Isabelle/HOL Exercises Advanced

Sorting with Lists and Trees

For simplicity we sort natural numbers.

Sorting with lists

The task is to define insertion sort and prove its correctness. The following functions are required:

consts

```
insort :: "nat \Rightarrow nat list \Rightarrow nat list"

sort :: "nat list \Rightarrow nat list"

le :: "nat \Rightarrow nat list \Rightarrow bool"

sorted :: "nat list \Rightarrow bool"
```

In your definition, $ex.insort \ x \ xs$ should insert a number x into an already sorted list xs, and $ex.sort \ ys$ should build on insort to produce the sorted version of ys.

To show that the resulting list is indeed sorted we need a predicate ex.sorted that checks if each element in the list is less or equal to the following ones; $le \ n \ xs$ should be true iff n is less or equal to all elements of xs.

Start out by showing a monotonicity property of 1e. For technical reasons the lemma should be phrased as follows:

```
\mathbf{lemma} \ [\mathtt{simp}] \colon \ "\mathtt{x} \ \leq \ \mathtt{y} \ \Longrightarrow \ \mathtt{le} \ \mathtt{y} \ \mathtt{xs} \ \longrightarrow \ \mathtt{le} \ \mathtt{x} \ \mathtt{xs}"
```

Now show the following correctness theorem:

```
theorem "sorted (sort xs)"
```

This theorem alone is too weak. It does not guarantee that the sorted list contains the same elements as the input. In the worst case, ex.sort might always return [] – surely an undesirable implementation of sorting.

Define a function count xs x that counts how often x occurs in xs.

Show that

```
theorem "count (sort xs) x = count xs x"
```

Sorting with trees

Our second sorting algorithm uses trees. Thus you should first define a data type bintree of binary trees that are either empty or consist of a node carrying a natural number and two subtrees.

Define a function tsorted that checks if a binary tree is sorted. It is convenient to employ two auxiliary functions tge/tle that test whether a number is greater-or-equal/less-or-equal to all elements of a tree.

Finally define a function $tree_of$ that turns a list into a sorted tree. It is helpful to base $tree_of$ on a function $ins\ n\ b$ that inserts a number n into a sorted tree b.

Show

```
theorem [simp]: "tsorted (tree_of xs)"
```

Again we have to show that no elements are lost (or added). As for lists, define a function $tcount \ x \ b$ that counts the number of occurrences of the number x in the tree b.

Show

```
theorem "tcount (tree_of xs) x = count xs x"
```

Now we are ready to sort lists. We know how to produce an ordered tree from a list. Thus we merely need a function <code>list_of</code> that turns an (ordered) tree into an (ordered) list. Define this function and prove

```
theorem "sorted (list_of (tree_of xs))"
theorem "count (list_of (tree_of xs)) n = count xs n"
```

Hints:

- Try to formulate all your lemmas as equations rather than implications because that often simplifies their proof. Make sure that the right-hand side is (in some sense) simpler than the left-hand side.
- Eventually you need to relate *sorted* and *tsorted*. This is facilitated by a function ge on lists (analogously to *tge* on trees) and the following lemma (that you will need to prove):

```
ex.sorted (a @ x # b) = (ex.sorted a \land ex.sorted b \land ge x a \land le x b)
```