Binary Decision Diagrams

[sabelle/HOL Exercises
Trees, Inductive Data Types

Boolean functions (in finitely many variables) can be represented by so-called binary deci-
sion diagrams (BDDs), which are given by the following data type:

datatype bdd = Leaf bool | Branch bdd bdd

A constructor Branch bl b2 that is i steps away from the root of the tree corresponds to
a case distinction based on the value of the variable v;. If the value of v; is False, the left
subtree b1 is evaluated, otherwise the right subtree b2 is evaluated. The following figure
shows a Boolean function and the corresponding BDD.

Vo U1 U J(vo, v1,v2)
False | False * True
False True * False

True | False * False
True True | False False
True True True True

Exercise 1: Define a function

consts eval ::

False True

"(nat = bool) = nat = bdd = bool"

that evaluates a BDD under a given variable assignment, beginning at a variable with a

given index.

Exercise 2: Define two functions

consts

bdd_unop ::
bdd_binop ::

"(bool = bool) = bdd = bdd"
"(bool = bool = bool) = bdd = bdd = bdd"

for the application of unary and binary operators to BDDs, and prove their correctness.

Now use bdd_unop and bdd_binop to define

consts

bdd_and ::

"bdd = bdd = bdd"



bdd_or :: "bdd = bdd = bdd"
bdd_not :: "bdd = bdd"
bdd_xor :: "bdd = bdd = bdd"

and show correctness.

Finally, define a function

consts bdd_var :: "nmat = bdd"

to create a BDD that evaluates to True if and only if the variable with the given index
evaluates to True. Again prove a suitable correctness theorem.

Hint: If a lemma cannot be proven by induction because in the inductive step a different
value is used for a (non-induction) variable than in the induction hypothesis, it may be
necessary to strengthen the lemma by universal quantification over that variable (cf. Section
3.2 in the Tutorial on Isabelle/HOL).

Example: instead of Strengthening:
lemma "P (b::bdd) x" lemma "Vx. P (b::bdd) x"
apply (induct b) apply (induct b)

Exercise 3: Recall the following data type of propositional formulae (cf. the exercise on
“Representation of Propositional Formulae by Polynomials™)

datatype form = T | Var nat | And form form | Xor form form

together with the evaluation function evalf:

definition xor :: "bool = bool = bool" where
"xor x y = (x AN-y)V (mx Ay
primrec evalf :: "(nat = bool) = form = bool" where

"evalf e T = True"
| "evalf e (Var i) = e 1"
| "evalf e (And f1 f2)
| "evalf e (Xor f1 f2)

(evalf e f1 N evalf e f2)"
xor (evalf e f1) (evalf e f2)"

Define a function

consts mk_bdd :: "form = bdd"

that transforms a propositional formula of type form into a BDD. Prove the correctness
theorem

theorem mk_bdd_correct: "eval e 0 (mk_bdd f) = evalf e f"



