The Hahn-Banach Theorem for Real Vector Spaces

Gertrud Bauer

April 15, 2020

Abstract

The Hahn-Banach Theorem is one of the most fundamental results in functional analysis. We present a fully formal proof of two versions of the theorem, one for general linear spaces and another for normed spaces. This development is based on simply-typed classical set-theory, as provided by Isabelle/HOL.

Contents

1 Preface 3

I Basic Notions 5

2 Bounds 5

3 Vector spaces 5
 3.1 Signature 5
 3.2 Vector space laws 6

4 Subspaces 9
 4.1 Definition 9
 4.2 Linear closure 10
 4.3 Sum of two vectorspaces 11
 4.4 Direct sums 12

5 Normed vector spaces 13
 5.1 Quasinorms 13
 5.2 Norms 13
 5.3 Normed vector spaces 13

6 Linearforms 14

7 An order on functions 14
 7.1 The graph of a function 14
 7.2 Functions ordered by domain extension 15
 7.3 Domain and function of a graph 15
 7.4 Norm-preserving extensions of a function 15
8 The norm of a function
 8.1 Continuous linear forms .. 16
 8.2 The norm of a linear form .. 17

9 Zorn’s Lemma ... 18

II Lemmas for the Proof .. 20
10 The supremum wrt. the function order 20
11 Extending non-maximal functions 22

III The Main Proof ... 24
12 The Hahn-Banach Theorem
 12.1 The Hahn-Banach Theorem for vector spaces 24
 12.2 Alternative formulation .. 24
 12.3 The Hahn-Banach Theorem for normed spaces 25
1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows the informal presentation given in Heuser’s textbook [1, § 36]. Another formal proof of the same theorem has been done in Mizar [3]. A general overview of the relevance and history of the Hahn-Banach Theorem is given by Narici and Beckenstein [2].

The document is structured as follows. The first part contains definitions of basic notions of linear algebra: vector spaces, subspaces, normed spaces, continuous linear-forms, norm of functions and an order on functions by domain extension. The second part contains some lemmas about the supremum (w.r.t. the function order) and extension of non-maximal functions. With these preliminaries, the main proof of the theorem (in its two versions) is conducted in the third part. The dependencies of individual theories are as follows.
Part I

Basic Notions

2 Bounds

theory Bounds
imports Main HOL-Analysis. Continuum-Not-Denumerable
begin

locale lub =
fixes A and x
assumes least [intro?]: (∀a. a ∈ A ⇒ a ≤ b) ⇒ x ≤ b
and upper [intro?]: a ∈ A ⇒ a ≤ x

lemmas [elim?] = lub.least lub.upper

definition the-lub :: 'a::order set ⇒ 'a
where the-lub A = The (lub A)

lemma the-lub-equality [elim?):
assumes lub A x
shows lub A (⨆ A)
⟨proof⟩

lemma the-lubI-ex:
assumes ex: ∃x. lub A x
shows lub A (⨆ A)
⟨proof⟩

lemma real-complete: ∃a::real. a ∈ A ⇒ ∃y. ∀a ∈ A. a ≤ y ⇒ ∃x. lub A x
⟨proof⟩
end

3 Vector spaces

theory Vector-Space
imports Complex-Main Bounds
begin

3.1 Signature

For the definition of real vector spaces a type 'a of the sort {plus, minus, zero}
is considered, on which a real scalar multiplication · is declared.

consts
prod :: real ⇒ 'a::{plus,minus,zero} ⇒ 'a (infixr · 70)
3.2 Vector space laws

A vector space is a non-empty set \(V \) of elements from 'a with the following vector space laws: The set \(V \) is closed under addition and scalar multiplication, addition is associative and commutative; \(- x\) is the inverse of \(x \) wrt. addition and \(0 \) is the neutral element of addition. Addition and multiplication are distributive; scalar multiplication is associative and the real number \(1 \) is the neutral element of scalar multiplication.

locale vectorspace =
 fixes \(V \)
 assumes non-empty [iff, intro?): \(V \neq \{\} \)
 and add-closed [iff]: \(x \in V \Longrightarrow y \in V \Longrightarrow x + y \in V \)
 and mult-closed [iff]: \(x \in V \Longrightarrow a \cdot x \in V \)
 and add-assoc: \(x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow (x + y) + z = x + (y + z) \)
 and add-commute: \(x \in V \Longrightarrow y \in V \Longrightarrow x + y = y + x \)
 and diff-self [simp]: \(x \in V \Longrightarrow x - x = 0 \)
 and add-assoc [simp]: \(x \in V \Longrightarrow 0 + x = x \)
 and add-mult-distrib1: \(x \in V \Longrightarrow y \in V \Longrightarrow a \cdot (x + y) = a \cdot x + a \cdot y \)
 and add-mult-distrib2: \(x \in V \Longrightarrow (a + b) \cdot x = a \cdot x + b \cdot x \)
 and mult-assoc: \(x \in V \Longrightarrow (a \cdot b) \cdot x = a \cdot (b \cdot x) \)
 and mult-1 [simp]: \(x \in V \Longrightarrow 1 \cdot x = x \)
 and negate-eq1: \(x \in V \Longrightarrow -x = (\neg 1) \cdot x \)
 and diff-eq1: \(x \in V \Longrightarrow y \in V \Longrightarrow x - y = x + -y \)

begin

lemma negate-eq2: \(x \in V \Longrightarrow (-1) \cdot x = -x \)
 ⟨proof⟩

lemma negate-eq2a: \(x \in V \Longrightarrow -1 \cdot x = -x \)
 ⟨proof⟩

lemma diff-eq2: \(x \in V \Longrightarrow y \in V \Longrightarrow x + -y = x - y \)
 ⟨proof⟩

lemma diff-closed [iff]: \(x \in V \Longrightarrow y \in V \Longrightarrow x - y \in V \)
 ⟨proof⟩

lemma neg-closed [iff]: \(x \in V \Longrightarrow -x \in V \)
 ⟨proof⟩

lemma add-left-commute:
 \(x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow x + (y + z) = y + (x + z) \)
 ⟨proof⟩

lemmas add-ac = add-assoc add-commute add-left-commute

The existence of the zero element of a vector space follows from the non-emptiness of carrier set.

lemma zero [iff]: \(0 \in V \)
 ⟨proof⟩

lemma add-zero-right [simp]: \(x \in V \Longrightarrow x + 0 = x \)
 ⟨proof⟩
3.2 Vector space laws

\textbf{lemma} mult-assoc2: \(x \in V \implies a \cdot b \cdot x = (a \ast b) \cdot x \)
\textbf{(proof)}

\textbf{lemma} diff-mult-distrib1: \(x \in V \implies y \in V \implies a \cdot (x - y) = a \cdot x - a \cdot y \)
\textbf{(proof)}

\textbf{lemma} diff-mult-distrib2: \(x \in V \implies (a - b) \cdot x = a \cdot x - (b \cdot x) \)
\textbf{(proof)}

\textbf{lemmas} distrib =
\begin{itemize}
 \item add-mult-distrib1
 \item add-mult-distrib2
 \item diff-mult-distrib1
 \item diff-mult-distrib2
\end{itemize}

Further derived laws:

\textbf{lemma} mult-zero-left [simp]: \(x \in V \implies 0 \cdot x = 0 \)
\textbf{(proof)}

\textbf{lemma} mult-zero-right [simp]: \(a \cdot 0 = (0::'a) \)
\textbf{(proof)}

\textbf{lemma} minus-mult-cancel [simp]: \(x \in V \implies (-a) \cdot -x = a \cdot x \)
\textbf{(proof)}

\textbf{lemma} add-minus-left-eq-diff: \(x \in V \implies y \in V \implies -x + y = y - x \)
\textbf{(proof)}

\textbf{lemma} add-minus [simp]: \(x \in V \implies x + -x = 0 \)
\textbf{(proof)}

\textbf{lemma} add-minus-left [simp]: \(x \in V \implies -x + x = 0 \)
\textbf{(proof)}

\textbf{lemma} minus-minus [simp]: \(x \in V \implies -(-x) = x \)
\textbf{(proof)}

\textbf{lemma} minus-zero [simp]: \(-(0::'a) = 0 \)
\textbf{(proof)}

\textbf{lemma} minus-zero-iff [simp]:
\begin{itemize}
 \item assumes \(x: x \in V \)
 \item shows \((-x = 0) = (x = 0) \)
\end{itemize}
\textbf{(proof)}

\textbf{lemma} add-minus-cancel [simp]: \(x \in V \implies y \in V \implies x + (-x + y) = y \)
\textbf{(proof)}

\textbf{lemma} minus-add-cancel [simp]: \(x \in V \implies y \in V \implies -x + (x + y) = y \)
\textbf{(proof)}

\textbf{lemma} minus-add-distrib [simp]: \(x \in V \implies y \in V \implies -(x + y) = -x + -y \)
\textbf{(proof)}

\textbf{lemma} diff-zero [simp]: \(x \in V \implies x - 0 = x \)
lemma diff-zero-right [simp]: \(x \in V \implies 0 - x = -x \)

lemma add-left-cancel:
assumes \(x: x \in V \) and \(y: y \in V \) and \(z: z \in V \)
shows \((x + y = x + z) = (y = z)\)

lemma add-right-cancel:
\(x \in V \implies y \in V \implies z \in V \implies (y + x = z + x) = (y = z) \)

lemma add-assoc-cong:
\(x \in V \implies y \in V \implies x' \in V \implies y' \in V \implies z \in V \)
\(\implies x + y = x' + y' \implies x + (y + z) = x' + (y' + z) \)

lemma mult-left-commute:
\(x \in V \implies a \cdot b \cdot x = b \cdot a \cdot x \)

lemma mult-zero-uniq:
assumes \(x: x \in V \) and \(x \neq 0 \) and \(ax: a \cdot x = 0 \)
shows \(a = 0 \)

lemma mult-left-cancel:
assumes \(x: x \in V \) and \(y: y \in V \) and \(a: a \neq 0 \)
shows \((a \cdot x = a \cdot y) = (x = y) \)

lemma mult-right-cancel:
assumes \(x: x \in V \) and \(x \neq 0 \)
shows \((a \cdot x = b \cdot x) = (a = b) \)

lemma eq-diff-eq:
assumes \(x: x \in V \) and \(y: y \in V \) and \(z: z \in V \)
shows \((x = z - y) = (x + y = z) \)

lemma add-minus-eq-minus:
assumes \(x: x \in V \) and \(y: y \in V \) and \(xy: x + y = 0 \)
shows \(x = -y \)

lemma add-minus-eq:
assumes \(x: x \in V \) and \(y: y \in V \) and \(xy: x - y = 0 \)
shows \(x = y \)

lemma add-diff-swap:
assumes vs: \(a \in V \) \(b \in V \) \(c \in V \) \(d \in V \)
and eq: \(a + b = c + d \)
shows \(a - c = d - b \)
\(\langle \text{proof} \rangle \)

lemma \(\text{vs-add-cancel-21} \):
assumes \(\text{vs}: x \in V \ y \in V \ z \in V \ u \in V \)
shows \((x + (y + z)) = (y + u) = (x + z = u) \)
\(\langle \text{proof} \rangle \)

lemma \(\text{add-cancel-end} \):
assumes \(\text{vs}: x \in V \ y \in V \ z \in V \)
shows \((x + (y + z) = y) = (x = - z) \)
\(\langle \text{proof} \rangle \)

end

4 Subspaces

theory Subspace
imports Vector-Space HOL-Library.Set-Algebras
begin

4.1 Definition

A non-empty subset \(U \) of a vector space \(V \) is a \textit{subspace} of \(V \), if \(U \) is closed under addition and scalar multiplication.

locale subspace =
fixes \(U \) :: \('a::{\text{minus, plus, zero, uminus}} \text{ set and} \ V \)
assumes non-empty \(\langle \text{iff, intro}\rangle \): \(U \neq \{\} \)
and subset \(\langle \text{iff}\rangle \): \(U \subseteq V \)
and add-closed \(\langle \text{iff}\rangle \): \(x \in U \implies y \in U \implies x + y \in U \)
and mult-closed \(\langle \text{iff}\rangle \): \(x \in U \implies a \cdot x \in U \)

notation \(\text{(symbols)} \)
subspace \(\langle \text{infix} \leq 50 \rangle \)
declare vectorspace.intro [intro?] subspace.intro [intro?]

lemma subspace-subset \(\langle \text{elim}\rangle \): \(U \leq V \implies U \subseteq V \)
\(\langle \text{proof} \rangle \)

lemma (in subspace) subsetD \(\langle \text{iff}\rangle \): \(x \in U \implies x \in V \)
\(\langle \text{proof} \rangle \)

lemma subspaceD \(\langle \text{elim}\rangle \): \(U \leq V \implies x \in U \implies x \in V \)
\(\langle \text{proof} \rangle \)

lemma rev-subspaceD \(\langle \text{elim}\rangle \): \(x \in U \implies U \leq V \implies x \in V \)
\(\langle \text{proof} \rangle \)

lemma (in subspace) diff-closed \(\langle \text{iff}\rangle \):

assumes vectorspace V
assumes x: $x \in U$ and y: $y \in U$
shows $x - y \in U$
(proof)

Similar as for linear spaces, the existence of the zero element in every subspace follows from the non-emptiness of the carrier set and by vector space laws.

lemma (in subspace) zero [intro]:
assumes vectorspace V
shows $0 \in U$
(proof)

lemma (in subspace) neg-closed [iff]:
assumes vectorspace V
assumes x: $x \in U$
shows $-x \in U$
(proof)

Further derived laws: every subspace is a vector space.

lemma (in subspace) vectorspace [iff]:
assumes vectorspace V
shows vectorspace U
(proof)

The subspace relation is reflexive.

lemma (in vectorspace) subspace-refl [intro]: $V \subseteq V$
(proof)

The subspace relation is transitive.

lemma (in vectorspace) subspace-trans [trans]:
$U \subseteq V \Rightarrow V \subseteq W \Rightarrow U \subseteq W$
(proof)

4.2 Linear closure

The **linear closure** of a vector x is the set of all scalar multiples of x.

definition lin :: ('a::{minus, plus, zero}) \Rightarrow 'a set
 where lin $x = \{ a \cdot x \mid a. \mbox{True} \}$

lemma linI [intro]: $y = a \cdot x \Rightarrow y \in \mbox{lin} x$
(proof)

lemma linI' [iff]: $a \cdot x \in \mbox{lin} x$
(proof)

lemma linE [elim]:
 assumes $x \in \mbox{lin} v$
 obtains $a :: \mbox{real}$ where $x = a \cdot v$
(proof)

Every vector is contained in its linear closure.
4.3 Sum of two vectorspaces

Lemma (in vectorspace) \(x \)-lin-x [iff]: \(x \in V \Rightarrow x \in \text{lin} x \)

(\text{proof})

Lemma (in vectorspace) 0-lin-x [iff]: \(x \in V \Rightarrow 0 \in \text{lin} x \)

(\text{proof})

Any linear closure is a subspace.

Lemma (in vectorspace) lin-subspace [intro]:
\begin{itemize}
 \item assumes \(x \in V \)
 \item shows lin \(x \) \(\subseteq V \)
\end{itemize}

(\text{proof})

Any linear closure is a vector space.

Lemma (in vectorspace) lin-vectorspace [intro]:
\begin{itemize}
 \item assumes \(x \in V \)
 \item shows vectorspace (lin \(x \))
\end{itemize}

(\text{proof})

4.3 Sum of two vectorspaces

The sum of two vectorspaces \(U \) and \(V \) is the set of all sums of elements from \(U \) and \(V \).

Lemma sum-def: \(U + V = \{ u + v \mid u \in U \land v \in V \} \)

(\text{proof})

Lemma sumE [elim]:
\[
x \in U + V \implies (\forall u, v. x = u + v \implies u \in U \implies v \in V \implies C) \implies C
\]

(\text{proof})

Lemma sumI [intro]:
\[
u \in U \implies v \in V \implies x = u + v \implies x \in U + V
\]

(\text{proof})

Lemma sumI’ [intro]:
\[
u \in U \implies v \in V \implies u + v \in U + V
\]

(\text{proof})

\(U \) is a subspace of \(U + V \).

Lemma subspace-sum1 [iff]:
\begin{itemize}
 \item assumes vectorspace \(U \) vectorspace \(V \)
 \item shows \(U \subseteq U + V \)
\end{itemize}

(\text{proof})

The sum of two subspaces is again a subspace.

Lemma sum-subspace [intro]:
\begin{itemize}
 \item assumes subspace \(U \subseteq E \) vectorspace \(V \subseteq E \)
 \item shows \(U + V \subseteq E \)
\end{itemize}

(\text{proof})

The sum of two subspaces is a vectorspace.

Lemma sum-vs [intro]:
\begin{itemize}
 \item \(U \subseteq E \Rightarrow \) \(V \subseteq E \Rightarrow \text{vectorspace} \) \(E \Rightarrow \text{vectorspace} \) \(U + V \)
\end{itemize}

(\text{proof})
4.4 Direct sums

The sum of U and V is called direct, iff the zero element is the only common element of U and V. For every element x of the direct sum of U and V the decomposition in $x = u + v$ with $u \in U$ and $v \in V$ is unique.

Lemma decomp:

- Assumes vectorspace E subspace U E subspace V
- Assumes direct: $U \cap V = \{0\}$
- And $u1: u1 \in U$ and $u2: u2 \in U$
- And $v1: v1 \in V$ and $v2: v2 \in V$
- And sum: $u1 + v1 = u2 + v2$
- Shows $u1 = u2 \land v1 = v2$

Proof

An application of the previous lemma will be used in the proof of the Hahn-Banach Theorem (see page ??): for any element $y + a \cdot x_0$ of the direct sum of a vectorspace H and the linear closure of x_0 the components $y \in H$ and a are uniquely determined.

Lemma decomp-H':

- Assumes vectorspace E subspace H E
- Assumes $y1: y1 \in H$ and $y2: y2 \in H$
- And $x1: x1 \notin H$ $x1 \in E$ $x1 \neq 0$
- And eq: $y1 + a1 \cdot x1 = y2 + a2 \cdot x'$
- Shows $y1 = y2 \land a1 = a2$

Proof

Since for any element $y + a \cdot x'$ of the direct sum of a vectorspace H and the linear closure of x' the components $y \in H$ and a are unique, it follows from $y \in H$ that $a = 0$.

Lemma decomp-H'-H:

- Assumes vectorspace E subspace H E
- Assumes $t: t \in H$
- And $x1: x1 \notin H$ $x1 \in E$ $x1 \neq 0$
- Shows $(\text{SOME} (y, a). t = y + a \cdot x' \land y \in H) = (t, 0)$

Proof

The components $y \in H$ and a in $y + a \cdot x'$ are unique, so the function h' defined by $h'(y + a \cdot x') = h y + a \cdot \xi$ is definite.

Lemma h'-definite:

- Fixes H
- Assumes h'-def:
 \[
 \land x. h' x = \\
 (\text{let} (y, a) = \text{SOME} (y, a). (x = y + a \cdot x' \land y \in H) \\
 \text{in} (h y) + a \ast x1)
 \]
- And $x: x = y + a \cdot x'$
- Assumes vectorspace E subspace H E
- Assumes $y: y \in H$
- And $x1: x1 \notin H$ $x1 \in E$ $x1 \neq 0$
- Shows $h' x = h y + a \ast x1$

Proof

end
5 Normed vector spaces

theory Normed-Space
imports Subspace
begin

5.1 Quasinorms

A seminorm $\|\cdot\|$ is a function on a real vector space into the reals that has the following properties: it is positive definite, absolute homogeneous and subadditive.

locale seminorm =
 fixes $V :: 'a::{\text{minus}, \text{plus}, \text{zero}, \text{uminus}}}$ set
 fixes $\text{norm} :: 'a \Rightarrow \text{real} \ (\|\cdot\|)$
assumes ge-zero [iff?]: $x \in V \Longrightarrow 0 \leq \|x\|
 and abs-homogenous [iff?]: $x \in V \Longrightarrow |a \cdot x| = |a| \cdot \|x\|
 and subadditive [iff?]: $x \in V \Longrightarrow y \in V \Longrightarrow \|x + y\| \leq \|x\| + \|y\|
declare seminorm.intro [intro?]

lemma (in seminorm) diff-subadditive:
 assumes vectorspace V
 shows $x \in V \Longrightarrow y \in V \Longrightarrow \|x - y\| \leq \|x\| + \|y\|
⟨proof⟩
lemma (in seminorm) minus:
 assumes vectorspace V
 shows $x \in V \Longrightarrow \|-x\| = \|x\|
⟨proof⟩

5.2 Norms

A norm $\|\cdot\|$ is a seminorm that maps only the 0 vector to 0.

locale norm = seminorm +
 assumes zero-iff [iff?]: $x \in V \Longrightarrow (\|x\| = 0) = (x = 0)$

5.3 Normed vector spaces

A vector space together with a norm is called a normed space.

locale normed-vectorspace = vectorspace + norm
declare normed-vectorspace.intro [intro?]

lemma (in normed-vectorspace) gt-zero [intro?]:
 assumes $x : x \in V \text{ and neg: } x \neq 0$
 shows $0 < \|x\|
⟨proof⟩

Any subspace of a normed vector space is again a normed vectorspace.

lemma subspace-normed-vs [intro?):
 fixes $F E \text{ norm}$
 assumes subspace $F E \text{ normed-vectorspace} E \text{ norm}$
6 Linearforms

theory Linearform
imports Vector-Space
begin

A linear form is a function on a vector space into the reals that is additive and multiplicative.

locale linearform =
 fixes V :: 'a::{minus, plus, zero, uminus} set and f
 assumes add [iff]: \(x \in V \implies y \in V \implies f(x + y) = f(x) + f(y) \)
 and mult [iff]: \(x \in V \implies f(a \cdot x) = a \cdot f(x) \)

declare linearform.intro [intro?]

lemma (in linearform) neg [iff]:
 assumes vectorspace V
 shows \(x \in V \implies f(-x) = -f(x) \)
(proof)

lemma (in linearform) diff [iff]:
 assumes vectorspace V
 shows \(x \in V \implies y \in V \implies f(x - y) = f(x) - f(y) \)
(proof)

Every linear form yields 0 for the 0 vector.

lemma (in linearform) zero [iff]:
 assumes vectorspace V
 shows \(f(0) = 0 \)
(proof)

end

7 An order on functions

theory Function-Order
imports Subspace Linearform
begin

7.1 The graph of a function

We define the graph of a (real) function \(f \) with domain \(F \) as the set

\[\{(x, f(x)) : x \in F\} \]

So we are modeling partial functions by specifying the domain and the mapping function. We use the term “function” also for its graph.
type-synonym 'a graph = ('a × real) set

definition graph :: 'a set ⇒ ('a ⇒ real) ⇒ 'a graph
where graph F f = { (x, f x) | x ∈ F }

lemma graphI [intro]: x ∈ F ⇒ (x, f x) ∈ graph F f
⟨proof⟩

lemma graphI2 [intro]: x ∈ F ⇒ ∃ t ∈ graph F f. t = (x, f x)
⟨proof⟩

lemma graphE [elim]:
assumes (x, y) ∈ graph F f
obtains x ∈ F and y = f x
⟨proof⟩

7.2 Functions ordered by domain extension

A function h' is an extension of h, iff the graph of h is a subset of the graph of h'.

lemma graph-extI:
(∀ x. x ∈ H ⇒ h x = h' x) ⇒ H ⊆ H'
⇒ graph H h ⊆ graph H' h'
⟨proof⟩

lemma graph-extD1 [dest]: graph H h ⊆ graph H' h' ⇒ x ∈ H ⇒ h x = h' x
⟨proof⟩

lemma graph-extD2 [dest]: graph H h ⊆ graph H' h' ⇒ H ⊆ H'
⟨proof⟩

7.3 Domain and function of a graph

The inverse functions to graph are domain and funct.

definition domain :: 'a graph ⇒ 'a set
where domain g = { x. ∃ y. (x, y) ∈ g }

definition funct :: 'a graph ⇒ ('a ⇒ real)
where funct g = (λ x. (SOME y. (x, y) ∈ g))

The following lemma states that g is the graph of a function if the relation induced by g is unique.

lemma graph-domain-funct:
assumes uniq: ∀ x y z. (x, y) ∈ g ⇒ (x, z) ∈ g ⇒ z = y
shows graph (domain g) (funct g) = g
⟨proof⟩

7.4 Norm-preserving extensions of a function

Given a linear form f on the space F and a seminorm p on E. The set of all linear extensions of f, to superspaces H of F, which are bounded by p, is defined as follows.
8 The norm of a function

theory Function-Norm
imports Normed-Space Function-Order
begin

8.1 Continuous linear forms

A linear form \(f \) on a normed vector space \((V, \|\cdot\|)\) is continuous, iff it is bounded, i.e.

\[\exists c \in \mathbb{R}. \forall x \in V. |f x| \leq c \cdot \|x\| \]
In our application no other functions than linear forms are considered, so we can define continuous linear forms as bounded linear forms:

```plaintext
locale continuous = linearform +
fixes norm :: - ⇒ real (∥-∥)
assumes bounded: ∃c. ∀x ∈ V. |f x| ≤ c * ∥x∥
```

```plaintext
declare continuous.intro [intro?] continuous-axioms.intro [intro?]
```

```plaintext
lemma continuousI [intro]:
fixes norm :: - ⇒ real (∥-∥)
assumes linearform V f
assumes r: ∀x. x ∈ V =⇒ |f x| ≤ c * ∥x∥
shows continuous V f norm
```

8.2 The norm of a linear form

The least real number c for which holds

$$\forall x ∈ V. |f x| ≤ c · ∥x∥$$

is called the norm of f.

For non-trivial vector spaces $V ≠ \{0\}$ the norm can be defined as

$$∥f∥ = \text{sup } x ≠ 0. |f x| / ∥x∥$$

For the case $V = \{0\}$ the supremum would be taken from an empty set. Since \mathbb{R} is unbounded, there would be no supremum. To avoid this situation it must be guaranteed that there is an element in this set. This element must be \(|\} ≥ 0\) so that fn-norm has the norm properties. Furthermore it does not have to change the norm in all other cases, so it must be 0, as all other elements are \(\{\} ≥ 0\).

Thus we define the set B where the supremum is taken from as follows:

$$\{0\} \cup \{|f x| / ∥x∥. x ≠ 0 ∧ x ∈ F\}$$

fn-norm is equal to the supremum of B, if the supremum exists (otherwise it is undefined).

```plaintext
locale fn-norm =
fixes norm :: - ⇒ real (∥-∥)
fixes B defines B V f ≡ \{0\} ∪ \{|f x| / ∥x∥ | x ≠ 0 ∧ x ∈ V\}
fixes fn-norm (∥-∥)-\[0, 1000\] 999)
defines ∥f∥-V ≡ ∪(B V f)
```

```plaintext
locale normed-vectorspace-with-fn-norm = normed-vectorspace + fn-norm
```

```plaintext
lemma (in fn-norm) B-not-empty [intro]: 0 ∈ B V f
(proof)
```

The following lemma states that every continuous linear form on a normed space $(V, ∥-∥)$ has a function norm.

```plaintext
lemma (in normed-vectorspace-with-fn-norm) fn-norm-works:
```
assumes continuous Vf norm
shows lub $(B \cup V f) (\|f\| \cdot V)$
(proof)

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ub [iff]:
 assumes continuous Vf norm
 assumes $b: b \in B \cup V f$
 shows $b \leq \|f\| \cdot V$
(proof)

lemma (in normed-vectorspace-with-fn-norm) fn-norm-leastB:
 assumes continuous Vf norm
 assumes $b: \forall b. b \in B \cup V f \Rightarrow b \leq y$
 shows $\|f\| \cdot V \leq y$
(proof)

The norm of a continuous function is always ≥ 0.

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ge-zero [iff]:
 assumes continuous Vf norm
 shows $0 \leq \|f\| \cdot V$
(proof)

The fundamental property of function norms is:

$$|f x| \leq \|f\| \cdot \|x\|$$

lemma (in normed-vectorspace-with-fn-norm) fn-norm-le-cong:
 assumes continuous Vf norm linearform Vf
 assumes $x: x \in V$
 shows $|f x| \leq \|f\| \cdot V * \|x\|$
(proof)

The function norm is the least positive real number for which the following inequality holds:

$$|f x| \leq c \cdot \|x\|$$

lemma (in normed-vectorspace-with-fn-norm) fn-norm-least [intro]:
 assumes continuous Vf norm
 assumes ineq: $\forall x. x \in V \Rightarrow |f x| \leq c \cdot \|x\|$ and ge: $0 \leq c$
 shows $\|f\| \cdot V \leq c$
(proof)

end

9 Zorn’s Lemma

theory Zorn-Lemma
imports Main
begin

Zorn’s Lemmas states: if every linear ordered subset of an ordered set S has an upper bound in S, then there exists a maximal element in S. In our application,
S is a set of sets ordered by set inclusion. Since the union of a chain of sets is an upper bound for all elements of the chain, the conditions of Zorn’s lemma can be modified: if S is non-empty, it suffices to show that for every non-empty chain c in S the union of c also lies in S.

Theorem Zorn’s Lemma:

Assumes $\forall c. c \in \text{chains } S \implies \exists x. x \in c \implies \bigcup c \in S$

And $a \in S$

Shows $\exists y \in S. \forall z \in S. y \subseteq z \implies z = y$

(proof)

end
Part II
Lemmas for the Proof

10 The supremum wrt. the function order

theory Hahn-Banach-Sup-Lemmas
imports Function-Norm Zorn-Lemma
begin

This section contains some lemmas that will be used in the proof of the Hahn-Banach Theorem. In this section the following context is presumed. Let E be a real vector space with a seminorm p on E. F is a subspace of E and f a linear form on F. We consider a chain c of norm-preserving extensions of f, such that $\bigcup c = \text{graph } H h$. We will show some properties about the limit function h, i.e. the supremum of the chain c.

Let c be a chain of norm-preserving extensions of the function f and let $\text{graph } H h$ be the supremum of c. Every element in H is member of one of the elements of the chain.

lemma [dest?] = chainsD
lemma chainsE2 [elim?] = chainsD2 [elim-format]

lemma some-H h':
 assumes $M: M = \text{norm-pres-extensions } E p F f$
 and $cM: c \in \text{chains } M$
 and $u: \text{graph } H h = \bigcup c$
 and $x: x \in H$
 shows $\exists H' h', \text{graph } H' h' \subseteq c$
 $\land (x, h x) \in \text{graph } H' h'$
 $\land \text{linearform } H' h' \land H' \leq E$
 $\land F \leq H' \land \text{graph } F f \subseteq \text{graph } H' h'$
 $\land (\forall x \in H', h' x \leq p x)$
⟨proof⟩

Let c be a chain of norm-preserving extensions of the function f and let $\text{graph } H h$ be the supremum of c. Every element in the domain H of the supremum function is member of the domain H' of some function h', such that h extends h'.

lemma some-H h':
 assumes $M: M = \text{norm-pres-extensions } E p F f$
 and $cM: c \in \text{chains } M$
 and $u: \text{graph } H h = \bigcup c$
 and $x: x \in H$
 shows $\exists H' h', x \in H' \land \text{graph } H' h' \subseteq \text{graph } H h$
 $\land \text{linearform } H' h' \land H' \leq E \land F \leq H'$
 $\land \text{graph } F f \subseteq \text{graph } H' h' \land (\forall x \in H', h' x \leq p x)$
⟨proof⟩

Any two elements x and y in the domain H of the supremum function h are both in the domain H' of some function h', such that h extends h'.
lemma some-H' h':
assumes M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and u: graph H h = \bigcup c
and x: x ∈ H
and y: y ∈ H
shows ∃ H' h'. x ∈ H' ∧ y ∈ H'
∧ graph H' h' ⊆ graph H h
∧ linearform H' h' ∧ H' ≤ E ∧ F ≤ H'
∧ graph F f ⊆ graph H' h' ∧ (\forall x ∈ H', h' x ≤ p x)
(proof)

The relation induced by the graph of the supremum of a chain c is definite, i.e. it is the graph of a function.

lemma sup-definite:
assumes M-def: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and xy: (x, y) ∈ \bigcup c
and xz: (x, z) ∈ \bigcup c
shows z = y
(proof)

The limit function h is linear. Every element x in the domain of h is in the domain of a function h' in the chain of norm preserving extensions. Furthermore, h is an extension of h' so the function values of x are identical for h' and h. Finally, the function h' is linear by construction of M.

lemma sup-lf:
assumes M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and u: graph H h = \bigcup c
shows linearform H h
(proof)

The limit of a non-empty chain of norm preserving extensions of f is an extension of f, since every element of the chain is an extension of f and the supremum is an extension for every element of the chain.

lemma sup-ext:
assumes graph: graph H h = \bigcup c
and M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and ex: ∃ x. x ∈ c
shows graph F f ⊆ graph H h
(proof)

The domain H of the limit function is a superspace of F, since F is a subset of H. The existence of the 0 element in F and the closure properties follow from the fact that F is a vector space.

lemma sup-supF:
assumes graph: graph H h = \bigcup c
and M: M = norm-pres-extensions E p F f
and \(cM: c \in \text{chains } M \)
and \(ex: \exists x. x \in c \)
and \(FE: F \leq E \)
shows \(F \leq H \)
(proof)

The domain \(H \) of the limit function is a subspace of \(E \).

lemma sup-subE:
assumes \(\text{graph: } \text{graph } H h = \bigcup c \)
and \(M: \text{M = norm-pres-extensions } E p F f \)
and \(cM: c \in \text{chains } M \)
and \(ex: \exists x. x \in c \)
and \(FE: F \leq E \)
and \(E: \text{vectorspace } E \)
shows \(H \leq E \)
(proof)

The limit function is bounded by the norm \(p \) as well, since all elements in the chain are bounded by \(p \).

lemma sup-norm-pres:
assumes \(\text{graph: } \text{graph } H h = \bigcup c \)
and \(M: \text{M = norm-pres-extensions } E p F f \)
and \(cM: c \in \text{chains } M \)
shows \(\forall x \in H. h x \leq p x \)
(proof)

The following lemma is a property of linear forms on real vector spaces. It will be used for the lemma \(\text{abs-Hahn-Banach} \) (see page 24). For real vector spaces the following inequality are equivalent:

\[
\forall x \in H. \ |h x| \leq p x \quad \text{and} \quad \forall x \in H. h x \leq p x
\]

lemma abs-ineq-iff:
assumes \(\text{subspace } H E \text{ and vectorspace } E \text{ and seminorm } E p \)
and \(\text{linearform } H h \)
shows \((\forall x \in H. \ |h x| \leq p x) = (\forall x \in H. h x \leq p x) \) (is \(?L = ?R\))
(proof)

end

11 Extending non-maximal functions

theory Hahn-Banach-Ext-Lemmas
imports Function-Norm
begin

In this section the following context is presumed. Let \(E \) be a real vector space with a seminorm \(q \) on \(E \). \(F \) is a subspace of \(E \) and \(f \) a linear function on \(F \). We consider a subspace \(H \) of \(E \) that is a superspace of \(F \) and a linear form \(h \) on \(H \). \(H \) is not equal to \(E \) and \(x_0 \) is an element in \(E - H \). \(H \) is extended to the direct sum \(H' = H + \text{lin } x_0 \), so for any \(x \in H' \) the decomposition of \(x = y + \)
\[a \cdot x \text{ with } y \in H \text{ is unique. } h' \text{ is defined on } H' \text{ by } h' x = h y + a \cdot \xi \text{ for a certain } \xi. \]

Subsequently we show some properties of this extension \(h' \) of \(h \).

This lemma will be used to show the existence of a linear extension of \(f \) (see page ??). It is a consequence of the completeness of \(\mathbb{R} \). To show

\[\exists \xi. \forall y \in F. \ a \ y \leq \xi \wedge \xi \leq b \ y \]

it suffices to show that

\[\forall u \in F. \forall v \in F. \ a \ u \leq b \ v \]

lemma \texttt{ex-xi}:

assumes \texttt{vectorspace } \(F \)

assumes \(r: \forall u \in F. \forall v \in F. \ a \ u \leq b \ v \)

shows \(\exists xi::\text{real}. \forall y \in F. \ a \ y \leq xi \wedge xi \leq b \ y \)

(proof)

The function \(h' \) is defined as a \(h' x = h y + a \cdot \xi \) where \(x = y + a \cdot \xi \) is a linear extension of \(h \) to \(H' \).

lemma \texttt{h'-lf}:

assumes \texttt{h'-def}: \(\forall x. \ h' x = (\text{let } (y, a) = \text{SOME} (y, a). x = y + a \cdot x0 \wedge y \in H \in h y + a \ast xi) \)

and \(H'\text{-def}: H' = H + \text{lin } x0 \)

and \(HE: H \subseteq E \)

assumes \texttt{linearform } \(H \)

assumes \(x0: x0 \notin H \ x0 \in E \ x0 \neq 0 \)

assumes \texttt{E: vectorspace } \(E \)

shows \texttt{linearform } \(H' \)

(proof)

The linear extension \(h' \) of \(h \) is bounded by the seminorm \(p \).

lemma \texttt{h'-norm-pres}:

assumes \texttt{h'-def}: \(\forall x. \ h' x = (\text{let } (y, a) = \text{SOME} (y, a). x = y + a \cdot x0 \wedge y \in H \in h y + a \ast xi) \)

and \(H'\text{-def}: H' = H + \text{lin } x0 \)

and \(x0: x0 \notin H \ x0 \in E \ x0 \neq 0 \)

assumes \texttt{E: vectorspace } \(E \) and \(HE: \text{subspace } H \)

and \(\text{seminorm } E \)

and \(\texttt{linearform } H \)

assumes \(a: \forall y \in H. \ h y \leq p \ y \)

and \(a': \forall y \in H. \ -p \ (y + x0) - h y \leq xi \wedge xi \leq p \ (y + x0) - h y \)

shows \(\forall x \in H'. \ h' x \leq p \ x \)

(proof)

end
Part III
The Main Proof

12 The Hahn-Banach Theorem

theory Hahn-Banach
imports Hahn-Banach-Lemmas
begin

We present the proof of two different versions of the Hahn-Banach Theorem, closely following [1, §36].

12.1 The Hahn-Banach Theorem for vector spaces

Hahn-Banach Theorem. Let \(F \) be a subspace of a real vector space \(E \), let \(p \) be a semi-norm on \(E \), and \(f \) be a linear form defined on \(F \) such that \(f \) is bounded by \(p \), i.e. \(\forall x \in F. \ f x \leq p x \). Then \(f \) can be extended to a linear form \(h \) on \(E \) such that \(h \) is norm-preserving, i.e. \(h \) is also bounded by \(p \).

Proof Sketch.
1. Define \(M \) as the set of norm-preserving extensions of \(f \) to subspaces of \(E \). The linear forms in \(M \) are ordered by domain extension.
2. We show that every non-empty chain in \(M \) has an upper bound in \(M \).
3. With Zorn's Lemma we conclude that there is a maximal function \(g \) in \(M \).
4. The domain \(H \) of \(g \) is the whole space \(E \), as shown by classical contradiction:
 - Assuming \(g \) is not defined on whole \(E \), it can still be extended in a norm-preserving way to a super-space \(H' \) of \(H \).
 - Thus \(g \) can not be maximal. Contradiction!

theorem Hahn-Banach:
assumes E: vectorspace E and subspace F E and seminorm E p and linearform F f
assumes fp: \(\forall x \in F. \ f x \leq p x \)
shows \(\exists h. \ linearform E h \land (\forall x \in F. \ h x = f x) \land (\forall x \in E. \ h x \leq p x) \)
| ---
| | ---
| | Let \(E \) be a vector space, \(F \) a subspace of \(E \), \(p \) a seminorm on \(E \),
| | and \(f \) a linear form on \(F \) such that \(f \) is bounded by \(p \),
| | then \(f \) can be extended to a linear form \(h \) on \(E \) in a norm-preserving way.

⟨proof⟩

12.2 Alternative formulation

The following alternative formulation of the Hahn-Banach Theorem uses the fact that for a real linear form \(f \) and a seminorm \(p \) the following inequality are equivalent:\(^1\)

\(^1\)This was shown in lemma abs-inq-iff (see page 22).
∀ x ∈ H. |h x| ≤ p x and ∀ x ∈ H. h x ≤ p x

theorem abs-Hahn-Banach:
assumes E: vectorspace E and FE: subspace F E
and lf: linearform F f and sn: seminorm E p
assumes fp: ∀ x ∈ F. |f x| ≤ p x
shows ∃ g. linearform E g ∧ (∀ x ∈ F. g x = f x)
∧ (∀ x ∈ E. |g x| ≤ p x)
(proof)

12.3 The Hahn-Banach Theorem for normed spaces

Every continuous linear form f on a subspace F of a norm space E, can be extended to a continuous linear form g on E such that ∥f∥ = ∥g∥.

theorem norm-Hahn-Banach:
fixes V and norm (∥-∥)
fixes B defines \(\bigvee V \ f \equiv \{0\} \cup \{|f x| / \|x\| | x \neq 0 \land x \in V\}\)
defines fn-norm (∥-∥-∥-∥) (0, 1000) 999
assumes E-norm: normed-vectorspace E norm and FE: subspace F E
and linearform: linearform F f and continuous F f norm
shows ∃ g. linearform E g ∧ continuous E g norm
∧ (∀ x ∈ F. g x = f x)
∧ ∥g∥-E = ∥f∥-F
(proof)

end

References