Isabelle/HOL Exercises Trees, Inductive Data Types

Binary Decision Diagrams

Boolean functions (in finitely many variables) can be represented by so-called *binary decision diagrams* (BDDs), which are given by the following data type:

datatype bdd = Leaf bool | Branch bdd bdd

A constructor **Branch b1 b2** that is i steps away from the root of the tree corresponds to a case distinction based on the value of the variable v_i . If the value of v_i is **False**, the left subtree **b1** is evaluated, otherwise the right subtree **b2** is evaluated. The following figure shows a Boolean function and the corresponding BDD.

v_0	v_1	v_2	$f(v_0, v_1, v_2)$
False	False	*	True
False	True	*	False
True	False	*	False
True	True	False	False
True	True	True	True

Exercise 1: Define a function

```
consts eval :: "(nat \Rightarrow bool) \Rightarrow nat \Rightarrow bdd \Rightarrow bool"
```

that evaluates a BDD under a given variable assignment, beginning at a variable with a given index.

Exercise 2: Define two functions

consts

```
bdd\_unop :: "(bool \Rightarrow bool) \Rightarrow bdd \Rightarrow bdd"
bdd\_binop :: "(bool \Rightarrow bool \Rightarrow bool) \Rightarrow bdd \Rightarrow bdd \Rightarrow bdd"
```

for the application of unary and binary operators to BDDs, and prove their correctness.

Now use bdd_unop and bdd_binop to define

consts

```
bdd\_and :: "bdd \Rightarrow bdd \Rightarrow bdd"
```

```
bdd_or :: "bdd \Rightarrow bdd \Rightarrow bdd"
bdd_not :: "bdd \Rightarrow bdd"
bdd_xor :: "bdd \Rightarrow bdd \Rightarrow bdd"
```

and show correctness.

Finally, define a function

```
consts \ bdd\_var :: "nat \Rightarrow bdd"
```

to create a BDD that evaluates to *True* if and only if the variable with the given index evaluates to *True*. Again prove a suitable correctness theorem.

Hint: If a lemma cannot be proven by induction because in the inductive step a different value is used for a (non-induction) variable than in the induction hypothesis, it may be necessary to strengthen the lemma by universal quantification over that variable (cf. Section 3.2 in the Tutorial on Isabelle/HOL).

Example: instead of Strengthening:

```
lemma "P (b::bdd) x" lemma "\forall x. P (b::bdd) x" apply (induct b)
```

Exercise 3: Recall the following data type of propositional formulae (cf. the exercise on "Representation of Propositional Formulae by Polynomials")

```
datatype form = T | Var nat | And form form | Xor form form
```

together with the evaluation function evalf:

```
definition xor :: "bool \Rightarrow bool \Rightarrow bool" where "xor x y \equiv (x \land \neg y) \lor (\neg x \land y)"
```

```
primrec evalf :: "(nat \Rightarrow bool) \Rightarrow form \Rightarrow bool" where "evalf e T = True"

| "evalf e (Var i) = e i"

| "evalf e (And f1 f2) = (evalf e f1 \land evalf e f2)"

| "evalf e (Xor f1 f2) = xor (evalf e f1) (evalf e f2)"
```

Define a function

```
consts mk_bdd :: "form ⇒ bdd"
```

that transforms a propositional formula of type form into a BDD. Prove the correctness theorem

```
theorem mk_bdd_correct: "eval e 0 (mk_bdd f) = evalf e f"
```