[sabelle/HOL Exercises
Advanced

Compiler for Register Machine from Hell

Processors from Hell has released its next-generation RISC processor. It features an infinite
bank of registers Ry, R, etc, holding unbounded integers. Register Ry plays the role of the
accumulator and is the implicit source or destination register of all instructions. Any other
register involved in an instruction must be distinct from Ry. To enforce this requirement
the processor implicitly increments the index of the other register. There are 4 instructions:

LDI ¢ has the effect Ry :=1

LD n has the effect Ry := R,11

ST n has the effect R,,.1 := Ry

ADD n has the effect Ry := Ry + Rp11

where 7 is an integer and n a natural number.

Define a datatype of instructions

datatype instr

and an execution function that takes an instruction and a state

type_synonym state = "nat = int"

and returns the new state:
exec :: "instr = state = state"
Extend exec to instruction lists:

execs :: "instr list = state = state"

A source language

The engineers at PfH soon got tired of writing assembly language code and designed their
own high-level programming language of arithmetic expressions. An expression can be

e an integer constant,



e one of the variables Vg, Vi, ..., or

e the sum of two expressions.

Define a datatype of expressions

datatype expr

and an evaluation function that takes an expression and a state and returns the value:
val :: "expr = state = int"

Because this is a clean language, there is no implicit incrementation going on: the value of
V,, in state s is simply s(n).

A compiler

You have been recruited to write a compiler from expr to instr list. You remember your
compiler course and decide to emulate a stack machine using free registers, i.e. registers
not used by the expression you are compiling. The type of your compiler is

cmp :: "expr = nat = instr list"

where the second argument is the index of the first free register and can be used to store
intermediate results. The result of an expression should be returned in Rj. Because Ry is
the accumulator, you decide on the following compilation scheme: V; will be held in R; ;.

Having earned a PhD in theoretical computer science you want to impress your boss and
colleagues at PfH by verifying your compiler. Unfortunately your colleagues could not care
less, and your boss explicitly forbids you to pursue this ill-guided project during working
hours. As a result you decide to take a week’s holiday in the Austrian Alps to work hard
on your proof. On the train you have already sketched the following correctness statement:

execs (cmp e k) s 0 = val e s

However, there is definitely a precondition missing because k£ should be large enough not
to interfere with any of the variables in e. Moreover, you have some lingering doubts
about having the same s on both sides despite the index shift between variables and
registers. But because all your definitions are executable, you hope that Isabelle will spot
any incorrect proposition before you even start its proof. What worries you most is the
number of auxiliary lemmas it may take to prove your proposition.



