
Isabelle/HOL Exercises

Projects

BIGNAT - Specification and Verification

Representation

type synonym
bigNat = "nat list"

primrec val :: "nat ⇒ bigNat ⇒ nat" where
"val d [] = 0"

| "val d (n#ns) = n + d*(val d ns)"

primrec valid :: "nat ⇒ bigNat ⇒ bool" where
"valid d [] = (0<d)"

| "valid d (n#ns) = ((n<d) ∧ (valid d ns))"

Auxiliary lemmas

lemma aux: "m < d * d =⇒ m div d < (d::nat)"

proof -

assume m: "m < d * d"

show ?thesis

proof (rule classical)

presume "d ≤ m div d"

then have "d * d ≤ d * (m div d)" by simp

also have "d * (m div d) ≤ m" by (simp add: mult_div_cancel)

finally show ?thesis using m by arith

qed auto

qed

lemma auxa:"a < d =⇒ b < d =⇒ (a + b) div d < (d::nat)"

proof -

assume a: "a < d" "b < d"

{ assume "d = 0" with a have ?thesis by simp

} moreover
{ assume "d = 1" with a have ?thesis by simp

} moreover
{ from a have "a + b < 2 * d" by simp

also assume "2 <= d" then have "2 * d <= d * d" by simp



finally have "a + b < d * d" .
then have "(a + b) div d < d" by (rule aux)

}
ultimately show ?thesis by arith

qed

lemma auxb:"a < d =⇒ b < d =⇒ c < d =⇒ (a + b + c) div d < (d::nat)"

proof -

assume a: "a < d" "b < d" "c < d"

{ assume "d = 0" with a have ?thesis by simp

} moreover
{ assume "d = 1" with a have ?thesis by simp

} moreover
{ assume "d = 2" with a have ?thesis by (cases a, auto)

} moreover
{ from a have "a + b + c < 3 * d" by simp

also assume "3 <= d" then have "3 * d <= d * d" by simp

finally have "a + b + c < d * d" .
then have "(a + b + c) div d < d" by (rule aux)

}
ultimately show ?thesis by arith

qed

lemma le_iff_lSuc:"(a ≤ b) = (a < Suc b)"

by arith

lemma auxc:" [[ a ≤ d; b ≤ d; c ≤ d ]] =⇒ (a * b + c) div (Suc d) ≤ d"

proof -

assume a:"a ≤ d" and b:"b ≤ d" and c:"c ≤ d"

then have d:"a * b + c <= d * d +d"

by (auto intro: add_le_mono mult_le_mono)

then have e:"d * d + d = d * (Suc d)" by clarsimp

from d have f:"(a * b + c) div (Suc d) <= (d * Suc d) div (Suc d)"

by (auto simp:e intro:div_le_mono)

have "(d * Suc d) div (Suc d) = d" by (simp only:div_mult_self_is_m)

with f show ?thesis by simp

qed

lemma auxd:" [[ a < d; b < d; c < d ]] =⇒ (a * b + c) div d < (d::nat)"

proof (cases d)

assume "a < d" "d = 0" then show ?thesis by simp

next
fix n thm le_iff_lSuc[THEN iffD1]

2



assume d:"d = Suc n" and a:"a < d" "b < d" "c < d"

then show "(a * b + c) div d < d"

by (auto dest:le_iff_lSuc[THEN iffD2]

intro:le_iff_lSuc[THEN iffD1] auxc)

qed

Addition

primrec carry :: "nat ⇒ nat ⇒ bigNat ⇒ bigNat" where
"carry d c [] = [c]"

| "carry d c (m#ms) = ((m+c) mod d) # carry d ((m+c) div d) ms"

fun add :: "nat ⇒ nat ⇒ bigNat ⇒ bigNat ⇒ bigNat" where
"add d c [] ns = carry d c ns"

| "add d c ms [] = carry d c ms"

| "add d c (m#ms) (n#ns) = ((m+n+c) mod d) # (add d ((m+n+c) div d) ms ns)"

lemma add_empty[simp]: "add d c ms [] = carry d c ms"

apply (case_tac ms)

apply simp_all

done

lemma val_carry[simp]: "
∧
c. val d (carry d c ms) = val d ms + c"

proof (induct ms)

case Nil show ?case by simp

next
case (Cons m ms c) thus ?case by (simp add: add_mult_distrib2)

qed

lemma val_add:"val d (add d c ms ns) =

val d ms + val d ns + c"

proof (induct d c ms ns rule:add.induct)

case 1 show ?case by simp

next
case (2 d c m ms)

show ?case by (simp add:add_mult_distrib2)

next
case (3 d c m ms n ns)

thus ?case by (simp add:add_mult_distrib2)

qed

lemma carry_valid:"
∧
c. [[ valid d ms; c < d ]] =⇒

valid d (carry d c ms)"
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apply (induct ms)

apply (auto simp:auxa)

done

lemma add_valid:" [[ valid d ms; valid d ns; c < d ]] =⇒
valid d (add d c ns ms)"

apply (induct d c ms ns rule:add.induct)

apply (auto intro:carry_valid simp: auxa auxb)

apply (simp only:add_ac)

done

Multiplication

primrec mult1 :: "nat ⇒ nat ⇒ nat ⇒ bigNat ⇒ bigNat" where
"mult1 d c b [] = [c]"

| "mult1 d c b (a#as) = ((a*b+c) mod d) #

(mult1 d ((a*b+c) div d) b as)"

primrec mult :: "nat ⇒ bigNat ⇒ bigNat ⇒ bigNat" where
"mult d as [] = []"

| "mult d as (b#bs) = add d 0 (mult1 d 0 b as) (0#mult d as bs)"

lemma val_mult1[simp]:"
∧
c. val d (mult1 d c b as) =

(val d as *b + c)"

proof (induct as)

case Nil show ?case by simp

next
case (Cons a as c) thus ?case

by (simp add:add_mult_distrib add_mult_distrib2)

qed

lemma val_mult:"val d (mult d as bs) = val d as * val d bs"

apply (induct bs)

apply (auto simp add:add_mult_distrib2 val_add)

done

lemma mult1_valid:"
∧
c. [[ valid d ms; n < d; c < d ]] =⇒

valid d (mult1 d c n ms)"

apply (induct ms)

apply (auto intro:auxd)

done

lemma mult_valid:" [[ valid d ms; valid d ns ]] =⇒
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valid d (mult d ns ms)"

apply (induct ms)

apply (auto)

apply (rule add_valid)

apply auto

apply (rule mult1_valid)

apply auto

done

end
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