
Isabelle/HOL Exercises

Projects

The Euclidean Algorithm – Inductively

Rules without base case

Show that the following

inductive set evenempty :: "nat set" where
Add2Ie: "n ∈ evenempty =⇒ Suc(Suc n) ∈ evenempty"

defines the empty set:

lemma evenempty_empty: "evenempty = {}"

The Euclidean algorithm

Define inductively the set gcd, which characterizes the greatest common divisor of two
natural numbers:

gcd :: "(nat × nat × nat) set"

Here, (a,b,g) ∈ gcd means that g is the gcd of a und b. The definition should closely
follow the Euclidean algorithm.

Reminder: The Euclidean algorithm repeatedly subtracts the smaller from the larger num-
ber, until one of the numbers is 0. Then, the other number is the gcd.

Now, compute the gcd of 15 and 10:

schematic lemma "(15, 10, ?g) ∈ gcd"

How does your algorithm behave on special cases as the following?

schematic lemma "(0, 0, ?g) ∈ gcd"

Show that the gcd is really a divisor (for the proof, you need an appropriate lemma):

lemma gcd_divides: "(a,b,g) ∈ gcd =⇒ g dvd a ∧ g dvd b"

Show that the gcd is the greatest common divisor:

lemma gcd_greatest [rule_format]: "(a,b,g) ∈ gcd =⇒
0 < a ∨ 0 < b −→ (∀ d. d dvd a −→ d dvd b −→ d ≤ g)"



Here as well, you will have to prove a suitable lemma. What is the precondition 0 < a ∨
0 < b good for?

So far, we have only shown that gcd is correct, but your algorithm might not compute a
result for all values a,b. Thus, show completeness of the algorithm:

lemma gcd_defined: "∀ a b. ∃ g. (a, b, g) ∈ gcd"

The following lemma, proved by course-of-value recursion over n, may be useful. Why does
standard induction over natural numbers not work here?

lemma gcd_defined_aux [rule_format]:

"∀ a b. (a + b) ≤ n −→ (∃ g. (a, b, g) ∈ gcd)"

apply (induct rule: nat_less_induct)

apply clarify

The idea is to show that gcd yields a result for all a, b whenever it is known that gcd

yields a result for all a’, b’ whose sum is smaller than a + b.

In order to prove this lemma, make case distinctions corresponding to the different clauses
of the algorithm, and show how to reduce computation of gcd for a, b to computation of
gcd for suitable smaller a’, b’.

2


