
Isabelle/HOL Exercises

Lists

Recursive Functions and Induction: Zip

Read the chapter about total recursive functions in the “Tutorial on Isabelle/HOL” (fun,
Chapter 3.5).

In this exercise you will define a function Zip that merges two lists by interleaving.
Examples: Zip [a1, a2, a3] [b1, b2, b3] = [a1, b1, a2, b2, a3, b3] and Zip [a1]

[b1, b2, b3] = [a1, b1, b2, b3].

Use three different approaches to define Zip :

1. by primitive recursion on the first list,

2. by primitive recursion on the second list,

3. by total recursion (using fun).

consts zip1 :: "’a list ⇒ ’a list ⇒ ’a list"

consts zip2 :: "’a list ⇒ ’a list ⇒ ’a list"

consts zipr :: "’a list ⇒ ’a list ⇒ ’a list"

Show that all three versions of Zip are equivalent.

Show that zipr distributes over append.

lemma " [[length p = length u; length q = length v ]] =⇒
zipr (p@q) (u@v) = zipr p u @ zipr q v"

Note: For fun, the order of your equations is relevant. If equations overlap, they will be
disambiguated before they are added to the logic. You can have a look at these equations
using thm zipr.simps.


