[sabelle/HOL Exercises
Projects

BIGNAT - Specification and Verification

Representation

type_synonym
bigNat = "nat list"

primrec val :: "nat = bigNat = nat" where
"val d [] = 0"
| "val d (n#ns) = n + d*(val d ns)"

primrec valid :: "nat = bigNat = bool" where
"valid d [] = (0<d)"
| "valid d (n#ns) = ((n<d) A (valid d ns))"

Auxiliary lemmas

lemma aux: "m < d *d — m div d < (d::nat)"
proof -
assume m: "m < d *x d"
show 7?thesis
proof (rule classical)
presume "d < m div d"
then have "d * d < d * (m div d)" by simp
also have "d * (m div d) < m" by (simp add: mult_div_cancel)
finally show ?thesis using m by arith
qed auto
qged

lemma auxa:"a <d = b <d = (a +b) divd < (d::nat)"
proof -
assume a: "a < d" "b < d"

{ assume "d = 0" with a have ?thesis by simp
} moreover
{ assume "d = 1" with a have ?thesis by simp
} moreover

from a have "a + b < 2 * d" by simp
also assume "2 <= d" then have "2 * d <= d * d" by simp

}

finally have "a + b < d * d" .
then have "(a + b) divd < d" by (rule aux)

ultimately show ?thesis by arith

qged

lemma auxb:"a <d =— b<d — c<d = (a+b+c)divd < (d::nat)"
proof -
assume a: "a < d" "b < d" "c < d"

P T T S

}

assume "d = 0" with a have ?thesis by simp

moreover

assume "d = 1" with a have 7thesis by simp

moreover

assume "d = 2" with a have 7thesis by (cases a, auto)
moreover

from a have "a + b + ¢ < 3 ¥ d" by simp

also assume "3 <= d" then have "3 * d <= d * d" by simp
finally have "a + b + ¢ < d * d" .

then have "(a + b + ¢) divd < d" by (rule aux)

ultimately show ?thesis by arith

qed

lemma le_iff_1Suc:"(a < b) = (a < Suc b)"
by arith

lemma auxc:" [a < d; b < d; ¢ <d] = (a * b + c) div (Suc d) < 4"
proof -

assume a:"a < d" and b:"b < d" and c:"c < 4"

then have d:"a * b + ¢ <= d * d +d"

by (auto intro: add_le_mono mult_le_mono)

then have e:"d * d + d = d * (Suc d)" by clarsimp
from d have f:"(a * b + ¢) div (Suc d) <= (d * Suc d) div (Suc d)"

by (auto simp:e intro:div_le_mono)

have "(d * Suc d) div (Suc d) = d" by (simp only:div_mult_self_is_m)
with f show ?7thesis by simp

qed

lemma auxd:" [a <d; b<d; ¢ <d] = (a* b+ c) divd < (d::nat)"
proof (cases d)

assume "a < d" "d = 0" then show ?thesis by simp
next

fix n thm le_iff_1Suc[THEN iffD1]

assume d:"d = Suc n" and a:"a < d" "b < d" "c < 4"
then show "(a * b + ¢) div d < d"
by (auto dest:le_iff_1Suc[THEN iffD2]
intro:le_iff_1Suc[THEN iffD1] auxc)
qged

Addition

primrec carry :: "nat = nat = bigNat = bigNat" where
"carry d ¢ [] = [c]"
| "carry d ¢ (m#ms) = ((m+c) mod d) # carry d ((m+c) div d) ms"

fun add :: "nat = nat = bigNat = bigNat = bigNat" where
"add d c [] ns carry d ¢ ns"
| "add d c ms [] carry d ¢ ms"
| "add d ¢ (m#ms) (n#ns) = ((m+n+c) mod d) # (add d ((m+n+c) div d) ms ns)"

lemma add_empty[simp]: "add d ¢ ms [] = carry d ¢ ms"
apply (case_tac ms)
apply simp_all
done

lemma val_carry[simp]: "Ac. val d (carry d ¢ ms) = val d ms + c"
proof (induct ms)

case Nil show 7case by simp
next

case (Cons m ms c) thus ?case by (simp add: add_mult_distrib2)
qed

lemma val_add:"val d (add d ¢ ms ns) =
val d ms + val d ns + c"
proof (induct d ¢ ms ns rule:add.induct)
case 1 show ?case by simp
next
case (2 d ¢ m ms)
show 7case by (simp add:add_mult_distrib2)
next
case (3 d c m ms n ns)
thus ?case by (simp add:add_mult_distrib2)
qged

lemma carry_valid:"Ac. [valid d ms; ¢ <d | =
valid d (carry d c ms)"

apply (induct ms)
apply (auto simp:auxa)
done

lemma add_valid:"| valid d ms; valid d ns; ¢ < d] =
valid d (add d ¢ ns ms)"
apply (induct d ¢ ms ns rule:add.induct)
apply (auto intro:carry_valid simp: auxa auxb)
apply (simp only:add_ac)
done

Multiplication

primrec multl :: "nat = nat = nat = bigNat = bigNat" where
"multli d ¢ b [] = [c]"
| "multl d ¢ b (a#as) = ((a*b+c) mod d) #
(multl d ((a*b+c) div d) b as)"

primrec mult :: "nat = bigNat = bigNat = bigNat" where
"mult d as [] = []"
| "mult d as (b#bs) = add d 0 (multl d 0 b as) (O#mult d as bs)"

lemma val_multl[simp]:"Ac. val d (multl d ¢ b as) =
(val d as *b + ¢)"

proof (induct as)

case Nil show ?case by simp
next

case (Cons a as c¢) thus 7case

by (simp add:add_mult_distrib add_mult_distrib2)

qed

lemma val_mult:"val d (mult d as bs) = val d as * val d bs"
apply (induct bs)

apply (auto simp add:add_mult_distrib2 val_add)

done

lemma multi_valid:"Ac. [valid d ms; n < d; ¢ < d] =
valid d (multl d ¢ n ms)"

apply (induct ms)

apply (auto intro:auxd)

done

lemma mult_valid:"[valid d ms; valid d ns] =

valid d (mult d ns ms)"

apply (induct ms)

apply (auto)

apply (rule add_valid)
apply auto

apply (rule multi_valid)
apply auto

done

end

