[sabelle/HOL Exercises
Lists

Quantifying Lists

Define a universal and an existential quantifier on lists using primitive recursion. Expression
alls P xs should be true iff P x holds for every element x of xs, and exs P xs should be
true iff P x holds for some element x of xs.

primrec alls :: "(’a = bool) = ’a list = bool" where
"alls P [] = True"
| "alls P (x#xs) = (P x A alls P xs)"

primrec exs :: "(’a = bool) = ’a list = bool" where
"exs P [] = False"
| "exs P (x#xs) (P x V exs P xs)"

Prove or disprove (by counterexample) the following theorems. You may have to prove
some lemmas first.

Use the [simp]-attribute only if the equation is truly a simplification and is necessary for
some later proof.

lemma "alls (Mx. P x A Q x) xs = (alls P xs A alls Q xs)"
apply (induct "xs")
apply auto

done

lemma alls_append: "alls P (xs @ ys) = (alls P xs A alls P ys)"
apply (induct "xs")
apply auto

done

lemma "alls P (rev xs) = alls P xs"
apply (induct "xs")
apply (auto simp add: alls_append)
done

lemma "exs (Ax. P x A Q x) xs = (exs P xs N exs @ xs)"
quickcheck



A possible counterexample is: P = even, Q = odd, xs = [0, 1]

lemma "exs P (map f xs) = exs (P o f) xs"
apply (induct "xs")
apply auto

done

lemma exs_append: "exs P (xs @ ys) = (exs P xs V exs P ys)"
apply (induct "xs")
apply auto

done

lemma "exs P (rev xs) = exs P xs"
apply (induct "xs")
apply (auto simp add: exs_append)
done

Find a (non-trivial) term Z such that the following equation holds:

lemma "exs (Ax. Px V Q x) xs = Z"

lemma "exs (Ax. Px V Q x) xs = (exs P xs V exs @ xs)"
apply (induct "xs")
apply auto

done

Express the existential via the universal quantifier — exs should not occur on the right-hand
side:

ZII

(= alls (Ax. — P x) xs)"
apply (induct "xs")
apply auto

done

lemma "exs P xs
lemma "exs P xs

Define a primitive-recursive function is_in x xs that checks if x occurs in xs. Now express
is_in via exs:

primrec is_in :: "’a = ’a list = bool" where
"is_in x [] = False"
| "is_in x (z#zs) = (x=z V is_in x zs)"

lemma "is_in a xs = exs (Ax. x=a) xs"
apply (induct "xs")
apply auto

done



Define a primitive-recursive function nodups xs that is true iff xs does not contain dupli-
cates, and a function deldups xs that removes all duplicates. Note that deldups [x, y,
x] (where x and y are distinct) can be either [x, y] or [y, x].

primrec nodups :: "’a list = bool" where
"nodups [] = True"
| "nodups (x#xs) (— is_in x xs A nodups xs)"

primrec deldups :: "’a list = ’a list" where
"deldups [] = []"
| "deldups (x#xs) (if is_in x xs then deldups xs else x # deldups xs)"

Prove or disprove (by counterexample) the following theorems.

lemma "length (deldups xs) <= length xs"
apply (induct "xs")
apply auto

done

lemma is_in_deldups: "is_in a (deldups xs) = is_in a xs"
apply (induct "xs")
apply auto

done

lemma "nodups (deldups xs)"

apply (induct "xs")

apply (auto simp add: is_in_deldups)
done

lemma "deldups (rev xs) = rev (deldups xs)"
quickcheck

A possible counterexample is: xs = [0, 1, 0]



