

# Isabelle/HOL Exercises Projects

## BIGNAT - Specification and Verification

### Representation

```
type_synonym  
  bigNat = "nat list"  
  
primrec val :: "nat ⇒ bigNat ⇒ nat" where  
  "val d [] = 0"  
  | "val d (n#ns) = n + d*(val d ns)"  
  
primrec valid :: "nat ⇒ bigNat ⇒ bool" where  
  "valid d [] = (0 < d)"  
  | "valid d (n#ns) = ((n < d) ∧ (valid d ns))"
```

### Auxiliary lemmas

```
lemma aux: "m < d * d ⟹ m div d < (d::nat)"  
proof -  
  assume m: "m < d * d"  
  show ?thesis  
  proof (rule classical)  
    presume "d ≤ m div d"  
    then have "d * d ≤ d * (m div d)" by simp  
    also have "d * (m div d) ≤ m" by (simp add: mult_div_cancel)  
    finally show ?thesis using m by arith  
  qed auto  
qed  
  
lemma auxa: "a < d ⟹ b < d ⟹ (a + b) div d < (d::nat)"  
proof -  
  assume a: "a < d" "b < d"  
  { assume "d = 0" with a have ?thesis by simp  
  } moreover  
  { assume "d = 1" with a have ?thesis by simp  
  } moreover  
  { from a have "a + b < 2 * d" by simp  
    also assume "2 ≤ d" then have "2 * d ≤ d * d" by simp  
    then have "a + b < d * d" by simp  
    then have "(a + b) div d < d" by simp  
  }  
qed
```

```

finally have "a + b < d * d" .
then have "(a + b) div d < d" by (rule aux)
}
ultimately show ?thesis by arith
qed

lemma auxb:"a < d ==> b < d ==> c < d ==> (a + b + c) div d < (d::nat)"
proof -
  assume a: "a < d" "b < d" "c < d"
  { assume "d = 0" with a have ?thesis by simp
  } moreover
  { assume "d = 1" with a have ?thesis by simp
  } moreover
  { assume "d = 2" with a have ?thesis by (cases a, auto)
  } moreover
  { from a have "a + b + c < 3 * d" by simp
    also assume "3 <= d" then have "3 * d <= d * d" by simp
    finally have "a + b + c < d * d" .
    then have "(a + b + c) div d < d" by (rule aux)
  }
  ultimately show ?thesis by arith
qed

lemma le_iff_1Suc:"(a ≤ b) = (a < Suc b)"
  by arith

lemma auxc:"[ a ≤ d; b ≤ d; c ≤ d] ==> (a * b + c) div (Suc d) ≤ d"
proof -
  assume a:"a ≤ d" and b:"b ≤ d" and c:"c ≤ d"
  then have d:"a * b + c <= d * d + d"
    by (auto intro: add_le_mono mult_le_mono)
  then have e:"d * d + d = d * (Suc d)" by clarsimp
  from d have f:"(a * b + c) div (Suc d) <= (d * Suc d) div (Suc d)"
    by (auto simp:e intro:div_le_mono)
  have "(d * Suc d) div (Suc d) = d" by (simp only:div_mult_self_is_m)
  with f show ?thesis by simp
qed

lemma auxd:"[ a < d; b < d; c < d] ==> (a * b + c) div d < (d::nat)"
proof (cases d)
  assume "a < d" "d = 0" then show ?thesis by simp
next
  fix n thm le_iff_1Suc[THEN iffD1]

```

```

assume d:"d = Suc n" and a:"a < d" "b < d" "c < d"
then show "(a * b + c) div d < d"
  by (auto dest:le_iff_1Suc[THEN iffD2]
        intro:le_iff_1Suc[THEN iffD1] auxc)
qed

```

## Addition

```

primrec carry :: "nat ⇒ nat ⇒ bigNat ⇒ bigNat" where
  "carry d c [] = [c]"
  | "carry d c (m#ms) = ((m+c) mod d) # carry d ((m+c) div d) ms"

fun add :: "nat ⇒ nat ⇒ bigNat ⇒ bigNat ⇒ bigNat" where
  "add d c [] ns = carry d c ns"
  | "add d c ms [] = carry d c ms"
  | "add d c (m#ms) (n#ns) = ((m+n+c) mod d) # (add d ((m+n+c) div d) ms ns)"

lemma add_empty[simp]: "add d c ms [] = carry d c ms"
  apply (case_tac ms)
    apply simp_all
done

lemma val_carry[simp]: "∀c. val d (carry d c ms) = val d ms + c"
proof (induct ms)
  case Nil show ?case by simp
next
  case (Cons m ms c) thus ?case by (simp add: add_mult_distrib2)
qed

lemma val_add:"val d (add d c ms ns) =
  val d ms + val d ns + c"
proof (induct d c ms ns rule:add.induct)
  case 1 show ?case by simp
next
  case (2 d c m ms)
    show ?case by (simp add:add_mult_distrib2)
next
  case (3 d c m ms n ns)
    thus ?case by (simp add:add_mult_distrib2)
qed

lemma carry_valid:"∀c. [ val d ms; c < d ] ⇒
  val d (carry d c ms)"

```

```

apply (induct ms)
  apply (auto simp:auxa)
done

lemma add_valid:"[ valid d ms; valid d ns; c < d] ==>
  valid d (add d c ns ms)"
apply (induct d c ms ns rule:add.induct)
  apply (auto intro:carry_valid simp: auxa auxb)
apply (simp only:add_ac)
done

```

## Multiplication

```

primrec mult1 :: "nat ⇒ nat ⇒ nat ⇒ bigNat ⇒ bigNat" where
  "mult1 d c b [] = [c]"
  | "mult1 d c b (a#as) = ((a*b+c) mod d) #
    (mult1 d ((a*b+c) div d) b as)"

primrec mult :: "nat ⇒ bigNat ⇒ bigNat ⇒ bigNat" where
  "mult d as [] = []"
  | "mult d as (b#bs) = add d 0 (mult1 d 0 b as) (0#mult d as bs)"

lemma val_mult1[simp]:" $\bigwedge c. \text{val } d (\text{mult1 } d c b \text{ as}) =$ 
   $(\text{val } d \text{ as } *b + c)$ "
proof (induct as)
  case Nil show ?case by simp
next
  case (Cons a as c) thus ?case
    by (simp add:add_mult_distrib add_mult_distrib2)
qed

lemma val_mult:" $\text{val } d (\text{mult } d \text{ as } bs) = \text{val } d \text{ as } * \text{val } d \text{ bs}$ "
apply (induct bs)
  apply (auto simp add:add_mult_distrib2 val_add)
done

lemma mult1_valid:" $\bigwedge c. [\text{valid } d \text{ ms}; n < d; c < d] ==>$ 
   $\text{valid } d (\text{mult1 } d c n \text{ ms})$ "
apply (induct ms)
  apply (auto intro:auxd)
done

lemma mult_valid:"[ valid d ms; valid d ns] ==>
```

```
valid d (mult d ns ms)"  
apply (induct ms)  
  apply (auto)  
apply (rule add_valid)  
  apply auto  
apply (rule multi_valid)  
  apply auto  
done  
  
end
```