
Isabelle/HOL Exercises

Projects

Optimising Compilation for a Register Machine

Section 3.3 of the Isabelle/HOL tutorial describes an expression compiler for a stack ma-
chine. In this exercise we will build and verify an optimising expression compiler for a
register machine.

The Source Language: Expressions

The arithmetic expressions we will work with consist of variables, constants, and an arbi-
trary binary operator oper.

consts oper :: "nat ⇒ nat ⇒ nat"

type synonym var = string

datatype exp =

Const nat

| Var var

| Op exp exp

The state in which an expression is evaluated is modelled by an environment function that
maps variables to constants.

type synonym env = "var ⇒ nat"

Define a function value that evaluates an expression in a given environment.

consts "value" :: "exp ⇒ env ⇒ nat"

The Register Machine

As the name suggests, a register machine uses a collection of registers to store intermediate
results. There exists a special register, called the accumulator, that serves as an implicit
argument to each instruction. The rest of the registers make up the register file, and can
be randomly accessed using an index.



type synonym regIndex = nat

datatype cell =

Acc

| Reg regIndex

The state of the register machine is denoted by a function that maps storage cells to
constants.

type synonym state = "cell ⇒ nat"

The instruction set for the register machine is defined as follows:

datatype instr =

LI nat

— Load Immediate: loads a constant into the accumulator.
| LOAD regIndex

— Loads the contents of a register into the accumulator.
| STORE regIndex

— Saves the contents of the accumulator in a register.
| OPER regIndex

— Performs the binary operation oper.
— The first argument is taken from a register.
— The second argument is taken from the accumulator.
— The result of the computation is stored in the accumulator.

A program is a list of such instructions. The result of running a program is a change of
state of the register machine. Define a function exec that models this.

consts exec :: "state ⇒ instr list ⇒ state"

Compilation

The task now is to translate an expression into a sequence of instructions that computes
it. At the end of execution, the result should be stored in the accumulator.

Before execution, the values of each variable need to be stored somewhere in the register
file. A mapping function maps variables to positions in the register file.

type synonym map = "var ⇒ regIndex"

Define a function cmp that compiles an expression into a sequence of instructions. The
evaluation should proceed in a bottom-up depth-first manner.

State and prove a theorem expressing the correctness of cmp.

Hints:

• The compilation function is dependent on the mapping function.

2



• The compilation function needs some way of storing intermediate results. It should
be clever enough to reuse registers it no longer needs.

• It may be helpful to assume that at each recursive call, compilation is only allowed
to use registers with indices greater than a given value to store intermediate results.

Compiler Optimisation: Common Subexpressions

In the previous section, the compiler cmp was allowed to evaluate a subexpression every
time it occurred. In situations where arithmetic operations are costly, one may want to
compute commonly occurring subexpressions only once.

For example, to compute (a op b) op (a op b), cmp was allowed three calls to oper, when
only two were needed.

Develop an optimised compiler optCmp, that evaluates every commonly occurring subex-
pression only once. Prove its correctness.

3


