "((λx. ∑n. c n * x^n) has_field_derivative (∑n. diffs c n * x^n)) (at x)"
using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
by (force simp del: of_real_add)
lemma termdiffs_strong':
fixes z :: "'a :: {real_normed_field,banach}"
assumes "⋀z. norm z < K ⟹ summable (λn. c n * z ^ n)"
assumes "norm z < K"
shows "((λz. ∑n. c n * z^n) has_field_derivative (∑n. diffs c n * z^n)) (at z)"
proof (rule termdiffs_strong)
define L :: real where "L = (norm z + K) / 2"
have "0 ≤ norm z" by simp
also note ‹norm z < K›
finally have K: "K ≥ 0" by simp
from assms K have L: "L ≥ 0" "norm z < L" "L < K" by (simp_all add: L_def)
from L show "norm z < norm (of_real L :: 'a)" by simp
from L show "summable (λn. c n * of_real L ^ n)" by (intro assms(1)) simp_all
qed
lemma termdiffs_sums_strong:
fixes z :: "'a :: {banach,real_normed_field}"
assumes sums: "⋀z. norm z < K ⟹ (λn. c n * z ^ n) sums f z"
assumes deriv: "(f has_field_derivative f') (at z)"
assumes norm: "norm z < K"
shows "(λn. diffs c n * z ^ n) sums f'"
proof -
have summable: "summable (λn. diffs c n * z^n)"
by (intro termdiff_converges[OF norm] sums_summable[OF sums])
from norm have "eventually (λz. z ∈ norm -` {..<K}) (nhds z)"
by (intro eventually_nhds_in_open open_vimage)
(simp_all add: continuous_on_norm)
hence eq: "eventually (λz. (∑n. c n * z^n) = f z) (nhds z)"
by eventually_elim (insert sums, simp add: sums_iff)
have "((λz. ∑n. c n * z^n) has_field_derivative (∑n. diffs c n * z^n)) (at z)"
by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
hence "(f has_field_derivative (∑n. diffs c n * z^n)) (at z)"
by (subst (asm) DERIV_cong_ev[OF refl eq refl])
from this and deriv have "(∑n. diffs c n * z^n) = f'" by (rule DERIV_unique)
with summable show ?thesis by (simp add: sums_iff)
qed
lemma isCont_powser:
fixes K x :: "'a::{real_normed_field,banach}"
assumes "summable (λn. c n * K ^ n)"
assumes "norm x < norm K"
shows "isCont (λx. ∑n. c n * x^n) x"
using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
lemma isCont_powser_converges_everywhere:
fixes K x :: "'a::{real_normed_field,banach}"
assumes "⋀y. summable (λn. c n * y ^ n)"
shows "isCont (λx. ∑n. c n * x^n) x"
using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
by (force intro!: DERIV_isCont simp del: of_real_add)
lemma powser_limit_0:
fixes a :: "nat ⇒ 'a::{real_normed_field,banach}"
assumes s: "0 < s"
and sm: "⋀x. norm x < s ⟹ (λn. a n * x ^ n) sums (f x)"
shows "(f ⤏ a 0) (at 0)"
proof -
have "norm (of_real s / 2 :: 'a) < s"
using s by (auto simp: norm_divide)
then have "summable (λn. a n * (of_real s / 2) ^ n)"
by (rule sums_summable [OF sm])
then have "((λx. ∑n. a n * x ^ n) has_field_derivative (∑n. diffs a n * 0 ^ n)) (at 0)"
by (rule termdiffs_strong) (use s in ‹auto simp: norm_divide›)
then have "isCont (λx. ∑n. a n * x ^ n) 0"
by (blast intro: DERIV_continuous)
then have "((λx. ∑n. a n * x ^ n) ⤏ a 0) (at 0)"
by (simp add: continuous_within)
moreover have "(λx. f x - (∑n. a n * x ^ n)) ─0→ 0"
apply (clarsimp simp: LIM_eq)
apply (rule_tac x=s in exI)
using s sm sums_unique by fastforce
ultimately show ?thesis
by (rule Lim_transform)
qed
lemma powser_limit_0_strong:
fixes a :: "nat ⇒ 'a::{real_normed_field,banach}"
assumes s: "0 < s"
and sm: "⋀x. x ≠ 0 ⟹ norm x < s ⟹ (λn. a n * x ^ n) sums (f x)"
shows "(f ⤏ a 0) (at 0)"
proof -
have *: "((λx. if x = 0 then a 0 else f x) ⤏ a 0) (at 0)"
by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
show ?thesis
using "*" by (auto cong: Lim_cong_within)
qed
subsection ‹Derivability of power series›
lemma DERIV_series':
fixes f :: "real ⇒ nat ⇒ real"
assumes DERIV_f: "⋀ n. DERIV (λ x. f x n) x0 :> (f' x0 n)"
and allf_summable: "⋀ x. x ∈ {a <..< b} ⟹ summable (f x)"
and x0_in_I: "x0 ∈ {a <..< b}"
and "summable (f' x0)"
and "summable L"
and L_def: "⋀n x y. x ∈ {a <..< b} ⟹ y ∈ {a <..< b} ⟹ ¦f x n - f y n¦ ≤ L n * ¦x - y¦"
shows "DERIV (λ x. suminf (f x)) x0 :> (suminf (f' x0))"
unfolding DERIV_def
proof (rule LIM_I)
fix r :: real
assume "0 < r" then have "0 < r/3" by auto
obtain N_L where N_L: "⋀ n. N_L ≤ n ⟹ ¦ ∑ i. L (i + n) ¦ < r/3"
using suminf_exist_split[OF ‹0 < r/3› ‹summable L›] by auto
obtain N_f' where N_f': "⋀ n. N_f' ≤ n ⟹ ¦ ∑ i. f' x0 (i + n) ¦ < r/3"
using suminf_exist_split[OF ‹0 < r/3› ‹summable (f' x0)›] by auto
let ?N = "Suc (max N_L N_f')"
have "¦ ∑ i. f' x0 (i + ?N) ¦ < r/3" (is "?f'_part < r/3")
and L_estimate: "¦ ∑ i. L (i + ?N) ¦ < r/3"
using N_L[of "?N"] and N_f' [of "?N"] by auto
let ?diff = "λi x. (f (x0 + x) i - f x0 i) / x"
let ?r = "r / (3 * real ?N)"
from ‹0 < r› have "0 < ?r" by simp
let ?s = "λn. SOME s. 0 < s ∧ (∀ x. x ≠ 0 ∧ ¦ x ¦ < s ⟶ ¦ ?diff n x - f' x0 n ¦ < ?r)"
define S' where "S' = Min (?s ` {..< ?N })"
have "0 < S'"
unfolding S'_def
proof (rule iffD2[OF Min_gr_iff])
show "∀x ∈ (?s ` {..< ?N }). 0 < x"
proof
fix x
assume "x ∈ ?s ` {..<?N}"
then obtain n where "x = ?s n" and "n ∈ {..<?N}"
using image_iff[THEN iffD1] by blast
from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF ‹0 < ?r›, unfolded real_norm_def]
obtain s where s_bound: "0 < s ∧ (∀x. x ≠ 0 ∧ ¦x¦ < s ⟶ ¦?diff n x - f' x0 n¦ < ?r)"
by auto
have "0 < ?s n"
by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
then show "0 < x" by (simp only: ‹x = ?s n›)
qed
qed auto
define S where "S = min (min (x0 - a) (b - x0)) S'"
then have "0 < S" and S_a: "S ≤ x0 - a" and S_b: "S ≤ b - x0"
and "S ≤ S'" using x0_in_I and ‹0 < S'›
by auto
have "¦(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)¦ < r"
if "x ≠ 0" and "¦x¦ < S" for x
proof -
from that have x_in_I: "x0 + x ∈ {a <..< b}"
using S_a S_b by auto
note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
note div_smbl = summable_divide[OF diff_smbl]
note all_smbl = summable_diff[OF div_smbl ‹summable (f' x0)›]
note ign = summable_ignore_initial_segment[where k="?N"]
note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
note div_shft_smbl = summable_divide[OF diff_shft_smbl]
note all_shft_smbl = summable_diff[OF div_smbl ign[OF ‹summable (f' x0)›]]
have 1: "¦(¦?diff (n + ?N) x¦)¦ ≤ L (n + ?N)" for n
proof -
have "¦?diff (n + ?N) x¦ ≤ L (n + ?N) * ¦(x0 + x) - x0¦ / ¦x¦"
using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
by (simp only: abs_divide)
with ‹x ≠ 0› show ?thesis by auto
qed
note 2 = summable_rabs_comparison_test[OF _ ign[OF ‹summable L›]]
from 1 have "¦ ∑ i. ?diff (i + ?N) x ¦ ≤ (∑ i. L (i + ?N))"
by (metis (lifting) abs_idempotent
order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF ‹summable L›]]])
then have "¦∑i. ?diff (i + ?N) x¦ ≤ r / 3" (is "?L_part ≤ r/3")
using L_estimate by auto
have "¦∑n<?N. ?diff n x - f' x0 n¦ ≤ (∑n<?N. ¦?diff n x - f' x0 n¦)" ..
also have "… < (∑n<?N. ?r)"
proof (rule sum_strict_mono)
fix n
assume "n ∈ {..< ?N}"
have "¦x¦ < S" using ‹¦x¦ < S› .
also have "S ≤ S'" using ‹S ≤ S'› .
also have "S' ≤ ?s n"
unfolding S'_def
proof (rule Min_le_iff[THEN iffD2])
have "?s n ∈ (?s ` {..<?N}) ∧ ?s n ≤ ?s n"
using ‹n ∈ {..< ?N}› by auto
then show "∃ a ∈ (?s ` {..<?N}). a ≤ ?s n"
by blast
qed auto
finally have "¦x¦ < ?s n" .
from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF ‹0 < ?r›,
unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
have "∀x. x ≠ 0 ∧ ¦x¦ < ?s n ⟶ ¦?diff n x - f' x0 n¦ < ?r" .
with ‹x ≠ 0› and ‹¦x¦ < ?s n› show "¦?diff n x - f' x0 n¦ < ?r"
by blast
qed auto
also have "… = of_nat (card {..<?N}) * ?r"
by (rule sum_constant)
also have "… = real ?N * ?r"
by simp
also have "… = r/3"
by (auto simp del: of_nat_Suc)
finally have "¦∑n<?N. ?diff n x - f' x0 n ¦ < r / 3" (is "?diff_part < r / 3") .
from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
have "¦(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)¦ =
¦∑n. ?diff n x - f' x0 n¦"
unfolding suminf_diff[OF div_smbl ‹summable (f' x0)›, symmetric]
using suminf_divide[OF diff_smbl, symmetric] by auto
also have "… ≤ ?diff_part + ¦(∑n. ?diff (n + ?N) x) - (∑ n. f' x0 (n + ?N))¦"
unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
unfolding suminf_diff[OF div_shft_smbl ign[OF ‹summable (f' x0)›]]
apply (simp only: add.commute)
using abs_triangle_ineq by blast
also have "… ≤ ?diff_part + ?L_part + ?f'_part"
using abs_triangle_ineq4 by auto
also have "… < r /3 + r/3 + r/3"
using ‹?diff_part < r/3› ‹?L_part ≤ r/3› and ‹?f'_part < r/3›
by (rule add_strict_mono [OF add_less_le_mono])
finally show ?thesis
by auto
qed
then show "∃s > 0. ∀ x. x ≠ 0 ∧ norm (x - 0) < s ⟶
norm (((∑n. f (x0 + x) n) - (∑n. f x0 n)) / x - (∑n. f' x0 n)) < r"
using ‹0 < S› by auto
qed
lemma DERIV_power_series':
fixes f :: "nat ⇒ real"
assumes converges: "⋀x. x ∈ {-R <..< R} ⟹ summable (λn. f n * real (Suc n) * x^n)"
and x0_in_I: "x0 ∈ {-R <..< R}"
and "0 < R"
shows "DERIV (λx. (∑n. f n * x^(Suc n))) x0 :> (∑n. f n * real (Suc n) * x0^n)"
(is "DERIV (λx. suminf (?f x)) x0 :> suminf (?f' x0)")
proof -
have for_subinterval: "DERIV (λx. suminf (?f x)) x0 :> suminf (?f' x0)"
if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
proof -
from that have "x0 ∈ {-R' <..< R'}" and "R' ∈ {-R <..< R}" and "x0 ∈ {-R <..< R}"
by auto
show ?thesis
proof (rule DERIV_series')
show "summable (λ n. ¦f n * real (Suc n) * R'^n¦)"
proof -
have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
using ‹0 < R'› ‹0 < R› ‹R' < R› by (auto simp: field_simps)
then have in_Rball: "(R' + R) / 2 ∈ {-R <..< R}"
using ‹R' < R› by auto
have "norm R' < norm ((R' + R) / 2)"
using ‹0 < R'› ‹0 < R› ‹R' < R› by (auto simp: field_simps)
from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
by auto
qed
next
fix n x y
assume "x ∈ {-R' <..< R'}" and "y ∈ {-R' <..< R'}"
show "¦?f x n - ?f y n¦ ≤ ¦f n * real (Suc n) * R'^n¦ * ¦x-y¦"
proof -
have "¦f n * x ^ (Suc n) - f n * y ^ (Suc n)¦ =
(¦f n¦ * ¦x-y¦) * ¦∑p<Suc n. x ^ p * y ^ (n - p)¦"
unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
by auto
also have "… ≤ (¦f n¦ * ¦x-y¦) * (¦real (Suc n)¦ * ¦R' ^ n¦)"
proof (rule mult_left_mono)
have "¦∑p<Suc n. x ^ p * y ^ (n - p)¦ ≤ (∑p<Suc n. ¦x ^ p * y ^ (n - p)¦)"
by (rule sum_abs)
also have "… ≤ (∑p<Suc n. R' ^ n)"
proof (rule sum_mono)
fix p
assume "p ∈ {..<Suc n}"
then have "p ≤ n" by auto
have "¦x^n¦ ≤ R'^n" if "x ∈ {-R'<..<R'}" for n and x :: real
proof -
from that have "¦x¦ ≤ R'" by auto
then show ?thesis
unfolding power_abs by (rule power_mono) auto
qed
from mult_mono[OF this[OF ‹x ∈ {-R'<..<R'}›, of p] this[OF ‹y ∈ {-R'<..<R'}›, of "n-p"]]
and ‹0 < R'›
have "¦x^p * y^(n - p)¦ ≤ R'^p * R'^(n - p)"
unfolding abs_mult by auto
then show "¦x^p * y^(n - p)¦ ≤ R'^n"
unfolding power_add[symmetric] using ‹p ≤ n› by auto
qed
also have "… = real (Suc n) * R' ^ n"
unfolding sum_constant card_atLeastLessThan by auto
finally show "¦∑p<Suc n. x ^ p * y ^ (n - p)¦ ≤ ¦real (Suc n)¦ * ¦R' ^ n¦"
unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF ‹0 < R'›]]]
by linarith
show "0 ≤ ¦f n¦ * ¦x - y¦"
unfolding abs_mult[symmetric] by auto
qed
also have "… = ¦f n * real (Suc n) * R' ^ n¦ * ¦x - y¦"
unfolding abs_mult mult.assoc[symmetric] by algebra
finally show ?thesis .
qed
next
show "DERIV (λx. ?f x n) x0 :> ?f' x0 n" for n
by (auto intro!: derivative_eq_intros simp del: power_Suc)
next
fix x
assume "x ∈ {-R' <..< R'}"
then have "R' ∈ {-R <..< R}" and "norm x < norm R'"
using assms ‹R' < R› by auto
have "summable (λn. f n * x^n)"
proof (rule summable_comparison_test, intro exI allI impI)
fix n
have le: "¦f n¦ * 1 ≤ ¦f n¦ * real (Suc n)"
by (rule mult_left_mono) auto
show "norm (f n * x^n) ≤ norm (f n * real (Suc n) * x^n)"
unfolding real_norm_def abs_mult
using le mult_right_mono by fastforce
qed (rule powser_insidea[OF converges[OF ‹R' ∈ {-R <..< R}›] ‹norm x < norm R'›])
from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
show "summable (?f x)" by auto
next
show "summable (?f' x0)"
using converges[OF ‹x0 ∈ {-R <..< R}›] .
show "x0 ∈ {-R' <..< R'}"
using ‹x0 ∈ {-R' <..< R'}› .
qed
qed
let ?R = "(R + ¦x0¦) / 2"
have "¦x0¦ < ?R"
using assms by (auto simp: field_simps)
then have "- ?R < x0"
proof (cases "x0 < 0")
case True
then have "- x0 < ?R"
using ‹¦x0¦ < ?R› by auto
then show ?thesis
unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
next
case False
have "- ?R < 0" using assms by auto
also have "… ≤ x0" using False by auto
finally show ?thesis .
qed
then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
using assms by (auto simp: field_simps)
from for_subinterval[OF this] show ?thesis .
qed
lemma geometric_deriv_sums:
fixes z :: "'a :: {real_normed_field,banach}"
assumes "norm z < 1"
shows "(λn. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
proof -
have "(λn. diffs (λn. 1) n * z^n) sums (1 / (1 - z)^2)"
proof (rule termdiffs_sums_strong)
fix z :: 'a assume "norm z < 1"
thus "(λn. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
thus ?thesis unfolding diffs_def by simp
qed
lemma isCont_pochhammer [continuous_intros]: "isCont (λz. pochhammer z n) z"
for z :: "'a::real_normed_field"
by (induct n) (auto simp: pochhammer_rec')
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (λz. pochhammer z n)"
for A :: "'a::real_normed_field set"
by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
lemmas continuous_on_pochhammer' [continuous_intros] =
continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]
subsection ‹Exponential Function›
definition exp :: "'a ⇒ 'a::{real_normed_algebra_1,banach}"
where "exp = (λx. ∑n. x^n /⇩R fact n)"
lemma summable_exp_generic:
fixes x :: "'a::{real_normed_algebra_1,banach}"
defines S_def: "S ≡ λn. x^n /⇩R fact n"
shows "summable S"
proof -
have S_Suc: "⋀n. S (Suc n) = (x * S n) /⇩R (Suc n)"
unfolding S_def by (simp del: mult_Suc)
obtain r :: real where r0: "0 < r" and r1: "r < 1"
using dense [OF zero_less_one] by fast
obtain N :: nat where N: "norm x < real N * r"
using ex_less_of_nat_mult r0 by auto
from r1 show ?thesis
proof (rule summable_ratio_test [rule_format])
fix n :: nat
assume n: "N ≤ n"
have "norm x ≤ real N * r"
using N by (rule order_less_imp_le)
also have "real N * r ≤ real (Suc n) * r"
using r0 n by (simp add: mult_right_mono)
finally have "norm x * norm (S n) ≤ real (Suc n) * r * norm (S n)"
using norm_ge_zero by (rule mult_right_mono)
then have "norm (x * S n) ≤ real (Suc n) * r * norm (S n)"
by (rule order_trans [OF norm_mult_ineq])
then have "norm (x * S n) / real (Suc n) ≤ r * norm (S n)"
by (simp add: pos_divide_le_eq ac_simps)
then show "norm (S (Suc n)) ≤ r * norm (S n)"
by (simp add: S_Suc inverse_eq_divide)
qed
qed
lemma summable_norm_exp: "summable (λn. norm (x^n /⇩R fact n))"
for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_norm_comparison_test [OF exI, rule_format])
show "summable (λn. norm x^n /⇩R fact n)"
by (rule summable_exp_generic)
show "norm (x^n /⇩R fact n) ≤ norm x^n /⇩R fact n" for n
by (simp add: norm_power_ineq)
qed
lemma summable_exp: "summable (λn. inverse (fact n) * x^n)"
for x :: "'a::{real_normed_field,banach}"
using summable_exp_generic [where x=x]
by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
lemma exp_converges: "(λn. x^n /⇩R fact n) sums exp x"
unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
lemma exp_fdiffs:
"diffs (λn. inverse (fact n)) = (λn. inverse (fact n :: 'a::{real_normed_field,banach}))"
by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
del: mult_Suc of_nat_Suc)
lemma diffs_of_real: "diffs (λn. of_real (f n)) = (λn. of_real (diffs f n))"
by (simp add: diffs_def)
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
unfolding exp_def scaleR_conv_of_real
proof (rule DERIV_cong)
have sinv: "summable (λn. of_real (inverse (fact n)) * x ^ n)" for x::'a
by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
show "((λx. ∑n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
(∑n. diffs (λn. of_real (inverse (fact n))) n * x ^ n)) (at x)"
by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
show "(∑n. diffs (λn. of_real (inverse (fact n))) n * x ^ n) = (∑n. of_real (inverse (fact n)) * x ^ n)"
by (simp add: diffs_of_real exp_fdiffs)
qed
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]
lemma norm_exp: "norm (exp x) ≤ exp (norm x)"
proof -
from summable_norm[OF summable_norm_exp, of x]
have "norm (exp x) ≤ (∑n. inverse (fact n) * norm (x^n))"
by (simp add: exp_def)
also have "… ≤ exp (norm x)"
using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
finally show ?thesis .
qed
lemma isCont_exp: "isCont exp x"
for x :: "'a::{real_normed_field,banach}"
by (rule DERIV_exp [THEN DERIV_isCont])
lemma isCont_exp' [simp]: "isCont f a ⟹ isCont (λx. exp (f x)) a"
for f :: "_ ⇒'a::{real_normed_field,banach}"
by (rule isCont_o2 [OF _ isCont_exp])
lemma tendsto_exp [tendsto_intros]: "(f ⤏ a) F ⟹ ((λx. exp (f x)) ⤏ exp a) F"
for f:: "_ ⇒'a::{real_normed_field,banach}"
by (rule isCont_tendsto_compose [OF isCont_exp])
lemma continuous_exp [continuous_intros]: "continuous F f ⟹ continuous F (λx. exp (f x))"
for f :: "_ ⇒'a::{real_normed_field,banach}"
unfolding continuous_def by (rule tendsto_exp)
lemma continuous_on_exp [continuous_intros]: "continuous_on s f ⟹ continuous_on s (λx. exp (f x))"
for f :: "_ ⇒'a::{real_normed_field,banach}"
unfolding continuous_on_def by (auto intro: tendsto_exp)
subsubsection ‹Properties of the Exponential Function›
lemma exp_zero [simp]: "exp 0 = 1"
unfolding exp_def by (simp add: scaleR_conv_of_real)
lemma exp_series_add_commuting:
fixes x y :: "'a::{real_normed_algebra_1,banach}"
defines S_def: "S ≡ λx n. x^n /⇩R fact n"
assumes comm: "x * y = y * x"
shows "S (x + y) n = (∑i≤n. S x i * S y (n - i))"
proof (induct n)
case 0
show ?case
unfolding S_def by simp
next
case (Suc n)
have S_Suc: "⋀x n. S x (Suc n) = (x * S x n) /⇩R real (Suc n)"
unfolding S_def by (simp del: mult_Suc)
then have times_S: "⋀x n. x * S x n = real (Suc n) *⇩R S x (Suc n)"
by simp
have S_comm: "⋀n. S x n * y = y * S x n"
by (simp add: power_commuting_commutes comm S_def)
have "real (Suc n) *⇩R S (x + y) (Suc n) = (x + y) * (∑i≤n. S x i * S y (n - i))"
by (metis Suc.hyps times_S)
also have "… = x * (∑i≤n. S x i * S y (n - i)) + y * (∑i≤n. S x i * S y (n - i))"
by (rule distrib_right)
also have "… = (∑i≤n. x * S x i * S y (n - i)) + (∑i≤n. S x i * y * S y (n - i))"
by (simp add: sum_distrib_left ac_simps S_comm)
also have "… = (∑i≤n. x * S x i * S y (n - i)) + (∑i≤n. S x i * (y * S y (n - i)))"
by (simp add: ac_simps)
also have "… = (∑i≤n. real (Suc i) *⇩R (S x (Suc i) * S y (n - i)))
+ (∑i≤n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))"
by (simp add: times_S Suc_diff_le)
also have "(∑i≤n. real (Suc i) *⇩R (S x (Suc i) * S y (n - i)))
= (∑i≤Suc n. real i *⇩R (S x i * S y (Suc n - i)))"
by (subst sum.atMost_Suc_shift) simp
also have "(∑i≤n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))
= (∑i≤Suc n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))"
by simp
also have "(∑i≤Suc n. real i *⇩R (S x i * S y (Suc n - i)))
+ (∑i≤Suc n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))
= (∑i≤Suc n. real (Suc n) *⇩R (S x i * S y (Suc n - i)))"
by (simp flip: sum.distrib scaleR_add_left of_nat_add)
also have "… = real (Suc n) *⇩R (∑i≤Suc n. S x i * S y (Suc n - i))"
by (simp only: scaleR_right.sum)
finally show "S (x + y) (Suc n) = (∑i≤Suc n. S x i * S y (Suc n - i))"
by (simp del: sum.cl_ivl_Suc)
qed
lemma exp_add_commuting: "x * y = y * x ⟹ exp (x + y) = exp x * exp y"
by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
lemma exp_times_arg_commute: "exp A * A = A * exp A"
by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
lemma exp_add: "exp (x + y) = exp x * exp y"
for x y :: "'a::{real_normed_field,banach}"
by (rule exp_add_commuting) (simp add: ac_simps)
lemma exp_double: "exp(2 * z) = exp z ^ 2"
by (simp add: exp_add_commuting mult_2 power2_eq_square)
lemmas mult_exp_exp = exp_add [symmetric]
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
unfolding exp_def
apply (subst suminf_of_real [OF summable_exp_generic])
apply (simp add: scaleR_conv_of_real)
done
lemmas of_real_exp = exp_of_real[symmetric]
corollary exp_in_Reals [simp]: "z ∈ ℝ ⟹ exp z ∈ ℝ"
by (metis Reals_cases Reals_of_real exp_of_real)
lemma exp_not_eq_zero [simp]: "exp x ≠ 0"
proof
have "exp x * exp (- x) = 1"
by (simp add: exp_add_commuting[symmetric])
also assume "exp x = 0"
finally show False by simp
qed
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
by (simp add: exp_add_commuting[symmetric])
lemma exp_minus: "exp (- x) = inverse (exp x)"
for x :: "'a::{real_normed_field,banach}"
by (intro inverse_unique [symmetric] exp_minus_inverse)
lemma exp_diff: "exp (x - y) = exp x / exp y"
for x :: "'a::{real_normed_field,banach}"
using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
for x :: "'a::{real_normed_field,banach}"
by (induct n) (auto simp: distrib_left exp_add mult.commute)
corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
for x :: "'a::{real_normed_field,banach}"
by (metis exp_of_nat_mult mult_of_nat_commute)
lemma exp_sum: "finite I ⟹ exp (sum f I) = prod (λx. exp (f x)) I"
by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
lemma exp_divide_power_eq:
fixes x :: "'a::{real_normed_field,banach}"
assumes "n > 0"
shows "exp (x / of_nat n) ^ n = exp x"
using assms
proof (induction n arbitrary: x)
case (Suc n)
show ?case
proof (cases "n = 0")
case True
then show ?thesis by simp
next
case False
have [simp]: "1 + (of_nat n * of_nat n + of_nat n * 2) ≠ (0::'a)"
using of_nat_eq_iff [of "1 + n * n + n * 2" "0"]
by simp
from False have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
by simp
have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
using of_nat_neq_0
by (auto simp add: field_split_simps)
show ?thesis
using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
by (simp add: exp_add [symmetric])
qed
qed simp
subsubsection ‹Properties of the Exponential Function on Reals›
text ‹Comparisons of \<^term>‹exp x› with zero.›
text ‹Proof: because every exponential can be seen as a square.›
lemma exp_ge_zero [simp]: "0 ≤ exp x"
for x :: real
proof -
have "0 ≤ exp (x/2) * exp (x/2)"
by simp
then show ?thesis
by (simp add: exp_add [symmetric])
qed
lemma exp_gt_zero [simp]: "0 < exp x"
for x :: real
by (simp add: order_less_le)
lemma not_exp_less_zero [simp]: "¬ exp x < 0"
for x :: real
by (simp add: not_less)
lemma not_exp_le_zero [simp]: "¬ exp x ≤ 0"
for x :: real
by (simp add: not_le)
lemma abs_exp_cancel [simp]: "¦exp x¦ = exp x"
for x :: real
by simp
text ‹Strict monotonicity of exponential.›
lemma exp_ge_add_one_self_aux:
fixes x :: real
assumes "0 ≤ x"
shows "1 + x ≤ exp x"
using order_le_imp_less_or_eq [OF assms]
proof
assume "0 < x"
have "1 + x ≤ (∑n<2. inverse (fact n) * x^n)"
by (auto simp: numeral_2_eq_2)
also have "… ≤ (∑n. inverse (fact n) * x^n)"
using ‹0 < x› by (auto simp add: zero_le_mult_iff intro: sum_le_suminf [OF summable_exp])
finally show "1 + x ≤ exp x"
by (simp add: exp_def)
qed auto
lemma exp_gt_one: "0 < x ⟹ 1 < exp x"
for x :: real
proof -
assume x: "0 < x"
then have "1 < 1 + x" by simp
also from x have "1 + x ≤ exp x"
by (simp add: exp_ge_add_one_self_aux)
finally show ?thesis .
qed
lemma exp_less_mono:
fixes x y :: real
assumes "x < y"
shows "exp x < exp y"
proof -
from ‹x < y› have "0 < y - x" by simp
then have "1 < exp (y - x)" by (rule exp_gt_one)
then have "1 < exp y / exp x" by (simp only: exp_diff)
then show "exp x < exp y" by simp
qed
lemma exp_less_cancel: "exp x < exp y ⟹ x < y"
for x y :: real
unfolding linorder_not_le [symmetric]
by (auto simp: order_le_less exp_less_mono)
lemma exp_less_cancel_iff [iff]: "exp x < exp y ⟷ x < y"
for x y :: real
by (auto intro: exp_less_mono exp_less_cancel)
lemma exp_le_cancel_iff [iff]: "exp x ≤ exp y ⟷ x ≤ y"
for x y :: real
by (auto simp: linorder_not_less [symmetric])
lemma exp_inj_iff [iff]: "exp x = exp y ⟷ x = y"
for x y :: real
by (simp add: order_eq_iff)
text ‹Comparisons of \<^term>‹exp x› with one.›
lemma one_less_exp_iff [simp]: "1 < exp x ⟷ 0 < x"
for x :: real
using exp_less_cancel_iff [where x = 0 and y = x] by simp
lemma exp_less_one_iff [simp]: "exp x < 1 ⟷ x < 0"
for x :: real
using exp_less_cancel_iff [where x = x and y = 0] by simp
lemma one_le_exp_iff [simp]: "1 ≤ exp x ⟷ 0 ≤ x"
for x :: real
using exp_le_cancel_iff [where x = 0 and y = x] by simp
lemma exp_le_one_iff [simp]: "exp x ≤ 1 ⟷ x ≤ 0"
for x :: real
using exp_le_cancel_iff [where x = x and y = 0] by simp
lemma exp_eq_one_iff [simp]: "exp x = 1 ⟷ x = 0"
for x :: real
using exp_inj_iff [where x = x and y = 0] by simp
lemma lemma_exp_total: "1 ≤ y ⟹ ∃x. 0 ≤ x ∧ x ≤ y - 1 ∧ exp x = y"
for y :: real
proof (rule IVT)
assume "1 ≤ y"
then have "0 ≤ y - 1" by simp
then have "1 + (y - 1) ≤ exp (y - 1)"
by (rule exp_ge_add_one_self_aux)
then show "y ≤ exp (y - 1)" by simp
qed (simp_all add: le_diff_eq)
lemma exp_total: "0 < y ⟹ ∃x. exp x = y"
for y :: real
proof (rule linorder_le_cases [of 1 y])
assume "1 ≤ y"
then show "∃x. exp x = y"
by (fast dest: lemma_exp_total)
next
assume "0 < y" and "y ≤ 1"
then have "1 ≤ inverse y"
by (simp add: one_le_inverse_iff)
then obtain x where "exp x = inverse y"
by (fast dest: lemma_exp_total)
then have "exp (- x) = y"
by (simp add: exp_minus)
then show "∃x. exp x = y" ..
qed
subsection ‹Natural Logarithm›
class ln = real_normed_algebra_1 + banach +
fixes ln :: "'a ⇒ 'a"
assumes ln_one [simp]: "ln 1 = 0"
definition powr :: "'a ⇒ 'a ⇒ 'a::ln" (infixr "powr" 80)
where "x powr a ≡ if x = 0 then 0 else exp (a * ln x)"
lemma powr_0 [simp]: "0 powr z = 0"
by (simp add: powr_def)
instantiation real :: ln
begin
definition ln_real :: "real ⇒ real"
where "ln_real x = (THE u. exp u = x)"
instance
by intro_classes (simp add: ln_real_def)
end
lemma powr_eq_0_iff [simp]: "w powr z = 0 ⟷ w = 0"
by (simp add: powr_def)
lemma ln_exp [simp]: "ln (exp x) = x"
for x :: real
by (simp add: ln_real_def)
lemma exp_ln [simp]: "0 < x ⟹ exp (ln x) = x"
for x :: real
by (auto dest: exp_total)
lemma exp_ln_iff [simp]: "exp (ln x) = x ⟷ 0 < x"
for x :: real
by (metis exp_gt_zero exp_ln)
lemma ln_unique: "exp y = x ⟹ ln x = y"
for x :: real
by (erule subst) (rule ln_exp)
lemma ln_mult: "0 < x ⟹ 0 < y ⟹ ln (x * y) = ln x + ln y"
for x :: real
by (rule ln_unique) (simp add: exp_add)
lemma ln_prod: "finite I ⟹ (⋀i. i ∈ I ⟹ f i > 0) ⟹ ln (prod f I) = sum (λx. ln(f x)) I"
for f :: "'a ⇒ real"
by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)
lemma ln_inverse: "0 < x ⟹ ln (inverse x) = - ln x"
for x :: real
by (rule ln_unique) (simp add: exp_minus)
lemma ln_div: "0 < x ⟹ 0 < y ⟹ ln (x / y) = ln x - ln y"
for x :: real
by (rule ln_unique) (simp add: exp_diff)
lemma ln_realpow: "0 < x ⟹ ln (x^n) = real n * ln x"
by (rule ln_unique) (simp add: exp_of_nat_mult)
lemma ln_less_cancel_iff [simp]: "0 < x ⟹ 0 < y ⟹ ln x < ln y ⟷ x < y"
for x :: real
by (subst exp_less_cancel_iff [symmetric]) simp
lemma ln_le_cancel_iff [simp]: "0 < x ⟹ 0 < y ⟹ ln x ≤ ln y ⟷ x ≤ y"
for x :: real
by (simp add: linorder_not_less [symmetric])
lemma ln_inj_iff [simp]: "0 < x ⟹ 0 < y ⟹ ln x = ln y ⟷ x = y"
for x :: real
by (simp add: order_eq_iff)
lemma ln_add_one_self_le_self: "0 ≤ x ⟹ ln (1 + x) ≤ x"
for x :: real
by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
lemma ln_less_self [simp]: "0 < x ⟹ ln x < x"
for x :: real
by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)
lemma ln_ge_iff: "⋀x::real. 0 < x ⟹ y ≤ ln x ⟷ exp y ≤ x"
using exp_le_cancel_iff exp_total by force
lemma ln_ge_zero [simp]: "1 ≤ x ⟹ 0 ≤ ln x"
for x :: real
using ln_le_cancel_iff [of 1 x] by simp
lemma ln_ge_zero_imp_ge_one: "0 ≤ ln x ⟹ 0 < x ⟹ 1 ≤ x"
for x :: real
using ln_le_cancel_iff [of 1 x] by simp
lemma ln_ge_zero_iff [simp]: "0 < x ⟹ 0 ≤ ln x ⟷ 1 ≤ x"
for x :: real
using ln_le_cancel_iff [of 1 x] by simp
lemma ln_less_zero_iff [simp]: "0 < x ⟹ ln x < 0 ⟷ x < 1"
for x :: real
using ln_less_cancel_iff [of x 1] by simp
lemma ln_le_zero_iff [simp]: "0 < x ⟹ ln x ≤ 0 ⟷ x ≤ 1"
for x :: real
by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)
lemma ln_gt_zero: "1 < x ⟹ 0 < ln x"
for x :: real
using ln_less_cancel_iff [of 1 x] by simp
lemma ln_gt_zero_imp_gt_one: "0 < ln x ⟹ 0 < x ⟹ 1 < x"
for x :: real
using ln_less_cancel_iff [of 1 x] by simp
lemma ln_gt_zero_iff [simp]: "0 < x ⟹ 0 < ln x ⟷ 1 < x"
for x :: real
using ln_less_cancel_iff [of 1 x] by simp
lemma ln_eq_zero_iff [simp]: "0 < x ⟹ ln x = 0 ⟷ x = 1"
for x :: real
using ln_inj_iff [of x 1] by simp
lemma ln_less_zero: "0 < x ⟹ x < 1 ⟹ ln x < 0"
for x :: real
by simp
lemma ln_neg_is_const: "x ≤ 0 ⟹ ln x = (THE x. False)"
for x :: real
by (auto simp: ln_real_def intro!: arg_cong[where f = The])
lemma powr_eq_one_iff [simp]:
"a powr x = 1 ⟷ x = 0" if "a > 1" for a x :: real
using that by (auto simp: powr_def split: if_splits)
lemma isCont_ln:
fixes x :: real
assumes "x ≠ 0"
shows "isCont ln x"
proof (cases "0 < x")
case True
then have "isCont ln (exp (ln x))"
by (intro isCont_inverse_function[where d = "¦x¦" and f = exp]) auto
with True show ?thesis
by simp
next
case False
with ‹x ≠ 0› show "isCont ln x"
unfolding isCont_def
by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "λ_. ln 0"])
(auto simp: ln_neg_is_const not_less eventually_at dist_real_def
intro!: exI[of _ "¦x¦"])
qed
lemma tendsto_ln [tendsto_intros]: "(f ⤏ a) F ⟹ a ≠ 0 ⟹ ((λx. ln (f x)) ⤏ ln a) F"
for a :: real
by (rule isCont_tendsto_compose [OF isCont_ln])
lemma continuous_ln:
"continuous F f ⟹ f (Lim F (λx. x)) ≠ 0 ⟹ continuous F (λx. ln (f x :: real))"
unfolding continuous_def by (rule tendsto_ln)
lemma isCont_ln' [continuous_intros]:
"continuous (at x) f ⟹ f x ≠ 0 ⟹ continuous (at x) (λx. ln (f x :: real))"
unfolding continuous_at by (rule tendsto_ln)
lemma continuous_within_ln [continuous_intros]:
"continuous (at x within s) f ⟹ f x ≠ 0 ⟹ continuous (at x within s) (λx. ln (f x :: real))"
unfolding continuous_within by (rule tendsto_ln)
lemma continuous_on_ln [continuous_intros]:
"continuous_on s f ⟹ (∀x∈s. f x ≠ 0) ⟹ continuous_on s (λx. ln (f x :: real))"
unfolding continuous_on_def by (auto intro: tendsto_ln)
lemma DERIV_ln: "0 < x ⟹ DERIV ln x :> inverse x"
for x :: real
by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
(auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
lemma DERIV_ln_divide: "0 < x ⟹ DERIV ln x :> 1 / x"
for x :: real
by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]
lemma ln_series:
assumes "0 < x" and "x < 2"
shows "ln x = (∑ n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
(is "ln x = suminf (?f (x - 1))")
proof -
let ?f' = "λx n. (-1)^n * (x - 1)^n"
have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
proof (rule DERIV_isconst3 [where x = x])
fix x :: real
assume "x ∈ {0 <..< 2}"
then have "0 < x" and "x < 2" by auto
have "norm (1 - x) < 1"
using ‹0 < x› and ‹x < 2› by auto
have "1 / x = 1 / (1 - (1 - x))" by auto
also have "… = (∑ n. (1 - x)^n)"
using geometric_sums[OF ‹norm (1 - x) < 1›] by (rule sums_unique)
also have "… = suminf (?f' x)"
unfolding power_mult_distrib[symmetric]
by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
finally have "DERIV ln x :> suminf (?f' x)"
using DERIV_ln[OF ‹0 < x›] unfolding divide_inverse by auto
moreover
have repos: "⋀ h x :: real. h - 1 + x = h + x - 1" by auto
have "DERIV (λx. suminf (?f x)) (x - 1) :>
(∑n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
proof (rule DERIV_power_series')
show "x - 1 ∈ {- 1<..<1}" and "(0 :: real) < 1"
using ‹0 < x› ‹x < 2› by auto
next
fix x :: real
assume "x ∈ {- 1<..<1}"
then show "summable (λn. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
by (simp add: abs_if flip: power_mult_distrib)
qed
then have "DERIV (λx. suminf (?f x)) (x - 1) :> suminf (?f' x)"
unfolding One_nat_def by auto
then have "DERIV (λx. suminf (?f (x - 1))) x :> suminf (?f' x)"
unfolding DERIV_def repos .
ultimately have "DERIV (λx. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
by (rule DERIV_diff)
then show "DERIV (λx. ln x - suminf (?f (x - 1))) x :> 0" by auto
qed (auto simp: assms)
then show ?thesis by auto
qed
lemma exp_first_terms:
fixes x :: "'a::{real_normed_algebra_1,banach}"
shows "exp x = (∑n<k. inverse(fact n) *⇩R (x ^ n)) + (∑n. inverse(fact (n + k)) *⇩R (x ^ (n + k)))"
proof -
have "exp x = suminf (λn. inverse(fact n) *⇩R (x^n))"
by (simp add: exp_def)
also from summable_exp_generic have "… = (∑ n. inverse(fact(n+k)) *⇩R (x ^ (n + k))) +
(∑ n::nat<k. inverse(fact n) *⇩R (x^n))" (is "_ = _ + ?a")
by (rule suminf_split_initial_segment)
finally show ?thesis by simp
qed
lemma exp_first_term: "exp x = 1 + (∑n. inverse (fact (Suc n)) *⇩R (x ^ Suc n))"
for x :: "'a::{real_normed_algebra_1,banach}"
using exp_first_terms[of x 1] by simp
lemma exp_first_two_terms: "exp x = 1 + x + (∑n. inverse (fact (n + 2)) *⇩R (x ^ (n + 2)))"
for x :: "'a::{real_normed_algebra_1,banach}"
using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
lemma exp_bound:
fixes x :: real
assumes a: "0 ≤ x"
and b: "x ≤ 1"
shows "exp x ≤ 1 + x + x⇧2"
proof -
have "suminf (λn. inverse(fact (n+2)) * (x ^ (n + 2))) ≤ x⇧2"
proof -
have "(λn. x⇧2 / 2 * (1 / 2) ^ n) sums (x⇧2 / 2 * (1 / (1 - 1 / 2)))"
by (intro sums_mult geometric_sums) simp
then have sumsx: "(λn. x⇧2 / 2 * (1 / 2) ^ n) sums x⇧2"
by simp
have "suminf (λn. inverse(fact (n+2)) * (x ^ (n + 2))) ≤ suminf (λn. (x⇧2/2) * ((1/2)^n))"
proof (intro suminf_le allI)
show "inverse (fact (n + 2)) * x ^ (n + 2) ≤ (x⇧2/2) * ((1/2)^n)" for n :: nat
proof -
have "(2::nat) * 2 ^ n ≤ fact (n + 2)"
by (induct n) simp_all
then have "real ((2::nat) * 2 ^ n) ≤ real_of_nat (fact (n + 2))"
by (simp only: of_nat_le_iff)
then have "((2::real) * 2 ^ n) ≤ fact (n + 2)"
unfolding of_nat_fact by simp
then have "inverse (fact (n + 2)) ≤ inverse ((2::real) * 2 ^ n)"
by (rule le_imp_inverse_le) simp
then have "inverse (fact (n + 2)) ≤ 1/(2::real) * (1/2)^n"
by (simp add: power_inverse [symmetric])
then have "inverse (fact (n + 2)) * (x^n * x⇧2) ≤ 1/2 * (1/2)^n * (1 * x⇧2)"
by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
then show ?thesis
unfolding power_add by (simp add: ac_simps del: fact_Suc)
qed
show "summable (λn. inverse (fact (n + 2)) * x ^ (n + 2))"
by (rule summable_exp [THEN summable_ignore_initial_segment])
show "summable (λn. x⇧2 / 2 * (1 / 2) ^ n)"
by (rule sums_summable [OF sumsx])
qed
also have "… = x⇧2"
by (rule sums_unique [THEN sym]) (rule sumsx)
finally show ?thesis .
qed
then show ?thesis
unfolding exp_first_two_terms by auto
qed
corollary exp_half_le2: "exp(1/2) ≤ (2::real)"
using exp_bound [of "1/2"]
by (simp add: field_simps)
corollary exp_le: "exp 1 ≤ (3::real)"
using exp_bound [of 1]
by (simp add: field_simps)
lemma exp_bound_half: "norm z ≤ 1/2 ⟹ norm (exp z) ≤ 2"
by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
lemma exp_bound_lemma:
assumes "norm z ≤ 1/2"
shows "norm (exp z) ≤ 1 + 2 * norm z"
proof -
have *: "(norm z)⇧2 ≤ norm z * 1"
unfolding power2_eq_square
by (rule mult_left_mono) (use assms in auto)
have "norm (exp z) ≤ exp (norm z)"
by (rule norm_exp)
also have "… ≤ 1 + (norm z) + (norm z)⇧2"
using assms exp_bound by auto
also have "… ≤ 1 + 2 * norm z"
using * by auto
finally show ?thesis .
qed
lemma real_exp_bound_lemma: "0 ≤ x ⟹ x ≤ 1/2 ⟹ exp x ≤ 1 + 2 * x"
for x :: real
using exp_bound_lemma [of x] by simp
lemma ln_one_minus_pos_upper_bound:
fixes x :: real
assumes a: "0 ≤ x" and b: "x < 1"
shows "ln (1 - x) ≤ - x"
proof -
have "(1 - x) * (1 + x + x⇧2) = 1 - x^3"
by (simp add: algebra_simps power2_eq_square power3_eq_cube)
also have "… ≤ 1"
by (auto simp: a)
finally have "(1 - x) * (1 + x + x⇧2) ≤ 1" .
moreover have c: "0 < 1 + x + x⇧2"
by (simp add: add_pos_nonneg a)
ultimately have "1 - x ≤ 1 / (1 + x + x⇧2)"
by (elim mult_imp_le_div_pos)
also have "… ≤ 1 / exp x"
by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
real_sqrt_pow2_iff real_sqrt_power)
also have "… = exp (- x)"
by (auto simp: exp_minus divide_inverse)
finally have "1 - x ≤ exp (- x)" .
also have "1 - x = exp (ln (1 - x))"
by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
finally have "exp (ln (1 - x)) ≤ exp (- x)" .
then show ?thesis
by (auto simp only: exp_le_cancel_iff)
qed
lemma exp_ge_add_one_self [simp]: "1 + x ≤ exp x"
for x :: real
proof (cases "0 ≤ x ∨ x ≤ -1")
case True
then show ?thesis
by (meson exp_ge_add_one_self_aux exp_ge_zero order.trans real_add_le_0_iff)
next
case False
then have ln1: "ln (1 + x) ≤ x"
using ln_one_minus_pos_upper_bound [of "-x"] by simp
have "1 + x = exp (ln (1 + x))"
using False by auto
also have "… ≤ exp x"
by (simp add: ln1)
finally show ?thesis .
qed
lemma ln_one_plus_pos_lower_bound:
fixes x :: real
assumes a: "0 ≤ x" and b: "x ≤ 1"
shows "x - x⇧2 ≤ ln (1 + x)"
proof -
have "exp (x - x⇧2) = exp x / exp (x⇧2)"
by (rule exp_diff)
also have "… ≤ (1 + x + x⇧2) / exp (x ⇧2)"
by (metis a b divide_right_mono exp_bound exp_ge_zero)
also have "… ≤ (1 + x + x⇧2) / (1 + x⇧2)"
by (simp add: a divide_left_mono add_pos_nonneg)
also from a have "… ≤ 1 + x"
by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
finally have "exp (x - x⇧2) ≤ 1 + x" .
also have "… = exp (ln (1 + x))"
proof -
from a have "0 < 1 + x" by auto
then show ?thesis
by (auto simp only: exp_ln_iff [THEN sym])
qed
finally have "exp (x - x⇧2) ≤ exp (ln (1 + x))" .
then show ?thesis
by (metis exp_le_cancel_iff)
qed
lemma ln_one_minus_pos_lower_bound:
fixes x :: real
assumes a: "0 ≤ x" and b: "x ≤ 1 / 2"
shows "- x - 2 * x⇧2 ≤ ln (1 - x)"
proof -
from b have c: "x < 1" by auto
then have "ln (1 - x) = - ln (1 + x / (1 - x))"
by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
also have "- (x / (1 - x)) ≤ …"
proof -
have "ln (1 + x / (1 - x)) ≤ x / (1 - x)"
using a c by (intro ln_add_one_self_le_self) auto
then show ?thesis
by auto
qed
also have "- (x / (1 - x)) = - x / (1 - x)"
by auto
finally have d: "- x / (1 - x) ≤ ln (1 - x)" .
have "0 < 1 - x" using a b by simp
then have e: "- x - 2 * x⇧2 ≤ - x / (1 - x)"
using mult_right_le_one_le[of "x * x" "2 * x"] a b
by (simp add: field_simps power2_eq_square)
from e d show "- x - 2 * x⇧2 ≤ ln (1 - x)"
by (rule order_trans)
qed
lemma ln_add_one_self_le_self2:
fixes x :: real
shows "-1 < x ⟹ ln (1 + x) ≤ x"
by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
fixes x :: real
assumes x: "0 ≤ x" and x1: "x ≤ 1"
shows "¦ln (1 + x) - x¦ ≤ x⇧2"
proof -
from x have "ln (1 + x) ≤ x"
by (rule ln_add_one_self_le_self)
then have "ln (1 + x) - x ≤ 0"
by simp
then have "¦ln(1 + x) - x¦ = - (ln(1 + x) - x)"
by (rule abs_of_nonpos)
also have "… = x - ln (1 + x)"
by simp
also have "… ≤ x⇧2"
proof -
from x x1 have "x - x⇧2 ≤ ln (1 + x)"
by (intro ln_one_plus_pos_lower_bound)
then show ?thesis
by simp
qed
finally show ?thesis .
qed
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
fixes x :: real
assumes a: "-(1 / 2) ≤ x" and b: "x ≤ 0"
shows "¦ln (1 + x) - x¦ ≤ 2 * x⇧2"
proof -
have *: "- (-x) - 2 * (-x)⇧2 ≤ ln (1 - (- x))"
by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le)
have "¦ln (1 + x) - x¦ = x - ln (1 - (- x))"
using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
also have "… ≤ 2 * x⇧2"
using * by (simp add: algebra_simps)
finally show ?thesis .
qed
lemma abs_ln_one_plus_x_minus_x_bound:
fixes x :: real
assumes "¦x¦ ≤ 1 / 2"
shows "¦ln (1 + x) - x¦ ≤ 2 * x⇧2"
proof (cases "0 ≤ x")
case True
then show ?thesis
using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
next
case False
then show ?thesis
using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
qed
lemma ln_x_over_x_mono:
fixes x :: real
assumes x: "exp 1 ≤ x" "x ≤ y"
shows "ln y / y ≤ ln x / x"
proof -
note x
moreover have "0 < exp (1::real)" by simp
ultimately have a: "0 < x" and b: "0 < y"
by (fast intro: less_le_trans order_trans)+
have "x * ln y - x * ln x = x * (ln y - ln x)"
by (simp add: algebra_simps)
also have "… = x * ln (y / x)"
by (simp only: ln_div a b)
also have "y / x = (x + (y - x)) / x"
by simp
also have "… = 1 + (y - x) / x"
using x a by (simp add: field_simps)
also have "x * ln (1 + (y - x) / x) ≤ x * ((y - x) / x)"
using x a
by (intro mult_left_mono ln_add_one_self_le_self) simp_all
also have "… = y - x"
using a by simp
also have "… = (y - x) * ln (exp 1)" by simp
also have "… ≤ (y - x) * ln x"
using a x exp_total of_nat_1 x(1) by (fastforce intro: mult_left_mono)
also have "… = y * ln x - x * ln x"
by (rule left_diff_distrib)
finally have "x * ln y ≤ y * ln x"
by arith
then have "ln y ≤ (y * ln x) / x"
using a by (simp add: field_simps)
also have "… = y * (ln x / x)" by simp
finally show ?thesis
using b by (simp add: field_simps)
qed
lemma ln_le_minus_one: "0 < x ⟹ ln x ≤ x - 1"
for x :: real
using exp_ge_add_one_self[of "ln x"] by simp
corollary ln_diff_le: "0 < x ⟹ 0 < y ⟹ ln x - ln y ≤ (x - y) / y"
for x :: real
by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
lemma ln_eq_minus_one:
fixes x :: real
assumes "0 < x" "ln x = x - 1"
shows "x = 1"
proof -
let ?l = "λy. ln y - y + 1"
have D: "⋀x::real. 0 < x ⟹ DERIV ?l x :> (1 / x - 1)"
by (auto intro!: derivative_eq_intros)
show ?thesis
proof (cases rule: linorder_cases)
assume "x < 1"
from dense[OF ‹x < 1›] obtain a where "x < a" "a < 1" by blast
from ‹x < a› have "?l x < ?l a"
proof (rule DERIV_pos_imp_increasing)
fix y
assume "x ≤ y" "y ≤ a"
with ‹0 < x› ‹a < 1› have "0 < 1 / y - 1" "0 < y"
by (auto simp: field_simps)
with D show "∃z. DERIV ?l y :> z ∧ 0 < z" by blast
qed
also have "… ≤ 0"
using ln_le_minus_one ‹0 < x› ‹x < a› by (auto simp: field_simps)
finally show "x = 1" using assms by auto
next
assume "1 < x"
from dense[OF this] obtain a where "1 < a" "a < x" by blast
from ‹a < x› have "?l x < ?l a"
proof (rule DERIV_neg_imp_decreasing)
fix y
assume "a ≤ y" "y ≤ x"
with ‹1 < a› have "1 / y - 1 < 0" "0 < y"
by (auto simp: field_simps)
with D show "∃z. DERIV ?l y :> z ∧ z < 0"
by blast
qed
also have "… ≤ 0"
using ln_le_minus_one ‹1 < a› by (auto simp: field_simps)
finally show "x = 1" using assms by auto
next
assume "x = 1"
then show ?thesis by simp
qed
qed
lemma ln_x_over_x_tendsto_0: "((λx::real. ln x / x) ⤏ 0) at_top"
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "λ_. 1"])
from eventually_gt_at_top[of "0::real"]
show "∀⇩F x in at_top. (ln has_real_derivative inverse x) (at x)"
by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
qed (use tendsto_inverse_0 in
‹auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]›)
lemma exp_ge_one_plus_x_over_n_power_n:
assumes "x ≥ - real n" "n > 0"
shows "(1 + x / of_nat n) ^ n ≤ exp x"
proof (cases "x = - of_nat n")
case False
from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
also from assms False have "ln (1 + x / real n) ≤ x / real n"
by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
with assms have "exp (of_nat n * ln (1 + x / of_nat n)) ≤ exp x"
by (simp add: field_simps)
finally show ?thesis .
next
case True
then show ?thesis by (simp add: zero_power)
qed
lemma exp_ge_one_minus_x_over_n_power_n:
assumes "x ≤ real n" "n > 0"
shows "(1 - x / of_nat n) ^ n ≤ exp (-x)"
using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
lemma exp_at_bot: "(exp ⤏ (0::real)) at_bot"
unfolding tendsto_Zfun_iff
proof (rule ZfunI, simp add: eventually_at_bot_dense)
fix r :: real
assume "0 < r"
have "exp x < r" if "x < ln r" for x
by (metis ‹0 < r› exp_less_mono exp_ln that)
then show "∃k. ∀n<k. exp n < r" by auto
qed
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
by (rule filterlim_at_top_at_top[where Q="λx. True" and P="λx. 0 < x" and g=ln])
(auto intro: eventually_gt_at_top)
lemma lim_exp_minus_1: "((λz::'a. (exp(z) - 1) / z) ⤏ 1) (at 0)"
for x :: "'a::{real_normed_field,banach}"
proof -
have "((λz::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
by (intro derivative_eq_intros | simp)+
then show ?thesis
by (simp add: Deriv.has_field_derivative_iff)
qed
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
by (rule filterlim_at_bot_at_right[where Q="λx. 0 < x" and P="λx. True" and g=exp])
(auto simp: eventually_at_filter)
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
by (rule filterlim_at_top_at_top[where Q="λx. 0 < x" and P="λx. True" and g=exp])
(auto intro: eventually_gt_at_top)
lemma filtermap_ln_at_top: "filtermap (ln::real ⇒ real) at_top = at_top"
by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
lemma filtermap_exp_at_top: "filtermap (exp::real ⇒ real) at_top = at_top"
by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
(auto simp: eventually_at_top_dense)
lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
by (auto intro!: filtermap_fun_inverse[where g="λx. exp x"] ln_at_0
simp: filterlim_at exp_at_bot)
lemma tendsto_power_div_exp_0: "((λx. x ^ k / exp x) ⤏ (0::real)) at_top"
proof (induct k)
case 0
show "((λx. x ^ 0 / exp x) ⤏ (0::real)) at_top"
by (simp add: inverse_eq_divide[symmetric])
(metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
at_top_le_at_infinity order_refl)
next
case (Suc k)
show ?case
proof (rule lhospital_at_top_at_top)
show "eventually (λx. DERIV (λx. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
by eventually_elim (intro derivative_eq_intros, auto)
show "eventually (λx. DERIV exp x :> exp x) at_top"
by eventually_elim auto
show "eventually (λx. exp x ≠ 0) at_top"
by auto
from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
show "((λx. real (Suc k) * x ^ k / exp x) ⤏ 0) at_top"
by simp
qed (rule exp_at_top)
qed
subsubsection‹ A couple of simple bounds›
lemma exp_plus_inverse_exp:
fixes x::real
shows "2 ≤ exp x + inverse (exp x)"
proof -
have "2 ≤ exp x + exp (-x)"
using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
by linarith
then show ?thesis
by (simp add: exp_minus)
qed
lemma real_le_x_sinh:
fixes x::real
assumes "0 ≤ x"
shows "x ≤ (exp x - inverse(exp x)) / 2"
proof -
have *: "exp a - inverse(exp a) - 2*a ≤ exp b - inverse(exp b) - 2*b" if "a ≤ b" for a b::real
using exp_plus_inverse_exp
by (fastforce intro: derivative_eq_intros DERIV_nonneg_imp_nondecreasing [OF that])
show ?thesis
using*[OF assms] by simp
qed
lemma real_le_abs_sinh:
fixes x::real
shows "abs x ≤ abs((exp x - inverse(exp x)) / 2)"
proof (cases "0 ≤ x")
case True
show ?thesis
using real_le_x_sinh [OF True] True by (simp add: abs_if)
next
case False
have "-x ≤ (exp(-x) - inverse(exp(-x))) / 2"
by (meson False linear neg_le_0_iff_le real_le_x_sinh)
also have "… ≤ ¦(exp x - inverse (exp x)) / 2¦"
by (metis (no_types, hide_lams) abs_divide abs_le_iff abs_minus_cancel
add.inverse_inverse exp_minus minus_diff_eq order_refl)
finally show ?thesis
using False by linarith
qed
subsection‹The general logarithm›
definition log :: "real ⇒ real ⇒ real"
where "log a x = ln x / ln a"
lemma tendsto_log [tendsto_intros]:
"(f ⤏ a) F ⟹ (g ⤏ b) F ⟹ 0 < a ⟹ a ≠ 1 ⟹ 0 < b ⟹
((λx. log (f x) (g x)) ⤏ log a b) F"
unfolding log_def by (intro tendsto_intros) auto
lemma continuous_log:
assumes "continuous F f"
and "continuous F g"
and "0 < f (Lim F (λx. x))"
and "f (Lim F (λx. x)) ≠ 1"
and "0 < g (Lim F (λx. x))"
shows "continuous F (λx. log (f x) (g x))"
using assms unfolding continuous_def by (rule tendsto_log)
lemma continuous_at_within_log[continuous_intros]:
assumes "continuous (at a within s) f"
and "continuous (at a within s) g"
and "0 < f a"
and "f a ≠ 1"
and "0 < g a"
shows "continuous (at a within s) (λx. log (f x) (g x))"
using assms unfolding continuous_within by (rule tendsto_log)
lemma isCont_log[continuous_intros, simp]:
assumes "isCont f a" "isCont g a" "0 < f a" "f a ≠ 1" "0 < g a"
shows "isCont (λx. log (f x) (g x)) a"
using assms unfolding continuous_at by (rule tendsto_log)
lemma continuous_on_log[continuous_intros]:
assumes "continuous_on s f" "continuous_on s g"
and "∀x∈s. 0 < f x" "∀x∈s. f x ≠ 1" "∀x∈s. 0 < g x"
shows "continuous_on s (λx. log (f x) (g x))"
using assms unfolding continuous_on_def by (fast intro: tendsto_log)
lemma powr_one_eq_one [simp]: "1 powr a = 1"
by (simp add: powr_def)
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
by (simp add: powr_def)
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x ⟷ 0 ≤ x"
for x :: real
by (auto simp: powr_def)
declare powr_one_gt_zero_iff [THEN iffD2, simp]
lemma powr_diff:
fixes w:: "'a::{ln,real_normed_field}" shows "w powr (z1 - z2) = w powr z1 / w powr z2"
by (simp add: powr_def algebra_simps exp_diff)
lemma powr_mult: "0 ≤ x ⟹ 0 ≤ y ⟹ (x * y) powr a = (x powr a) * (y powr a)"
for a x y :: real
by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
lemma powr_ge_pzero [simp]: "0 ≤ x powr y"
for x y :: real
by (simp add: powr_def)
lemma powr_non_neg[simp]: "¬a powr x < 0" for a x::real
using powr_ge_pzero[of a x] by arith
lemma inverse_powr: "⋀y::real. 0 ≤ y ⟹ inverse y powr a = inverse (y powr a)"
by (simp add: exp_minus ln_inverse powr_def)
lemma powr_divide: "⟦0 ≤ x; 0 ≤ y⟧ ⟹ (x / y) powr a = (x powr a) / (y powr a)"
for a b x :: real
by (simp add: divide_inverse powr_mult inverse_powr)
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
for a b x :: "'a::{ln,real_normed_field}"
by (simp add: powr_def exp_add [symmetric] distrib_right)
lemma powr_mult_base: "0 ≤ x ⟹x * x powr y = x powr (1 + y)"
for x :: real
by (auto simp: powr_add)
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
for a b x :: real
by (simp add: powr_def)
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
for a b x :: real
by (simp add: powr_powr mult.commute)
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
for a x :: "'a::{ln,real_normed_field}"
by (simp add: powr_def exp_minus [symmetric])
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
for a x :: "'a::{ln,real_normed_field}"
by (simp add: divide_inverse powr_minus)
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
for a b c :: real
by (simp add: powr_minus_divide)
lemma powr_less_mono: "a < b ⟹ 1 < x ⟹ x powr a < x powr b"
for a b x :: real
by (simp add: powr_def)
lemma powr_less_cancel: "x powr a < x powr b ⟹ 1 < x ⟹ a < b"
for a b x :: real
by (simp add: powr_def)
lemma powr_less_cancel_iff [simp]: "1 < x ⟹ x powr a < x powr b ⟷ a < b"
for a b x :: real
by (blast intro: powr_less_cancel powr_less_mono)
lemma powr_le_cancel_iff [simp]: "1 < x ⟹ x powr a ≤ x powr b ⟷ a ≤ b"
for a b x :: real
by (simp add: linorder_not_less [symmetric])
lemma powr_realpow: "0 < x ⟹ x powr (real n) = x^n"
by (induction n) (simp_all add: ac_simps powr_add)
lemma powr_real_of_int':
assumes "x ≥ 0" "x ≠ 0 ∨ n > 0"
shows "x powr real_of_int n = power_int x n"
proof (cases "x = 0")
case False
with assms have "x > 0" by simp
show ?thesis
proof (cases n rule: int_cases4)
case (nonneg n)
thus ?thesis using ‹x > 0›
by (auto simp add: powr_realpow)
next
case (neg n)
thus ?thesis using ‹x > 0›
by (auto simp add: powr_realpow powr_minus power_int_minus)
qed
qed (use assms in auto)
lemma log_ln: "ln x = log (exp(1)) x"
by (simp add: log_def)
lemma DERIV_log:
assumes "x > 0"
shows "DERIV (λy. log b y) x :> 1 / (ln b * x)"
proof -
define lb where "lb = 1 / ln b"
moreover have "DERIV (λy. lb * ln y) x :> lb / x"
using ‹x > 0› by (auto intro!: derivative_eq_intros)
ultimately show ?thesis
by (simp add: log_def)
qed
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemma powr_log_cancel [simp]: "0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ a powr (log a x) = x"
by (simp add: powr_def log_def)
lemma log_powr_cancel [simp]: "0 < a ⟹ a ≠ 1 ⟹ log a (a powr y) = y"
by (simp add: log_def powr_def)
lemma log_mult:
"0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ 0 < y ⟹
log a (x * y) = log a x + log a y"
by (simp add: log_def ln_mult divide_inverse distrib_right)
lemma log_eq_div_ln_mult_log:
"0 < a ⟹ a ≠ 1 ⟹ 0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹
log a x = (ln b/ln a) * log b x"
by (simp add: log_def divide_inverse)
text‹Base 10 logarithms›
lemma log_base_10_eq1: "0 < x ⟹ log 10 x = (ln (exp 1) / ln 10) * ln x"
by (simp add: log_def)
lemma log_base_10_eq2: "0 < x ⟹ log 10 x = (log 10 (exp 1)) * ln x"
by (simp add: log_def)
lemma log_one [simp]: "log a 1 = 0"
by (simp add: log_def)
lemma log_eq_one [simp]: "0 < a ⟹ a ≠ 1 ⟹ log a a = 1"
by (simp add: log_def)
lemma log_inverse: "0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ log a (inverse x) = - log a x"
using ln_inverse log_def by auto
lemma log_divide: "0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ 0 < y ⟹ log a (x/y) = log a x - log a y"
by (simp add: log_mult divide_inverse log_inverse)
lemma powr_gt_zero [simp]: "0 < x powr a ⟷ x ≠ 0"
for a x :: real
by (simp add: powr_def)
lemma powr_nonneg_iff[simp]: "a powr x ≤ 0 ⟷ a = 0"
for a x::real
by (meson not_less powr_gt_zero)
lemma log_add_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ log b x + y = log b (x * b powr y)"
and add_log_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ y + log b x = log b (b powr y * x)"
and log_minus_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ log b x - y = log b (x * b powr -y)"
and minus_log_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ y - log b x = log b (b powr y / x)"
by (simp_all add: log_mult log_divide)
lemma log_less_cancel_iff [simp]: "1 < a ⟹ 0 < x ⟹ 0 < y ⟹ log a x < log a y ⟷ x < y"
using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
by (metis less_eq_real_def less_trans not_le zero_less_one)
lemma log_inj:
assumes "1 < b"
shows "inj_on (log b) {0 <..}"
proof (rule inj_onI, simp)
fix x y
assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
show "x = y"
proof (cases rule: linorder_cases)
assume "x = y"
then show ?thesis by simp
next
assume "x < y"
then have "log b x < log b y"
using log_less_cancel_iff[OF ‹1 < b›] pos by simp
then show ?thesis using * by simp
next
assume "y < x"
then have "log b y < log b x"
using log_less_cancel_iff[OF ‹1 < b›] pos by simp
then show ?thesis using * by simp
qed
qed
lemma log_le_cancel_iff [simp]: "1 < a ⟹ 0 < x ⟹ 0 < y ⟹ log a x ≤ log a y ⟷ x ≤ y"
by (simp add: linorder_not_less [symmetric])
lemma zero_less_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 0 < log a x ⟷ 1 < x"
using log_less_cancel_iff[of a 1 x] by simp
lemma zero_le_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 0 ≤ log a x ⟷ 1 ≤ x"
using log_le_cancel_iff[of a 1 x] by simp
lemma log_less_zero_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x < 0 ⟷ x < 1"
using log_less_cancel_iff[of a x 1] by simp
lemma log_le_zero_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x ≤ 0 ⟷ x ≤ 1"
using log_le_cancel_iff[of a x 1] by simp
lemma one_less_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 1 < log a x ⟷ a < x"
using log_less_cancel_iff[of a a x] by simp
lemma one_le_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 1 ≤ log a x ⟷ a ≤ x"
using log_le_cancel_iff[of a a x] by simp
lemma log_less_one_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x < 1 ⟷ x < a"
using log_less_cancel_iff[of a x a] by simp
lemma log_le_one_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x ≤ 1 ⟷ x ≤ a"
using log_le_cancel_iff[of a x a] by simp
lemma le_log_iff:
fixes b x y :: real
assumes "1 < b" "x > 0"
shows "y ≤ log b x ⟷ b powr y ≤ x"
using assms
by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)
lemma less_log_iff:
assumes "1 < b" "x > 0"
shows "y < log b x ⟷ b powr y < x"
by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
powr_log_cancel zero_less_one)
lemma
assumes "1 < b" "x > 0"
shows log_less_iff: "log b x < y ⟷ x < b powr y"
and log_le_iff: "log b x ≤ y ⟷ x ≤ b powr y"
using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
by auto
lemmas powr_le_iff = le_log_iff[symmetric]
and powr_less_iff = less_log_iff[symmetric]
and less_powr_iff = log_less_iff[symmetric]
and le_powr_iff = log_le_iff[symmetric]
lemma le_log_of_power:
assumes "b ^ n ≤ m" "1 < b"
shows "n ≤ log b m"
proof -
from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
qed
lemma le_log2_of_power: "2 ^ n ≤ m ⟹ n ≤ log 2 m" for m n :: nat
using le_log_of_power[of 2] by simp
lemma log_of_power_le: "⟦ m ≤ b ^ n; b > 1; m > 0 ⟧ ⟹ log b (real m) ≤ n"
by (simp add: log_le_iff powr_realpow)
lemma log2_of_power_le: "⟦ m ≤ 2 ^ n; m > 0 ⟧ ⟹ log 2 m ≤ n" for m n :: nat
using log_of_power_le[of _ 2] by simp
lemma log_of_power_less: "⟦ m < b ^ n; b > 1; m > 0 ⟧ ⟹ log b (real m) < n"
by (simp add: log_less_iff powr_realpow)
lemma log2_of_power_less: "⟦ m < 2 ^ n; m > 0 ⟧ ⟹ log 2 m < n" for m n :: nat
using log_of_power_less[of _ 2] by simp
lemma less_log_of_power:
assumes "b ^ n < m" "1 < b"
shows "n < log b m"
proof -
have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
qed
lemma less_log2_of_power: "2 ^ n < m ⟹ n < log 2 m" for m n :: nat
using less_log_of_power[of 2] by simp
lemma gr_one_powr[simp]:
fixes x y :: real shows "⟦ x > 1; y > 0 ⟧ ⟹ 1 < x powr y"
by(simp add: less_powr_iff)
lemma log_pow_cancel [simp]:
"a > 0 ⟹ a ≠ 1 ⟹ log a (a ^ b) = b"
by (simp add: ln_realpow log_def)
lemma floor_log_eq_powr_iff: "x > 0 ⟹ b > 1 ⟹ ⌊log b x⌋ = k ⟷ b powr k ≤ x ∧ x < b powr (k + 1)"
by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)
lemma floor_log_nat_eq_powr_iff: fixes b n k :: nat
shows "⟦ b ≥ 2; k > 0 ⟧ ⟹
floor (log b (real k)) = n ⟷ b^n ≤ k ∧ k < b^(n+1)"
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
simp del: of_nat_power of_nat_mult)
lemma floor_log_nat_eq_if: fixes b n k :: nat
assumes "b^n ≤ k" "k < b^(n+1)" "b ≥ 2"
shows "floor (log b (real k)) = n"
proof -
have "k ≥ 1" using assms(1,3) one_le_power[of b n] by linarith
with assms show ?thesis by(simp add: floor_log_nat_eq_powr_iff)
qed
lemma ceiling_log_eq_powr_iff: "⟦ x > 0; b > 1 ⟧
⟹ ⌈log b x⌉ = int k + 1 ⟷ b powr k < x ∧ x ≤ b powr (k + 1)"
by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)
lemma ceiling_log_nat_eq_powr_iff: fixes b n k :: nat
shows "⟦ b ≥ 2; k > 0 ⟧ ⟹
ceiling (log b (real k)) = int n + 1 ⟷ (b^n < k ∧ k ≤ b^(n+1))"
using ceiling_log_eq_powr_iff
by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
simp del: of_nat_power of_nat_mult)
lemma ceiling_log_nat_eq_if: fixes b n k :: nat
assumes "b^n < k" "k ≤ b^(n+1)" "b ≥ 2"
shows "ceiling (log b (real k)) = int n + 1"
proof -
have "k ≥ 1" using assms(1,3) one_le_power[of b n] by linarith
with assms show ?thesis by(simp add: ceiling_log_nat_eq_powr_iff)
qed
lemma floor_log2_div2: fixes n :: nat assumes "n ≥ 2"
shows "floor(log 2 n) = floor(log 2 (n div 2)) + 1"
proof cases
assume "n=2" thus ?thesis by simp
next
let ?m = "n div 2"
assume "n≠2"
hence "1 ≤ ?m" using assms by arith
then obtain i where i: "2 ^ i ≤ ?m" "?m < 2 ^ (i + 1)"
using ex_power_ivl1[of 2 ?m] by auto
have "2^(i+1) ≤ 2*?m" using i(1) by simp
also have "2*?m ≤ n" by arith
finally have *: "2^(i+1) ≤ …" .
have "n < 2^(i+1+1)" using i(2) by simp
from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
show ?thesis by simp
qed
lemma ceiling_log2_div2: assumes "n ≥ 2"
shows "ceiling(log 2 (real n)) = ceiling(log 2 ((n-1) div 2 + 1)) + 1"
proof cases
assume "n=2" thus ?thesis by simp
next
let ?m = "(n-1) div 2 + 1"
assume "n≠2"
hence "2 ≤ ?m" using assms by arith
then obtain i where i: "2 ^ i < ?m" "?m ≤ 2 ^ (i + 1)"
using ex_power_ivl2[of 2 ?m] by auto
have "n ≤ 2*?m" by arith
also have "2*?m ≤ 2 ^ ((i+1)+1)" using i(2) by simp
finally have *: "n ≤ …" .
have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
show ?thesis by simp
qed
lemma powr_real_of_int:
"x > 0 ⟹ x powr real_of_int n = (if n ≥ 0 then x ^ nat n else inverse (x ^ nat (- n)))"
using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
by (auto simp: field_simps powr_minus)
lemma powr_numeral [simp]: "0 ≤ x ⟹ x powr (numeral n :: real) = x ^ (numeral n)"
by (metis less_le power_zero_numeral powr_0 of_nat_numeral powr_realpow)
lemma powr_int:
assumes "x > 0"
shows "x powr i = (if i ≥ 0 then x ^ nat i else 1 / x ^ nat (-i))"
proof (cases "i < 0")
case True
have r: "x powr i = 1 / x powr (- i)"
by (simp add: powr_minus field_simps)
show ?thesis using ‹i < 0› ‹x > 0›
by (simp add: r field_simps powr_realpow[symmetric])
next
case False
then show ?thesis
by (simp add: assms powr_realpow[symmetric])
qed
definition powr_real :: "real ⇒ real ⇒ real"
where [code_abbrev, simp]: "powr_real = Transcendental.powr"
lemma compute_powr_real [code]:
"powr_real b i =
(if b ≤ 0 then Code.abort (STR ''powr_real with nonpositive base'') (λ_. powr_real b i)
else if ⌊i⌋ = i then (if 0 ≤ i then b ^ nat ⌊i⌋ else 1 / b ^ nat ⌊- i⌋)
else Code.abort (STR ''powr_real with non-integer exponent'') (λ_. powr_real b i))"
for b i :: real
by (auto simp: powr_int)
lemma powr_one: "0 ≤ x ⟹ x powr 1 = x"
for x :: real
using powr_realpow [of x 1] by simp
lemma powr_neg_one: "0 < x ⟹ x powr - 1 = 1 / x"
for x :: real
using powr_int [of x "- 1"] by simp
lemma powr_neg_numeral: "0 < x ⟹ x powr - numeral n = 1 / x ^ numeral n"
for x :: real
using powr_int [of x "- numeral n"] by simp
lemma root_powr_inverse: "0 < n ⟹ 0 < x ⟹ root n x = x powr (1/n)"
by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
lemma ln_powr: "x ≠ 0 ⟹ ln (x powr y) = y * ln x"
for x :: real
by (simp add: powr_def)
lemma ln_root: "n > 0 ⟹ b > 0 ⟹ ln (root n b) = ln b / n"
by (simp add: root_powr_inverse ln_powr)
lemma ln_sqrt: "0 < x ⟹ ln (sqrt x) = ln x / 2"
by (simp add: ln_powr ln_powr[symmetric] mult.commute)
lemma log_root: "n > 0 ⟹ a > 0 ⟹ log b (root n a) = log b a / n"
by (simp add: log_def ln_root)
lemma log_powr: "x ≠ 0 ⟹ log b (x powr y) = y * log b x"
by (simp add: log_def ln_powr)
lemma log_nat_power: "0 < x ⟹ log b (x^n) = real n * log b x"
by (simp add: log_powr powr_realpow [symmetric])
lemma log_of_power_eq:
assumes "m = b ^ n" "b > 1"
shows "n = log b (real m)"
proof -
have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
also have "… = log b m" using assms by simp
finally show ?thesis .
qed
lemma log2_of_power_eq: "m = 2 ^ n ⟹ n = log 2 m" for m n :: nat
using log_of_power_eq[of _ 2] by simp
lemma log_base_change: "0 < a ⟹ a ≠ 1 ⟹ log b x = log a x / log a b"
by (simp add: log_def)
lemma log_base_pow: "0 < a ⟹ log (a ^ n) x = log a x / n"
by (simp add: log_def ln_realpow)
lemma log_base_powr: "a ≠ 0 ⟹ log (a powr b) x = log a x / b"
by (simp add: log_def ln_powr)
lemma log_base_root: "n > 0 ⟹ b > 0 ⟹ log (root n b) x = n * (log b x)"
by (simp add: log_def ln_root)
lemma ln_bound: "0 < x ⟹ ln x ≤ x" for x :: real
using ln_le_minus_one by force
lemma powr_mono:
fixes x :: real
assumes "a ≤ b" and "1 ≤ x" shows "x powr a ≤ x powr b"
using assms less_eq_real_def by auto
lemma ge_one_powr_ge_zero: "1 ≤ x ⟹ 0 ≤ a ⟹ 1 ≤ x powr a"
for x :: real
using powr_mono by fastforce
lemma powr_less_mono2: "0 < a ⟹ 0 ≤ x ⟹ x < y ⟹ x powr a < y powr a"
for x :: real
by (simp add: powr_def)
lemma powr_less_mono2_neg: "a < 0 ⟹ 0 < x ⟹ x < y ⟹ y powr a < x powr a"
for x :: real
by (simp add: powr_def)
lemma powr_mono2: "x powr a ≤ y powr a" if "0 ≤ a" "0 ≤ x" "x ≤ y"
for x :: real
using less_eq_real_def powr_less_mono2 that by auto
lemma powr_le1: "0 ≤ a ⟹ 0 ≤ x ⟹ x ≤ 1 ⟹ x powr a ≤ 1"
for x :: real
using powr_mono2 by fastforce
lemma powr_mono2':
fixes a x y :: real
assumes "a ≤ 0" "x > 0" "x ≤ y"
shows "x powr a ≥ y powr a"
proof -
from assms have "x powr - a ≤ y powr - a"
by (intro powr_mono2) simp_all
with assms show ?thesis
by (auto simp: powr_minus field_simps)
qed
lemma powr_mono_both:
fixes x :: real
assumes "0 ≤ a" "a ≤ b" "1 ≤ x" "x ≤ y"
shows "x powr a ≤ y powr b"
by (meson assms order.trans powr_mono powr_mono2 zero_le_one)
lemma powr_inj: "0 < a ⟹ a ≠ 1 ⟹ a powr x = a powr y ⟷ x = y"
for x :: real
unfolding powr_def exp_inj_iff by simp
lemma powr_half_sqrt: "0 ≤ x ⟹ x powr (1/2) = sqrt x"
by (simp add: powr_def root_powr_inverse sqrt_def)
lemma square_powr_half [simp]:
fixes x::real shows "x⇧2 powr (1/2) = ¦x¦"
by (simp add: powr_half_sqrt)
lemma ln_powr_bound: "1 ≤ x ⟹ 0 < a ⟹ ln x ≤ (x powr a) / a"
for x :: real
by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
mult_imp_le_div_pos not_less powr_gt_zero)
lemma ln_powr_bound2:
fixes x :: real
assumes "1 < x" and "0 < a"
shows "(ln x) powr a ≤ (a powr a) * x"
proof -
from assms have "ln x ≤ (x powr (1 / a)) / (1 / a)"
by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
also have "… = a * (x powr (1 / a))"
by simp
finally have "(ln x) powr a ≤ (a * (x powr (1 / a))) powr a"
by (metis assms less_imp_le ln_gt_zero powr_mono2)
also have "… = (a powr a) * ((x powr (1 / a)) powr a)"
using assms powr_mult by auto
also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
by (rule powr_powr)
also have "… = x" using assms
by auto
finally show ?thesis .
qed
lemma tendsto_powr:
fixes a b :: real
assumes f: "(f ⤏ a) F"
and g: "(g ⤏ b) F"
and a: "a ≠ 0"
shows "((λx. f x powr g x) ⤏ a powr b) F"
unfolding powr_def
proof (rule filterlim_If)
from f show "((λx. 0) ⤏ (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
by simp (auto simp: filterlim_iff eventually_inf_principal elim: eventually_mono dest: t1_space_nhds)
from f g a show "((λx. exp (g x * ln (f x))) ⤏ (if a = 0 then 0 else exp (b * ln a)))
(inf F (principal {x. f x ≠ 0}))"
by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
qed
lemma tendsto_powr'[tendsto_intros]:
fixes a :: real
assumes f: "(f ⤏ a) F"
and g: "(g ⤏ b) F"
and a: "a ≠ 0 ∨ (b > 0 ∧ eventually (λx. f x ≥ 0) F)"
shows "((λx. f x powr g x) ⤏ a powr b) F"
proof -
from a consider "a ≠ 0" | "a = 0" "b > 0" "eventually (λx. f x ≥ 0) F"
by auto
then show ?thesis
proof cases
case 1
with f g show ?thesis by (rule tendsto_powr)
next
case 2
have "((λx. if f x = 0 then 0 else exp (g x * ln (f x))) ⤏ 0) F"
proof (intro filterlim_If)
have "filterlim f (principal {0<..}) (inf F (principal {z. f z ≠ 0}))"
using ‹eventually (λx. f x ≥ 0) F›
by (auto simp: filterlim_iff eventually_inf_principal
eventually_principal elim: eventually_mono)
moreover have "filterlim f (nhds a) (inf F (principal {z. f z ≠ 0}))"
by (rule tendsto_mono[OF _ f]) simp_all
ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x ≠ 0}))"
by (simp add: at_within_def filterlim_inf ‹a = 0›)
have g: "(g ⤏ b) (inf F (principal {z. f z ≠ 0}))"
by (rule tendsto_mono[OF _ g]) simp_all
show "((λx. exp (g x * ln (f x))) ⤏ 0) (inf F (principal {x. f x ≠ 0}))"
by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
filterlim_compose[OF ln_at_0] f g ‹b > 0›)+
qed simp_all
with ‹a = 0› show ?thesis
by (simp add: powr_def)
qed
qed
lemma continuous_powr:
assumes "continuous F f"
and "continuous F g"
and "f (Lim F (λx. x)) ≠ 0"
shows "continuous F (λx. (f x) powr (g x :: real))"
using assms unfolding continuous_def by (rule tendsto_powr)
lemma continuous_at_within_powr[continuous_intros]:
fixes f g :: "_ ⇒ real"
assumes "continuous (at a within s) f"
and "continuous (at a within s) g"
and "f a ≠ 0"
shows "continuous (at a within s) (λx. (f x) powr (g x))"
using assms unfolding continuous_within by (rule tendsto_powr)
lemma isCont_powr[continuous_intros, simp]:
fixes f g :: "_ ⇒ real"
assumes "isCont f a" "isCont g a" "f a ≠ 0"
shows "isCont (λx. (f x) powr g x) a"
using assms unfolding continuous_at by (rule tendsto_powr)
lemma continuous_on_powr[continuous_intros]:
fixes f g :: "_ ⇒ real"
assumes "continuous_on s f" "continuous_on s g" and "∀x∈s. f x ≠ 0"
shows "continuous_on s (λx. (f x) powr (g x))"
using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
lemma tendsto_powr2:
fixes a :: real
assumes f: "(f ⤏ a) F"
and g: "(g ⤏ b) F"
and "∀⇩F x in F. 0 ≤ f x"
and b: "0 < b"
shows "((λx. f x powr g x) ⤏ a powr b) F"
using tendsto_powr'[of f a F g b] assms by auto
lemma has_derivative_powr[derivative_intros]:
assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
and f[derivative_intros]:"(f has_derivative f') (at x within X)"
assumes pos: "0 < g x" and "x ∈ X"
shows "((λx. g x powr f x::real) has_derivative (λh. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
proof -
have "∀⇩F x in at x within X. g x > 0"
by (rule order_tendstoD[OF _ pos])
(rule has_derivative_continuous[OF g, unfolded continuous_within])
then obtain d where "d > 0" and pos': "⋀x'. x' ∈ X ⟹ dist x' x < d ⟹ 0 < g x'"
using pos unfolding eventually_at by force
have "((λx. exp (f x * ln (g x))) has_derivative
(λh. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
using pos
by (auto intro!: derivative_eq_intros simp: field_split_simps powr_def)
then show ?thesis
by (rule has_derivative_transform_within[OF _ ‹d > 0› ‹x ∈ X›]) (auto simp: powr_def dest: pos')
qed
lemma DERIV_powr:
fixes r :: real
assumes g: "DERIV g x :> m"
and pos: "g x > 0"
and f: "DERIV f x :> r"
shows "DERIV (λx. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
using assms
by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)
lemma DERIV_fun_powr:
fixes r :: real
assumes g: "DERIV g x :> m"
and pos: "g x > 0"
shows "DERIV (λx. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
using DERIV_powr[OF g pos DERIV_const, of r] pos
by (simp add: powr_diff field_simps)
lemma has_real_derivative_powr:
assumes "z > 0"
shows "((λz. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
proof (subst DERIV_cong_ev[OF refl _ refl])
from assms have "eventually (λz. z ≠ 0) (nhds z)"
by (