The Hahn-Banach Theorem for Real Vector Spaces

Gertrud Bauer

February 20, 2021

Abstract

The Hahn-Banach Theorem is one of the most fundamental results in functional analysis. We present a fully formal proof of two versions of the theorem, one for general linear spaces and another for normed spaces. This development is based on simply-typed classical set-theory, as provided by Isabelle/HOL.

Contents

1 Preface 3

I Basic Notions 5

2 Bounds 5

3 Vector spaces 5
 3.1 Signature .. 5
 3.2 Vector space laws 6

4 Subspaces 9
 4.1 Definition .. 9
 4.2 Linear closure .. 10
 4.3 Sum of two vectorspaces 11
 4.4 Direct sums .. 12

5 Normed vector spaces 13
 5.1 Quasinorms .. 13
 5.2 Norms .. 13
 5.3 Normed vector spaces 13

6 Linearforms 14

7 An order on functions 14
 7.1 The graph of a function 14
 7.2 Functions ordered by domain extension 15
 7.3 Domain and function of a graph 15
 7.4 Norm-preserving extensions of a function 15
1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows the informal presentation given in Heuser’s textbook [1, § 36]. Another formal proof of the same theorem has been done in Mizar [3]. A general overview of the relevance and history of the Hahn-Banach Theorem is given by Narici and Beckenstein [2].

The document is structured as follows. The first part contains definitions of basic notions of linear algebra: vector spaces, subspaces, normed spaces, continuous linear-forms, norm of functions and an order on functions by domain extension. The second part contains some lemmas about the supremum (w.r.t. the function order) and extension of non-maximal functions. With these preliminaries, the main proof of the theorem (in its two versions) is conducted in the third part. The dependencies of individual theories are as follows.
Part I

Basic Notions

2 Bounds

theory Bounds
imports Main HOL–Analysis. Continuum-Not-Denumerable
begin

locale lub =
 fixes A and x
 assumes least [intro?] : (∀ a. a ∈ A → a ≤ b) → x ≤ b
 and upper [intro?]: a ∈ A → a ≤ x

lemmas [elim?] = lub.least lub.upper

definition the-lub :: 'a::order set ⇒ 'a (⨆ - [90] 90)
 where the-lub A = The (lub A)

lemma the-lub-equality [elim?]:
 assumes lub A x
 shows ⨆ A = (x::'a::order)
 ⟨proof⟩

lemma the-lubI-ex:
 assumes ex: ∃ x. lub A x
 shows lub A (⨆ A)
 ⟨proof⟩

lemma real-complete: ∃ a::real. a ∈ A → ∃ y. ∀ a ∈ A. a ≤ y → ∃ x. lub A x
 ⟨proof⟩

end

3 Vector spaces

theory Vector-Space
imports Complex-Main Bounds
begin

3.1 Signature

For the definition of real vector spaces a type 'a of the sort {plus, minus, zero} is considered, on which a real scalar multiplication · is declared.

consts
 prod :: real ⇒ 'a::{plus, minus, zero} ⇒ 'a (infixr · 70)
3.2 Vector space laws

A vector space is a non-empty set V of elements from 'a with the following vector space laws: The set V is closed under addition and scalar multiplication, addition is associative and commutative; $-x$ is the inverse of x wrt. addition and 0 is the neutral element of addition. Addition and multiplication are distributive; scalar multiplication is associative and the real number 1 is the neutral element of scalar multiplication.

locale vectorspace =

 fixes V
 assumes non-empty [iff, intro?]: V ≠ {} and add-closed [iff]: x ∈ V ⇒ y ∈ V ⇒ x + y ∈ V
 and mult-closed [iff]: x ∈ V ⇒ a · x ∈ V
 and add-assoc: x ∈ V ⇒ y ∈ V ⇒ z ∈ V ⇒ (x + y) + z = x + (y + z)
 and add-commute: x ∈ V ⇒ y ∈ V ⇒ x + y = y + x
 and diff-self [simp]: x ∈ V ⇒ x − x = 0
 and add-zero-left [simp]: x ∈ V ⇒ 0 + x = x
 and add-mult-distrib1: x ∈ V ⇒ y ∈ V ⇒ a · (x + y) = a · x + a · y
 and add-mult-distrib2: x ∈ V ⇒ (a + b) · x = a · x + b · x
 and mult-assoc: x ∈ V ⇒ (a * b) · x = a · (b · x)
 and mult-1 [simp]: x ∈ V ⇒ 1 · x = x
 and negate-eq1: x ∈ V ⇒ −x = (−1) · x
 and diff-eq1: x ∈ V ⇒ y ∈ V ⇒ x − y = x + (−y)

begin

lemma negate-eq2: x ∈ V ⇒ (−1) · x = −x
⟨proof⟩

lemma negate-eq2a: x ∈ V ⇒ −1 · x = −x
⟨proof⟩

lemma diff-eq2: x ∈ V ⇒ y ∈ V ⇒ x − y = x − y
⟨proof⟩

lemma diff-closed [iff]: x ∈ V ⇒ y ∈ V ⇒ x − y ∈ V
⟨proof⟩

lemma neg-closed [iff]: x ∈ V ⇒ −x ∈ V
⟨proof⟩

lemma add-left-commute:
 x ∈ V ⇒ y ∈ V ⇒ z ∈ V ⇒ x + (y + z) = y + (x + z)
⟨proof⟩

lemmas add-ac = add-associative add-commutative add-left-commute

The existence of the zero element of a vector space follows from the non-emptiness of carrier set.

lemma zero [iff]: 0 ∈ V
⟨proof⟩

lemma add-zero-right [simp]: x ∈ V ⇒ x + 0 = x
⟨proof⟩
3.2 Vector space laws

lemma mult-assoc2: \(x \in V \implies a \cdot b \cdot x = (a * b) \cdot x \)

(proof)

lemma diff-mult-distrib1: \(x \in V \implies y \in V \implies a \cdot (x - y) = a \cdot x - a \cdot y \)

(proof)

lemma diff-mult-distrib2: \(x \in V \implies (a - b) \cdot x = a \cdot x - (b \cdot x) \)

(proof)

lemmas distrib =

 add-mult-distrib1 add-mult-distrib2
diff-mult-distrib1 diff-mult-distrib2

Further derived laws:

lemma mult-zero-left [simp]: \(x \in V \implies 0 \cdot x = 0 \)

(proof)

lemma mult-zero-right [simp]: \(a \cdot 0 = (0 :: 'a) \)

(proof)

lemma minus-mult-cancel [simp]: \(x \in V \implies (- a) \cdot - x = a \cdot x \)

(proof)

lemma add-minus-left-eq-diff: \(x \in V \implies y \in V \implies - x + y = y - x \)

(proof)

lemma add-minus [simp]: \(x \in V \implies x + - x = 0 \)

(proof)

lemma add-minus-left [simp]: \(x \in V \implies - x + x = 0 \)

(proof)

lemma minus-minus [simp]: \(x \in V \implies - (- x) = x \)

(proof)

lemma minus-zero [simp]: \(- (0 :: 'a) = 0 \)

(proof)

lemma minus-zero-iff [simp]:

assumes \(x: x \in V \)

shows \((- x = 0) = (x = 0)\)

(proof)

lemma add-minus-cancel [simp]: \(x \in V \implies y \in V \implies x + (- x + y) = y \)

(proof)

lemma minus-add-cancel [simp]: \(x \in V \implies y \in V \implies - x + (x + y) = y \)

(proof)

lemma minus-add-distrib [simp]: \(x \in V \implies y \in V \implies - (x + y) = - x + - y \)

(proof)

lemma diff-zero [simp]: \(x \in V \implies x - 0 = x \)

(proof)
lemma diff-zero-right [simp]: \(x \in V \Rightarrow 0 - x = -x \)

(\textit{proof})

lemma add-left-cancel:
\begin{itemize}
 \item assumes \(x: x \in V \) and \(y: y \in V \) and \(z: z \in V \)
 \item shows \((x + y = x + z) = (y = z) \)
\end{itemize}

(\textit{proof})

lemma add-right-cancel:
\begin{itemize}
 \item \(x \in V \Rightarrow y \in V \Rightarrow z \in V \Rightarrow (y + x = z + x) = (y = z) \)
\end{itemize}

(\textit{proof})

lemma add-assoc-cong:
\begin{itemize}
 \item \(x \in V \Rightarrow y \in V \Rightarrow x' \in V \Rightarrow y' \in V \Rightarrow z \in V \Rightarrow (x + (y + z)) = (x' + (y' + z)) \)
\end{itemize}

(\textit{proof})

lemma mult-left-commute:
\begin{itemize}
 \item \(x \in V \Rightarrow a \cdot b \cdot x = b \cdot a \cdot x \)
\end{itemize}

(\textit{proof})

lemma mult-zero-uniq:
\begin{itemize}
 \item assumes \(x: x \in V \) \(x \neq 0 \) and \(ax: a \cdot x = 0 \)
 \item shows \(a = 0 \)
\end{itemize}

(\textit{proof})

lemma add-left-cancel:
\begin{itemize}
 \item assumes \(x: x \in V \) and \(y: y \in V \) and \(a: a \neq 0 \)
 \item shows \((a \cdot x = a \cdot y) = (x = y) \)
\end{itemize}

(\textit{proof})

lemma mult-right-cancel:
\begin{itemize}
 \item assumes \(x: x \in V \) and \(neq: x \neq 0 \)
 \item shows \((a \cdot x = b \cdot x) = (a = b) \)
\end{itemize}

(\textit{proof})

lemma eq-diff-eq:
\begin{itemize}
 \item assumes \(x: x \in V \) and \(y: y \in V \) and \(z: z \in V \)
 \item shows \((x = z - y) = (x + y = z) \)
\end{itemize}

(\textit{proof})

lemma add-minus-eq-minus:
\begin{itemize}
 \item assumes \(x: x \in V \) and \(y: y \in V \) and \(xy: x + y = 0 \)
 \item shows \(x = -y \)
\end{itemize}

(\textit{proof})

lemma add-minus-eq:
\begin{itemize}
 \item assumes \(x: x \in V \) and \(y: y \in V \) and \(xy: x - y = 0 \)
 \item shows \(x = y \)
\end{itemize}

(\textit{proof})

lemma add-diff-swap:
\begin{itemize}
 \item assumes \(vs: a \in V \) \(b \in V \) \(c \in V \) \(d \in V \)
\end{itemize}
and eq: \(a + b = c + d \)
shows \(a - c = d - b \)

\(\langle \text{proof} \rangle \)

lemma vs-add-cancel-21:
assumes vs: \(x \in V \ y \in V \ z \in V \ u \in V \)
shows \((x + (y + z) = y + u) = (x + z = u) \)

\(\langle \text{proof} \rangle \)

lemma add-cancel-end:
assumes vs: \(x \in V \ y \in V \ z \in V \)
shows \((x + (y + z) = y) = (x = -z) \)

\(\langle \text{proof} \rangle \)

end

end

4 Subspaces

theory Subspace
imports Vector-Space HOL-Library.Set-Algebras
begin

4.1 Definition

A non-empty subset \(U \) of a vector space \(V \) is a \emph{subspace} of \(V \), iff \(U \) is closed under addition and scalar multiplication.

locale subspace =
fixes \(U :\{\text{minus, plus, zero, uminus}\} \text{ set and} \ V \)
assumes non-empty [iff, intro]: \(U \neq \{\} \)
and subset [iff]: \(U \subseteq V \)
and add-closed [iff]: \(x \in U \implies y \in U \implies x + y \in U \)
and mult-closed [iff]: \(x \in U \implies a \cdot x \in U \)

notation (symbols)
\text{subspace} (infix \(\subseteq \) 50)

declare vectorspace.intro [intro?] subspace.intro [intro?]

lemma subspace-subset [elim]: \(U \subseteq V \implies U \subseteq V \)
\(\langle \text{proof} \rangle \)

lemma (in subspace) subsetD [iff]: \(x \in U \implies x \in V \)
\(\langle \text{proof} \rangle \)

lemma subspaceD [elim]: \(U \subseteq V \implies x \in U \implies x \in V \)
\(\langle \text{proof} \rangle \)

lemma rev-subspaceD [elim?]: \(x \in U \implies U \subseteq V \implies x \in V \)
\(\langle \text{proof} \rangle \)

lemma (in subspace) diff-closed [iff]:

Similar as for linear spaces, the existence of the zero element in every subspace follows from the non-emptiness of the carrier set and by vector space laws.

Lemma (in subspace) zero [intro]:
- Assumes vectorspace V
- Shows $0 \in U$

Lemma (in subspace) neg-closed [iff]:
- Assumes vectorspace V
- Assumes $x \in U$
- Shows $-x \in U$

Further derived laws: every subspace is a vector space.

Lemma (in subspace) vectorspace [iff]:
- Assumes vectorspace V
- Shows vectorspace U

The subspace relation is reflexive.

Lemma (in vectorspace) subspace-refl [intro]: $V \subseteq V$

The subspace relation is transitive.

Lemma (in vectorspace) subspace-trans [trans]:
- $U \subseteq V \Rightarrow V \subseteq W \Rightarrow U \subseteq W$

4.2 Linear closure

The **linear closure** of a vector x is the set of all scalar multiples of x.

Definition lin :: (‘a::{minus,plus,zero}) ⇒ ‘a set
- Where $lin x = \{a \cdot x \mid a.\ True\}$

Lemma linI [intro]: $y = a \cdot x \Rightarrow y \in lin x$

Lemma linI’ [iff]: $a \cdot x \in lin x$

Lemma linE [elim]:
- Assumes $x \in lin v$
- Obtains $a :: real$ where $x = a \cdot v$

Every vector is contained in its linear closure.
4.3 Sum of two vectorspaces

Lemma (in vectorspace) \(x \text{-lin-} x \) [iff]: \(x \in V \implies x \in \text{lin } x \)

(\text{proof})

Lemma (in vectorspace) \(0 \text{-lin-} x \) [iff]: \(x \in V \implies 0 \in \text{lin } x \)

(\text{proof})

Any linear closure is a subspace.

Lemma (in vectorspace) \(\text{lin-subspace} \) [intro]:
\[\text{assumes } x : x \in V \]
\[\text{shows } \text{lin } x \subseteq V \]

(\text{proof})

Any linear closure is a vector space.

Lemma (in vectorspace) \(\text{lin-vectorspace} \) [intro]:
\[\text{assumes } x \in V \]
\[\text{shows } \text{vectorspace } (\text{lin } x) \]

(\text{proof})

4.3 Sum of two vectorspaces

The *sum* of two vectorspaces \(U \) and \(V \) is the set of all sums of elements from \(U \) and \(V \).

Lemma \(\text{sum-def} \): \(U + V = \{ u + v \mid u \in U \land v \in V \} \)

(\text{proof})

Lemma \(\text{sumE} \) [elim]:
\[x \in U + V \implies (\bigwedge u v. x = u + v \implies u \in U \implies v \in V \implies C) \implies C \]

(\text{proof})

Lemma \(\text{sumI} \) [intro]:
\[u \in U \implies v \in V \implies x = u + v \implies x \in U + V \]

(\text{proof})

Lemma \(\text{sumI}' \) [intro]:
\[u \in U \implies v \in V \implies u + v \in U + V \]

(\text{proof})

\(U \) is a subspace of \(U + V \).

Lemma \(\text{subspace-sum1} \) [iff]:
\[\text{assumes } \text{vectorspace } U \text{ vectorspace } V \]
\[\text{shows } U \subseteq U + V \]

(\text{proof})

The sum of two subspaces is again a subspace.

Lemma \(\text{sum-subspace} \) [intro]:
\[\text{assumes } \text{subspace } U E \text{ vectorspace } V E \]
\[\text{shows } U + V \subseteq E \]

(\text{proof})

The sum of two subspaces is a vectorspace.

Lemma \(\text{sum-vs} \) [intro]:
\[U \subseteq E \implies V \subseteq E \implies \text{vectorspace } E \implies \text{vectorspace } (U + V) \]

(\text{proof})
4.4 Direct sums

The sum of U and V is called direct, iff the zero element is the only common element of U and V. For every element x of the direct sum of U and V the decomposition in $x = u + v$ with $u \in U$ and $v \in V$ is unique.

Lemma decomp:

- Assumes vectorspace E subspace U E subspace V
- Assumes direct: $U \cap V = \{0\}$
 - and $u1$: $u1 \in U$
 - and $u2$: $u2 \in U$
 - and $v1$: $v1 \in V$ and $v2$: $v2 \in V$
 - and sum: $u1 + v1 = u2 + v2$
- Shows $u1 = u2 \land v1 = v2$

(proof)

An application of the previous lemma will be used in the proof of the Hahn-Banach Theorem (see page ??): for any element $y + a \cdot x_0$ of the direct sum of a vectorspace H and the linear closure of x_0 the components $y \in H$ and a are uniquely determined.

Lemma decomp-H:

- Assumes vectorspace E subspace H
- Assumes $y1$: $y1 \in H$ and $y2$: $y2 \in H$
 - and x': $x' \notin H$ $x' \in E$ $x' \neq 0$
 - and eq: $y1 + a1 \cdot x' = y2 + a2 \cdot x'$
- Shows $y1 = y2 \land a1 = a2$

(proof)

Since for any element $y + a \cdot x'$ of the direct sum of a vectorspace H and the linear closure of x' the components $y \in H$ and a are unique, it follows from $y \in H$ that $a = 0$.

Lemma decomp-H'-H:

- Assumes vectorspace E subspace H
- Assumes t: $t \in H$
 - and x': $x' \notin H$ $x' \in E$ $x' \neq 0$
- Shows (SOME $y, a). t = y + a \cdot x' \land y \in H = (t, 0)$

(proof)

The components $y \in H$ and a in $y + a \cdot x'$ are unique, so the function h' defined by $h'(y + a \cdot x') = h y + a \cdot \xi$ is definite.

Lemma h'-definite:

- Fixes H
- Assumes h'-def:
 - $\forall x. h' x =$
 - (let $(y, a) = SOME (y, a). (x = y + a \cdot x' \land y \in H)$
 - in $(h y) + a \ast xi$)
 - and x: $x = y + a \cdot x'$
- Assumes vectorspace E subspace H
- Assumes y: $y \in H$
 - and x': $x' \notin H$ $x' \in E$ $x' \neq 0$
- Shows $h' x = h y + a \ast xi$

(proof)

end
5 Normed vector spaces

theory Normed-Space
imports Subspace
begin

5.1 Quasinorms

A \textit{seminorm} $\|\cdot\|$ is a function on a real vector space into the reals that has the following properties: it is positive definite, absolute homogeneous and subadditive.

locale seminorm =
 fixes V :: 'a::{minus, plus, zero, uminus} set
 fixes norm :: 'a \Rightarrow real (\|\cdot\|)
assumes ge-zero [iff?]: \(x \in V \Rightarrow 0 \leq \|x\|\)
 and abs-homogenous [iff?]: \(x \in V \Rightarrow \|a \cdot x\| = |a| \cdot \|x\|\)
 and subadditive [iff?]: \(x \in V \Rightarrow y \in V \Rightarrow \|x + y\| \leq \|x\| + \|y\|\)
declare seminorm.intro [intro?]

lemma (in seminorm) diff-subadditive:
 assumes vectorspace V
 shows \(x \in V \Rightarrow y \in V \Rightarrow \|x - y\| \leq \|x\| + \|y\|\)
(\textit{proof})

lemma (in seminorm) minus:
 assumes vectorspace V
 shows \(x \in V \Rightarrow \|-x\| = \|x\|\)
(\textit{proof})

5.2 Norms

A \textit{norm} $\|\cdot\|$ is a seminorm that maps only the 0 vector to 0.

locale norm = seminorm +
 assumes zero-iff [iff?]: \(x \in V \Rightarrow (\|x\| = 0) = (x = 0)\)

5.3 Normed vector spaces

A vector space together with a norm is called a \textit{normed space}.

locale normed-vectorspace = vectorspace + norm
declare normed-vectorspace.intro [intro?]

lemma (in normed-vectorspace) gt-zero [intro?]:
 assumes x: \(x \in V\) and neq: \(x \neq 0\)
 shows \(0 < \|x\|\)
(\textit{proof})

Any subspace of a normed vector space is again a normed vectorspace.

lemma subspace-normed-vs [intro?):
 fixes F E norm
 assumes subspace F E normed-vectorspace E norm
shows normed-vectorspace F norm
⟨proof⟩
end

6 Linearforms

theory Linearform
imports Vector-Space
begin

A linear form is a function on a vector space into the reals that is additive and multiplicative.

locale linearform =
fixes V :: 'a::{minus, plus, zero, uminus} set and f
assumes add [iff]: \(x \in V \implies y \in V \implies f(x + y) = f(x) + f(y) \)
and mult [iff]: \(x \in V \implies f(a \cdot x) = a \cdot f(x) \)

declare linearform.intro [intro?]

lemma (in linearform) neg [iff]:
assumes vectorspace V
shows \(x \in V \implies f(-x) = -f(x) \)
⟨proof⟩
end

phrase

7 An order on functions

theory Function-Order
imports Subspace Linearform
begin

7.1 The graph of a function

We define the graph of a (real) function \(f \) with domain \(F \) as the set
\[
\{(x, f(x)). x \in F\}
\]
So we are modeling partial functions by specifying the domain and the mapping function. We use the term “function” also for its graph.
7.2 Functions ordered by domain extension

A function \(h' \) is an extension of \(h \), iff the graph of \(h \) is a subset of the graph of \(h' \).

\[\text{lemma graph-extI: } \forall x. x \in H \implies h x = h' x \implies H \subseteq H' \]
\[\implies \text{graph } H \ h \subseteq \text{graph } H' \ h' \]
\[\langle \text{proof} \rangle \]

\[\text{lemma graph-extD1 [dest?]: } \text{graph } H \ h \subseteq \text{graph } H' \ h' \implies x \in H \implies h x = h' x \]
\[\langle \text{proof} \rangle \]

\[\text{lemma graph-extD2 [dest?]: } \text{graph } H \ h \subseteq \text{graph } H' \ h' \implies H \subseteq H' \]
\[\langle \text{proof} \rangle \]

7.3 Domain and function of a graph

The inverse functions to \(\text{graph} \) are \(\text{domain} \) and \(\text{funct} \).

\[\text{definition domain : 'a graph } \Rightarrow \text{'a set } \]
\[\text{where domain } g = \{ x. \exists y. (x, y) \in g \} \]

\[\text{definition funct : 'a graph } \Rightarrow \text{('a } \Rightarrow \text{real) } \]
\[\text{where funct } g = (\lambda x. \text{SOME } y. (x, y) \in g)) \]

The following lemma states that \(g \) is the graph of a function if the relation induced by \(g \) is unique.

\[\text{lemma graph-domain-funct: } \]
\[\text{assumes uniq: } \forall x \ y \ z. (x, y) \in g \implies (x, z) \in g \implies z = y \]
\[\text{shows } \text{graph } (\text{domain } g) \ (\text{funct } g) = g \]
\[\langle \text{proof} \rangle \]

7.4 Norm-preserving extensions of a function

Given a linear form \(f \) on the space \(F \) and a seminorm \(p \) on \(E \). The set of all linear extensions of \(f \), to superspaces \(H \) of \(F \), which are bounded by \(p \), is defined as follows.
8.1 Continuous linear forms

A linear form \(f \) on a normed vector space \((V, \|\cdot\|)\) is continuous, iff it is bounded, i.e.

\[
\exists c \in \mathbb{R}. \forall x \in V. |f x| \leq c \cdot \|x\|
\]
In our application no other functions than linear forms are considered, so we can define continuous linear forms as bounded linear forms:

```plaintext
textlocale continuous = linearform +
  fixes norm :: - ⇒ real (∥∥)
  assumes bounded: ∃c. ∀x ∈ V. |f x| ≤ c * ∥x∥

debute locale
```

8.2 The norm of a linear form

The least real number \(c \) for which holds

\[\forall x ∈ V. |f x| ≤ c ∗ ∥x∥ \]

is called the norm of \(f \).

For non-trivial vector spaces \(V \neq \{0\} \) the norm can be defined as

\[∥f∥ = \sup x \neq 0. |f x| / ∥x∥ \]

For the case \(V = \{0\} \) the supremum would be taken from an empty set. Since \(\mathbb{R} \) is unbounded, there would be no supremum. To avoid this situation it must be guaranteed that there is an element in this set. This element must be \(\{\} \geq 0 \) so that \(fn-norm \) has the norm properties. Furthermore it does not have to change the norm in all other cases, so it must be \(0 \), as all other elements are \(\{\} \geq 0 \).

Thus we define the set \(B \) where the supremum is taken from as follows:

\[\{0\} \cup \{ |f x| / ∥x∥. x \neq 0 ∧ x ∈ F\} \]

\(fn-norm \) is equal to the supremum of \(B \), if the supremum exists (otherwise it is undefined).

```plaintext
textlocale fn-norm =
  fixes norm :: - ⇒ real (∥∥)
  fixes B defines B V f ≡ \{0\} ∪ \{ |f x| / ∥x∥. x \neq 0 ∧ x ∈ V\}
  fixes fn-norm (∥∥- -) \{0, 1000\} 999
  defines ||f||-V ≡ ∪(B V f)

debute locale
```

8.2 The norm of a linear form

The following lemma states that every continuous linear form on a normed space \((V, ∥∥)\) has a function norm.

```plaintext
textlocale normed-vectorspace-with-fn-norm = normed-vectorspace + fn-norm

debute lemma (in fn-norm) B-not-empty [intro]: 0 ∈ B V f
  ⟨proof⟩
```

The following lemma states that every continuous linear form on a normed space \((V, ∥∥)\) has a function norm.
assumes continuous \(V f \) norm
shows lub \((B V f) (\|f\| - V)\)
(proof)

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ub [iff]:
assumes continuous \(V f \) norm
assumes \(b: b \in B V f \)
shows \(b \leq \|f\| - V \)
(proof)

lemma (in normed-vectorspace-with-fn-norm) fn-norm-leastB:
assumes continuous \(V f \) norm
assumes \(b: \bigwedge b. b \in B V f \implies b \leq y \)
shows \(\|f\| - V \leq y \)
(proof)

The norm of a continuous function is always \(\geq 0 \).

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ge-zero [iff]:
assumes continuous \(V f \) norm
shows \(0 \leq \|f\| - V \)
(proof)

The fundamental property of function norms is:
\[
|f x| \leq \|f\| \cdot \|x\|
\]

lemma (in normed-vectorspace-with-fn-norm) fn-norm-le-cong:
assumes continuous \(V f \) norm linearform \(V f \)
assumes \(x: x \in V \)
shows \(|f x| \leq \|f\| - V \ast \|x\| \)
(proof)

The function norm is the least positive real number for which the following inequality holds:
\[
|f x| \leq c \cdot \|x\|
\]

lemma (in normed-vectorspace-with-fn-norm) fn-norm-least [intro]:
assumes continuous \(V f \) norm
assumes ineq: \(\bigwedge x. x \in V \implies |f x| \leq c \ast \|x\| \) and ge: \(0 \leq c \)
shows \(\|f\| - V \leq c \)
(proof)

end

9 Zorn’s Lemma

theory Zorn-Lemma
imports Main
begin

Zorn’s Lemmas states: if every linear ordered subset of an ordered set \(S \) has an upper bound in \(S \), then there exists a maximal element in \(S \). In our application,
S is a set of sets ordered by set inclusion. Since the union of a chain of sets is an upper bound for all elements of the chain, the conditions of Zorn’s lemma can be modified: if S is non-empty, it suffices to show that for every non-empty chain c in S the union of c also lies in S.

Theorem Zorn’s-Lemma:
- **Assumes r:** $\forall c. \ c \in \text{chains } S \implies \exists x. \ x \in c \implies \bigcup c \in S$
 - **Assumes a:** $a \in S$
 - **Shows $\exists y \in S. \ \forall z \in S. \ y \subseteq z \implies z = y$**

Proof

End
Part II

Lemmas for the Proof

10 The supremum wrt. the function order

theory Hahn-Banach-Sup-Lemmas
imports Function-Norm Zorn-Lemma
begin

This section contains some lemmas that will be used in the proof of the Hahn-Banach Theorem. In this section the following context is presumed. Let \(E \) be a real vector space with a seminorm \(p \) on \(E \). \(F \) is a subspace of \(E \) and \(f \) a linear form on \(F \). We consider a chain \(c \) of norm-preserving extensions of \(f \), such that \(\bigcup c = \text{graph } H \ h \). We will show some properties about the limit function \(h \), i.e. the supremum of the chain \(c \).

Let \(c \) be a chain of norm-preserving extensions of the function \(f \) and let \(\text{graph } H \ h \) be the supremum of \(c \). Every element in \(H \) is member of one of the elements of the chain.

lemma [dest?] = chainsD
lemma chainsE2 [elim?] = chainsD2 [elim-format]

lemma some-H h':
 assumes M: M = norm-pres-extensions E p F f
 and cM: c \in chains M
 and u: graph H h = \bigcup c
 and x: x \in H
 shows \(\exists H' \ h', \text{graph } H' \ h' \in c \)
 \(\land (x, h x) \in \text{graph } H' \ h' \)
 \(\land \text{linearform } H' \ h' \land H' \leq E \)
 \(\land F \leq H' \land \text{graph } F \ f \subseteq \text{graph } H' \ h' \)
 \(\land (\forall x \in H'. \ h' x \leq p x) \)
⟨proof⟩

Any two elements \(x \) and \(y \) in the domain \(H \) of the supremum function \(h \) are both in the domain \(H' \) of some function \(h' \), such that \(h \) extends \(h' \).
lemma some-H’h’:2:
assumes M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and u: graph H h = ⋃ c
and x: x ∈ H
and y: y ∈ H
shows ∃ H’ h’. x ∈ H’ ∧ y ∈ H’
∧ graph H’ h’ ⊆ graph H h
∧ linearform H’ h’ ∧ H’ ⊆ E ∧ F ⊆ H’
∧ graph F f ⊆ graph H’ h’ ∧ (∀ x ∈ H’, h’ x ≤ p x)
(proof)

The relation induced by the graph of the supremum of a chain c is definite, i.e. it is the graph of a function.

lemma sup-definite:
assumes M-def: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and xy: (x, y) ∈ ⋃ c
and z: (x, z) ∈ ⋃ c
shows z = y
(proof)

The limit function h is linear. Every element x in the domain of h is in the domain of a function h’ in the chain of norm preserving extensions. Furthermore, h is an extension of h’ so the function values of x are identical for h’ and h. Finally, the function h’ is linear by construction of M.

lemma sup-lf:
assumes M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and u: graph H h = ⋃ c
shows linearform H h
(proof)

The limit of a non-empty chain of norm preserving extensions of f is an extension of f, since every element of the chain is an extension of f and the supremum is an extension for every element of the chain.

lemma sup-ext:
assumes graph: graph H h = ⋃ c
and M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and ex: ∃ x. x ∈ c
shows graph F f ⊆ graph H h
(proof)

The domain H of the limit function is a superspace of F, since F is a subset of H. The existence of the 0 element in F and the closure properties follow from the fact that F is a vector space.

lemma sup-supF:
assumes graph: graph H h = ⋃ c
and M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and ex: ∃x. x ∈ c
and FE: F ≤ E
shows F ≤ H
(proof)

The domain H of the limit function is a subspace of E.

lemma sup-subE:
assumes graph: graph H h = ∪c
and M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and ex: ∃x. x ∈ c
and FE: F ≤ E
and E: vectorspace E
shows H ≤ E
(proof)

The limit function is bounded by the norm p as well, since all elements in the chain are bounded by p.

lemma sup-norm-pres:
assumes graph: graph H h = ∪c
and M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
shows ∀x ∈ H. h x ≤ p x
(proof)

The following lemma is a property of linear forms on real vector spaces. It will be used for the lemma abs-Hahn-Banach (see page 24). For real vector spaces the following inequality are equivalent:

∀x ∈ H. |h x| ≤ p x and ∀x ∈ H. h x ≤ p x

lemma abs-ineq-iff:
assumes subspace H E and vectorspace E and seminorm E p
and linearform H h
shows (∀x ∈ H. |h x| ≤ p x) = (∀x ∈ H. h x ≤ p x) (is ?L = ?R)
(proof)

end

11 Extending non-maximal functions

theory Hahn-Banach-Ext-Lemmas
imports Function-Norm
begin

In this section the following context is presumed. Let E be a real vector space with a seminorm q on E. F is a subspace of E and f a linear function on F. We consider a subspace H of E that is a superspace of F and a linear form h on H. H is a not equal to E and x₀ is an element in E − H. H is extended to the direct sum H' = H + lin x₀, so for any x ∈ H' the decomposition of x = y +
$a \cdot x$ with $y \in H$ is unique. h' is defined on H' by $h' \ x = h \ y + a \cdot \xi$ for a certain ξ.
Subsequently we show some properties of this extension h' of h.

This lemma will be used to show the existence of a linear extension of f (see page ??). It is a consequence of the completeness of \mathbb{R}. To show

$$\exists \xi. \forall y \in F. \ a \ y \leq \xi \wedge \xi \leq b \ y$$

it suffices to show that

$$\forall u \in F. \forall v \in F. \ a \ u \leq b \ v$$

lemma ex-xi:

assumes vectorspace F
assumes $v : \bigwedge u \ u \in F \implies v \in F \implies a \ u \leq b \ v$
shows $\exists \xi : \text{real}. \forall y \in F. \ a \ y \leq \xi \wedge \xi \leq b \ y$

(proof)

The function h' is defined as a $h' \ x = h \ y + a \cdot \xi$ where $x = y + a \cdot \xi$ is a linear extension of h to H'.

lemma h'-lf:

assumes $h'\text{-def} : \bigwedge x. \ h' \ x = \ (\text{let} \ (y, a) = \ \text{SOME} \ (y, a). \ x = y + a \cdot x0 \wedge y \in H \ in \ h \ y + a \cdot xi) \wedge H'\text{-def}: H' = H + \text{lin} x0$
assumes $HE: H \subseteq E$
assumes $x0: x0 \notin H \ x0 \in E \ x0 \neq 0$
assumes $E: \text{vectorspace} E$
shows $\text{linearform} H' h'$

(proof)

The linear extension h' of h is bounded by the seminorm p.

lemma h'-norm-pres:

assumes $h'\text{-def} : \bigwedge x. \ h' \ x = \ (\text{let} \ (y, a) = \ \text{SOME} \ (y, a). \ x = y + a \cdot x0 \wedge y \in H \ in \ h \ y + a \cdot xi) \wedge H'\text{-def}: H' = H + \text{lin} x0$
assumes $x0: x0 \notin H \ x0 \in E \ x0 \neq 0$
assumes $E: \text{vectorspace} E \text{ and } HE: \text{subspace} H E$
assumes $p: \forall y \in H. \ h \ y \leq p \ y$
shows $\forall x \in H'. \ h' \ x \leq p \ x$

(proof)

end
Part III
The Main Proof

12 The Hahn-Banach Theorem

theory Hahn-Banach
imports Hahn-Banach-Lemmas
begin

We present the proof of two different versions of the Hahn-Banach Theorem, closely following [1, §36].

12.1 The Hahn-Banach Theorem for vector spaces

Hahn-Banach Theorem. Let F be a subspace of a real vector space E, let p be a semi-norm on E, and f be a linear form defined on F such that f is bounded by p, i.e. $\forall x \in F. \ f x \leq p x$. Then f can be extended to a linear form h on E such that h is norm-preserving, i.e. h is also bounded by p.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of E. The linear forms in M are ordered by domain extension.

2. We show that every non-empty chain in M has an upper bound in M.

3. With Zorn’s Lemma we conclude that there is a maximal function g in M.

4. The domain H of g is the whole space E, as shown by classical contradiction:
 - Assuming g is not defined on whole E, it can still be extended in a norm-preserving way to a super-space H' of H.
 - Thus g can not be maximal. Contradiction!

12.2 Alternative formulation

The following alternative formulation of the Hahn-Banach Theorem uses the fact that for a real linear form f and a seminorm p the following inequality are equivalent.\(^{1}\)

\(^{1}\)This was shown in lemma abs-ineq-iff (see page 22).
12.3 The Hahn-Banach Theorem for normed spaces

\[\forall x \in H. \, |h x| \leq p x \quad \text{and} \quad \forall x \in H. \, h x \leq p x \]

Theorem abs-Hahn-Banach:

Assumes:
- \(E \): vectorspace \(E \)
- \(FE \): subspace \(F \in E \)
- \(lf \): linearform \(f \in F \)
- \(sn \): seminorm \(p \) in \(E \)

Assumes \(fp \):
- \(\forall x \in F. \, |f x| \leq p x \)

Shows:
- \(\exists g. \) linearform \(g \) in \(E \)
- \(\forall x \in F. \, g x = f x \)
- \(\forall x \in E. \, |g x| \leq p x \)

(proof)

12.3 The Hahn-Banach Theorem for normed spaces

Every continuous linear form \(f \) on a subspace \(F \) of a norm space \(E \), can be extended to a continuous linear form \(g \) on \(E \) such that \(\|f\| = \|g\| \).

Theorem norm-Hahn-Banach:

Fixes:
- \(V \)
- \(\|\cdot\| \)

Fixes \(B \)

Defines \(\bigvee_{V} f \)

Assumes \(E \)-norm:
- \(E \): normed-vectorspace \(E \)
- \(FE \): subspace \(F \in E \)
- \(lf \): linearform \(f \) in \(F \)
- \(sn \): continuous \(f \) in \(F \)

Shows:
- \(\exists g. \) linearform \(g \) in \(E \)
- \(\forall x \in F. \, g x = f x \)
- \(\forall x \in E. \, \|g x\| = \|f x\| \)

(proof)

References

