Theory Basis

Up to index of Isabelle/Bali4

theory Basis = PreBasis
files [Basis.ML]:
(*  Title:      isabelle/Bali/Basis.thy
    ID:         $Id: Basis.thy,v 1.28 2000/07/14 14:48:59 oheimb Exp $
    Author:     David von Oheimb
    Copyright   1997 Technische Universitaet Muenchen

Definitions extending HOL as logical basis of Bali
*)

Basis = PreBasis +

constdefs
          the_Inl  :: "'a + 'b \<Rightarrow> 'a"
         "the_Inl x \<equiv> \<epsilon>a. x = Inl a"
          the_Inr  :: "'a + 'b \<Rightarrow> 'b"
         "the_Inr x \<equiv> \<epsilon>b. x = Inr b"

datatype ('a, 'b, 'c) sum3 = In1 'a | In2 'b | In3 'c
constdefs
          the_In1  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'a"
         "the_In1 x \<equiv> \<epsilon>a. x = In1 a"
          the_In2  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'b"
         "the_In2 x \<equiv> \<epsilon>b. x = In2 b"
          the_In3  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'c"
         "the_In3 x \<equiv> \<epsilon>c. x = In3 c"

syntax
         In1l   :: "'al \<Rightarrow> ('al + 'ar, 'b, 'c) sum3"
         In1r   :: "'ar \<Rightarrow> ('al + 'ar, 'b, 'c) sum3"
translations
        "In1l e" == "In1 (Inl e)"
        "In1r c" == "In1 (Inr c)"

translations
  "option"<= (type) "Option.option"
  "list"  <= (type) "List.list"
  "sum3"  <= (type) "Basis.sum3"

syntax
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
translations
 "fun_sum" == "sum_case"


syntax
  "@Oall" :: [pttrn, 'a option, bool] => bool   ("(3! _:_:/ _)" [0,0,10] 10)
  "@Oex"  :: [pttrn, 'a option, bool] => bool   ("(3? _:_:/ _)" [0,0,10] 10)

syntax (symbols)
  "@Oall" :: [pttrn, 'a option, bool] => bool   ("(3\<forall>_\<in>_:/ _)"  [0,0,10] 10)
  "@Oex"  :: [pttrn, 'a option, bool] => bool   ("(3\<exists>_\<in>_:/ _)"  [0,0,10] 10)

translations
  "! x:A: P"    == "! x:o2s A. P"
  "? x:A: P"    == "? x:o2s A. P"

constdefs
  unique   :: "('a × 'b) list \<Rightarrow> bool"
 "unique \<equiv> nodups \<circ> map fst"

consts
  lsplit         :: "[['a, 'a list] => 'b, 'a list] => 'b"
defs
  lsplit_def     "lsplit == %f l. f (hd l) (tl l)"
(*  list patterns -- extends pre-defined type "pttrn" used in abstractions *)
syntax
  "_lpttrn"    :: [pttrn,pttrn] => pttrn     ("_#/_" [901,900] 900)
translations
  "%y#x#xs. b"  == "lsplit (%y x#xs. b)"
  "%x#xs  . b"  == "lsplit (%x xs  . b)"

syntax

  "@dummy_pat"   :: pttrn    ("'_")

end

ML

fun dummy_pat_tr [] = Free ("_",dummyT)
  | dummy_pat_tr ts = raise TERM ("dummy_pat_tr", ts);

val parse_translation = ("@dummy_pat", dummy_pat_tr)::parse_translation;

theorem diff_single_insert:

  [| A - {x} <= B; x : A |] ==> A <= insert x B

theorem subset_image_iff:

  (B <= f `` A) = (EX A'. A' <= A & B = f `` A')

theorem eta_contract_eq:

  f = f

theorem eta_contract_rl:

  x == x

theorem if_def2:

  (if Q then x else y) = ((Q --> x) & (¬ Q --> y))

theorem All_Ex_refl_eq2:

  (ALL x. (EX b. x = f b & Q b) --> P x) = (ALL b. Q b --> P (f b))

theorem ex_ex_miniscope1:

  (EX w v. P w v & Q v) = (EX v. (EX w. P w v) & Q v)

theorem ex_miniscope2:

  (EX v. P v & Q & R v) = (Q & (EX v. P v & R v))

theorem ex_reorder31:

  (EX z x y. P x y z) = (EX x y z. P x y z)

theorem Collect_split_eq:

  {p. P (split f p)} = {(a, b). P (f a b)}

theorem subset_insertD:

  A <= insert x B ==> A <= B & x ~: A | (EX B'. A = insert x B' & B' <= B)

theorem surjective_pairing5:

  p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))),
       snd (snd (snd (snd p))))

theorem fst_splitE:

  [| fst s' = x'; !!x s. [| s' = (x, s); x = x' |] ==> Q |] ==> Q

theorem All_Ex_refl_eq1:

  (ALL x. (EX b. x = f b) --> P x) = (ALL b. P (f b))

theorem range_bool_domain:

  range f = {f True, f False}

theorem finite_SetCompr2:

  [| finite (Collect P); ALL y. P y --> finite (range (f y)) |]
  ==> finite {f y x |x y. P y}

sum

theorem the_Inl_Inl:

  the_Inl (Inl e) = e

theorem the_Inr_Inr:

  the_Inr (Inr e) = e

theorem the_In1_In1:

  the_In1 (In1 e) = e

theorem the_In2_In2:

  the_In2 (In2 e) = e

theorem the_In3_In3:

  the_In3 (In3 e) = e

unique

theorem fst_in_set_lemma:

  (x, y) : set l ==> x : fst `` set l

theorem uniqueD:

  [| unique l; (x, y) : set l; (x', y') : set l; x = x' |] ==> y = y'

theorem unique_Nil:

  unique []

theorem unique_Cons:

  unique ((x, y) # l) = (unique l & (ALL y. (x, y) ~: set l))

theorem unique_ConsI:

  [| unique l; ALL y. (x, y) ~: set l |] ==> unique ((x, y) # l)

theorem unique_single:

  unique [p]

theorem unique_ConsD:

  unique (x # xs) ==> unique xs

theorem unique_append:

  [| unique l'; unique l; ALL (x, y):set l. ALL (x', y'):set l'. x' ~= x |]
  ==> unique (l @ l')

theorem unique_map_inj:

  [| unique l; inj f |] ==> unique (map (%(k, x). (f k, g k x)) l)

theorem map_of_SomeI:

  [| unique l; (k, x) : set l |] ==> map_of l k = Some x

lsplit

theorem lsplit:

  lsplit c (x # xs) = c x xs

theorem lsplit2:

  lsplit P (x # xs) y z = P x xs y z

theorem lsplit_beta:

  lsplit c l = c (hd l) (tl l)