author | nipkow |
Wed, 08 Feb 1995 11:34:11 +0100 | |
changeset 210 | 1a3d3b5b5d15 |
parent 179 | 978854c19b5e |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/set |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
For set.thy. Set theory for higher-order logic. A set is simply a predicate. |
|
7 |
*) |
|
8 |
||
9 |
open Set; |
|
10 |
||
11 |
val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}"; |
|
12 |
by (rtac (mem_Collect_eq RS ssubst) 1); |
|
13 |
by (rtac prem 1); |
|
171 | 14 |
qed "CollectI"; |
0 | 15 |
|
16 |
val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)"; |
|
17 |
by (resolve_tac (prems RL [mem_Collect_eq RS subst]) 1); |
|
171 | 18 |
qed "CollectD"; |
0 | 19 |
|
20 |
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B"; |
|
21 |
by (rtac (prem RS ext RS arg_cong RS box_equals) 1); |
|
22 |
by (rtac Collect_mem_eq 1); |
|
23 |
by (rtac Collect_mem_eq 1); |
|
171 | 24 |
qed "set_ext"; |
0 | 25 |
|
26 |
val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}"; |
|
27 |
by (rtac (prem RS ext RS arg_cong) 1); |
|
171 | 28 |
qed "Collect_cong"; |
0 | 29 |
|
30 |
val CollectE = make_elim CollectD; |
|
31 |
||
32 |
(*** Bounded quantifiers ***) |
|
33 |
||
34 |
val prems = goalw Set.thy [Ball_def] |
|
35 |
"[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)"; |
|
36 |
by (REPEAT (ares_tac (prems @ [allI,impI]) 1)); |
|
171 | 37 |
qed "ballI"; |
0 | 38 |
|
39 |
val [major,minor] = goalw Set.thy [Ball_def] |
|
40 |
"[| ! x:A. P(x); x:A |] ==> P(x)"; |
|
41 |
by (rtac (minor RS (major RS spec RS mp)) 1); |
|
171 | 42 |
qed "bspec"; |
0 | 43 |
|
44 |
val major::prems = goalw Set.thy [Ball_def] |
|
5 | 45 |
"[| ! x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q"; |
0 | 46 |
by (rtac (major RS spec RS impCE) 1); |
47 |
by (REPEAT (eresolve_tac prems 1)); |
|
171 | 48 |
qed "ballE"; |
0 | 49 |
|
50 |
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*) |
|
51 |
fun ball_tac i = etac ballE i THEN contr_tac (i+1); |
|
52 |
||
53 |
val prems = goalw Set.thy [Bex_def] |
|
54 |
"[| P(x); x:A |] ==> ? x:A. P(x)"; |
|
55 |
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1)); |
|
171 | 56 |
qed "bexI"; |
0 | 57 |
|
179 | 58 |
qed_goal "bexCI" Set.thy |
0 | 59 |
"[| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A.P(x)" |
60 |
(fn prems=> |
|
61 |
[ (rtac classical 1), |
|
62 |
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]); |
|
63 |
||
64 |
val major::prems = goalw Set.thy [Bex_def] |
|
65 |
"[| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q"; |
|
66 |
by (rtac (major RS exE) 1); |
|
67 |
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)); |
|
171 | 68 |
qed "bexE"; |
0 | 69 |
|
70 |
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*) |
|
71 |
val prems = goal Set.thy |
|
72 |
"(! x:A. True) = True"; |
|
73 |
by (REPEAT (ares_tac [TrueI,ballI,iffI] 1)); |
|
171 | 74 |
qed "ball_rew"; |
0 | 75 |
|
76 |
(** Congruence rules **) |
|
77 |
||
78 |
val prems = goal Set.thy |
|
79 |
"[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \ |
|
80 |
\ (! x:A. P(x)) = (! x:B. Q(x))"; |
|
81 |
by (resolve_tac (prems RL [ssubst]) 1); |
|
82 |
by (REPEAT (ares_tac [ballI,iffI] 1 |
|
83 |
ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1)); |
|
171 | 84 |
qed "ball_cong"; |
0 | 85 |
|
86 |
val prems = goal Set.thy |
|
87 |
"[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \ |
|
88 |
\ (? x:A. P(x)) = (? x:B. Q(x))"; |
|
89 |
by (resolve_tac (prems RL [ssubst]) 1); |
|
90 |
by (REPEAT (etac bexE 1 |
|
91 |
ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1)); |
|
171 | 92 |
qed "bex_cong"; |
0 | 93 |
|
94 |
(*** Subsets ***) |
|
95 |
||
96 |
val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B"; |
|
97 |
by (REPEAT (ares_tac (prems @ [ballI]) 1)); |
|
171 | 98 |
qed "subsetI"; |
0 | 99 |
|
100 |
(*Rule in Modus Ponens style*) |
|
101 |
val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B"; |
|
102 |
by (rtac (major RS bspec) 1); |
|
103 |
by (resolve_tac prems 1); |
|
171 | 104 |
qed "subsetD"; |
0 | 105 |
|
106 |
(*The same, with reversed premises for use with etac -- cf rev_mp*) |
|
179 | 107 |
qed_goal "rev_subsetD" Set.thy "[| c:A; A <= B |] ==> c:B" |
0 | 108 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]); |
109 |
||
110 |
(*Classical elimination rule*) |
|
111 |
val major::prems = goalw Set.thy [subset_def] |
|
5 | 112 |
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P"; |
0 | 113 |
by (rtac (major RS ballE) 1); |
114 |
by (REPEAT (eresolve_tac prems 1)); |
|
171 | 115 |
qed "subsetCE"; |
0 | 116 |
|
117 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
|
118 |
fun set_mp_tac i = etac subsetCE i THEN mp_tac i; |
|
119 |
||
179 | 120 |
qed_goal "subset_refl" Set.thy "A <= (A::'a set)" |
0 | 121 |
(fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]); |
122 |
||
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
5
diff
changeset
|
123 |
val prems = goal Set.thy "[| A<=B; B<=C |] ==> A<=(C::'a set)"; |
0 | 124 |
by (cut_facts_tac prems 1); |
125 |
by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1)); |
|
171 | 126 |
qed "subset_trans"; |
0 | 127 |
|
128 |
||
129 |
(*** Equality ***) |
|
130 |
||
131 |
(*Anti-symmetry of the subset relation*) |
|
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
5
diff
changeset
|
132 |
val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = (B::'a set)"; |
0 | 133 |
by (rtac (iffI RS set_ext) 1); |
134 |
by (REPEAT (ares_tac (prems RL [subsetD]) 1)); |
|
171 | 135 |
qed "subset_antisym"; |
0 | 136 |
val equalityI = subset_antisym; |
137 |
||
138 |
(* Equality rules from ZF set theory -- are they appropriate here? *) |
|
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
5
diff
changeset
|
139 |
val prems = goal Set.thy "A = B ==> A<=(B::'a set)"; |
0 | 140 |
by (resolve_tac (prems RL [subst]) 1); |
141 |
by (rtac subset_refl 1); |
|
171 | 142 |
qed "equalityD1"; |
0 | 143 |
|
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
5
diff
changeset
|
144 |
val prems = goal Set.thy "A = B ==> B<=(A::'a set)"; |
0 | 145 |
by (resolve_tac (prems RL [subst]) 1); |
146 |
by (rtac subset_refl 1); |
|
171 | 147 |
qed "equalityD2"; |
0 | 148 |
|
149 |
val prems = goal Set.thy |
|
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
5
diff
changeset
|
150 |
"[| A = B; [| A<=B; B<=(A::'a set) |] ==> P |] ==> P"; |
0 | 151 |
by (resolve_tac prems 1); |
152 |
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1)); |
|
171 | 153 |
qed "equalityE"; |
0 | 154 |
|
155 |
val major::prems = goal Set.thy |
|
5 | 156 |
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P"; |
0 | 157 |
by (rtac (major RS equalityE) 1); |
158 |
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)); |
|
171 | 159 |
qed "equalityCE"; |
0 | 160 |
|
161 |
(*Lemma for creating induction formulae -- for "pattern matching" on p |
|
162 |
To make the induction hypotheses usable, apply "spec" or "bspec" to |
|
163 |
put universal quantifiers over the free variables in p. *) |
|
164 |
val prems = goal Set.thy |
|
165 |
"[| p:A; !!z. z:A ==> p=z --> R |] ==> R"; |
|
166 |
by (rtac mp 1); |
|
167 |
by (REPEAT (resolve_tac (refl::prems) 1)); |
|
171 | 168 |
qed "setup_induction"; |
0 | 169 |
|
170 |
||
171 |
(*** Set complement -- Compl ***) |
|
172 |
||
173 |
val prems = goalw Set.thy [Compl_def] |
|
174 |
"[| c:A ==> False |] ==> c : Compl(A)"; |
|
175 |
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1)); |
|
171 | 176 |
qed "ComplI"; |
0 | 177 |
|
178 |
(*This form, with negated conclusion, works well with the Classical prover. |
|
179 |
Negated assumptions behave like formulae on the right side of the notional |
|
180 |
turnstile...*) |
|
181 |
val major::prems = goalw Set.thy [Compl_def] |
|
5 | 182 |
"[| c : Compl(A) |] ==> c~:A"; |
0 | 183 |
by (rtac (major RS CollectD) 1); |
171 | 184 |
qed "ComplD"; |
0 | 185 |
|
186 |
val ComplE = make_elim ComplD; |
|
187 |
||
188 |
||
189 |
(*** Binary union -- Un ***) |
|
190 |
||
191 |
val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B"; |
|
192 |
by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1)); |
|
171 | 193 |
qed "UnI1"; |
0 | 194 |
|
195 |
val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B"; |
|
196 |
by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1)); |
|
171 | 197 |
qed "UnI2"; |
0 | 198 |
|
199 |
(*Classical introduction rule: no commitment to A vs B*) |
|
179 | 200 |
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B" |
0 | 201 |
(fn prems=> |
202 |
[ (rtac classical 1), |
|
203 |
(REPEAT (ares_tac (prems@[UnI1,notI]) 1)), |
|
204 |
(REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]); |
|
205 |
||
206 |
val major::prems = goalw Set.thy [Un_def] |
|
207 |
"[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P"; |
|
208 |
by (rtac (major RS CollectD RS disjE) 1); |
|
209 |
by (REPEAT (eresolve_tac prems 1)); |
|
171 | 210 |
qed "UnE"; |
0 | 211 |
|
212 |
||
213 |
(*** Binary intersection -- Int ***) |
|
214 |
||
215 |
val prems = goalw Set.thy [Int_def] |
|
216 |
"[| c:A; c:B |] ==> c : A Int B"; |
|
217 |
by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)); |
|
171 | 218 |
qed "IntI"; |
0 | 219 |
|
220 |
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A"; |
|
221 |
by (rtac (major RS CollectD RS conjunct1) 1); |
|
171 | 222 |
qed "IntD1"; |
0 | 223 |
|
224 |
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B"; |
|
225 |
by (rtac (major RS CollectD RS conjunct2) 1); |
|
171 | 226 |
qed "IntD2"; |
0 | 227 |
|
228 |
val [major,minor] = goal Set.thy |
|
229 |
"[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P"; |
|
230 |
by (rtac minor 1); |
|
231 |
by (rtac (major RS IntD1) 1); |
|
232 |
by (rtac (major RS IntD2) 1); |
|
171 | 233 |
qed "IntE"; |
0 | 234 |
|
235 |
||
236 |
(*** Set difference ***) |
|
237 |
||
179 | 238 |
qed_goalw "DiffI" Set.thy [set_diff_def] |
5 | 239 |
"[| c : A; c ~: B |] ==> c : A - B" |
0 | 240 |
(fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]); |
241 |
||
179 | 242 |
qed_goalw "DiffD1" Set.thy [set_diff_def] |
0 | 243 |
"c : A - B ==> c : A" |
244 |
(fn [major]=> [ (rtac (major RS CollectD RS conjunct1) 1) ]); |
|
245 |
||
179 | 246 |
qed_goalw "DiffD2" Set.thy [set_diff_def] |
0 | 247 |
"[| c : A - B; c : B |] ==> P" |
248 |
(fn [major,minor]=> |
|
249 |
[rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]); |
|
250 |
||
179 | 251 |
qed_goal "DiffE" Set.thy |
5 | 252 |
"[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P" |
0 | 253 |
(fn prems=> |
254 |
[ (resolve_tac prems 1), |
|
255 |
(REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]); |
|
256 |
||
179 | 257 |
qed_goal "Diff_iff" Set.thy "(c : A-B) = (c:A & c~:B)" |
0 | 258 |
(fn _ => [ (fast_tac (HOL_cs addSIs [DiffI] addSEs [DiffE]) 1) ]); |
259 |
||
260 |
||
261 |
(*** The empty set -- {} ***) |
|
262 |
||
179 | 263 |
qed_goalw "emptyE" Set.thy [empty_def] "a:{} ==> P" |
0 | 264 |
(fn [prem] => [rtac (prem RS CollectD RS FalseE) 1]); |
265 |
||
179 | 266 |
qed_goal "empty_subsetI" Set.thy "{} <= A" |
0 | 267 |
(fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]); |
268 |
||
179 | 269 |
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}" |
0 | 270 |
(fn prems=> |
271 |
[ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 |
|
272 |
ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]); |
|
273 |
||
179 | 274 |
qed_goal "equals0D" Set.thy "[| A={}; a:A |] ==> P" |
0 | 275 |
(fn [major,minor]=> |
276 |
[ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]); |
|
277 |
||
278 |
||
279 |
(*** Augmenting a set -- insert ***) |
|
280 |
||
179 | 281 |
qed_goalw "insertI1" Set.thy [insert_def] "a : insert(a,B)" |
0 | 282 |
(fn _ => [rtac (CollectI RS UnI1) 1, rtac refl 1]); |
283 |
||
179 | 284 |
qed_goalw "insertI2" Set.thy [insert_def] "a : B ==> a : insert(b,B)" |
0 | 285 |
(fn [prem]=> [ (rtac (prem RS UnI2) 1) ]); |
286 |
||
179 | 287 |
qed_goalw "insertE" Set.thy [insert_def] |
0 | 288 |
"[| a : insert(b,A); a=b ==> P; a:A ==> P |] ==> P" |
289 |
(fn major::prems=> |
|
290 |
[ (rtac (major RS UnE) 1), |
|
291 |
(REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]); |
|
292 |
||
179 | 293 |
qed_goal "insert_iff" Set.thy "a : insert(b,A) = (a=b | a:A)" |
0 | 294 |
(fn _ => [fast_tac (HOL_cs addIs [insertI1,insertI2] addSEs [insertE]) 1]); |
295 |
||
296 |
(*Classical introduction rule*) |
|
179 | 297 |
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert(b,B)" |
0 | 298 |
(fn [prem]=> |
299 |
[ (rtac (disjCI RS (insert_iff RS iffD2)) 1), |
|
300 |
(etac prem 1) ]); |
|
301 |
||
302 |
(*** Singletons, using insert ***) |
|
303 |
||
179 | 304 |
qed_goal "singletonI" Set.thy "a : {a}" |
0 | 305 |
(fn _=> [ (rtac insertI1 1) ]); |
306 |
||
179 | 307 |
qed_goal "singletonE" Set.thy "[| a: {b}; a=b ==> P |] ==> P" |
0 | 308 |
(fn major::prems=> |
309 |
[ (rtac (major RS insertE) 1), |
|
310 |
(REPEAT (eresolve_tac (prems @ [emptyE]) 1)) ]); |
|
311 |
||
312 |
goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a"; |
|
313 |
by(fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1); |
|
171 | 314 |
qed "singletonD"; |
0 | 315 |
|
316 |
val singletonE = make_elim singletonD; |
|
317 |
||
318 |
val [major] = goal Set.thy "{a}={b} ==> a=b"; |
|
319 |
by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1); |
|
320 |
by (rtac singletonI 1); |
|
171 | 321 |
qed "singleton_inject"; |
0 | 322 |
|
323 |
(*** Unions of families -- UNION x:A. B(x) is Union(B``A) ***) |
|
324 |
||
325 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
|
326 |
val prems = goalw Set.thy [UNION_def] |
|
327 |
"[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))"; |
|
328 |
by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1)); |
|
171 | 329 |
qed "UN_I"; |
0 | 330 |
|
331 |
val major::prems = goalw Set.thy [UNION_def] |
|
332 |
"[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R"; |
|
333 |
by (rtac (major RS CollectD RS bexE) 1); |
|
334 |
by (REPEAT (ares_tac prems 1)); |
|
171 | 335 |
qed "UN_E"; |
0 | 336 |
|
337 |
val prems = goal Set.thy |
|
338 |
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ |
|
339 |
\ (UN x:A. C(x)) = (UN x:B. D(x))"; |
|
340 |
by (REPEAT (etac UN_E 1 |
|
341 |
ORELSE ares_tac ([UN_I,equalityI,subsetI] @ |
|
342 |
(prems RL [equalityD1,equalityD2] RL [subsetD])) 1)); |
|
171 | 343 |
qed "UN_cong"; |
0 | 344 |
|
345 |
||
346 |
(*** Intersections of families -- INTER x:A. B(x) is Inter(B``A) *) |
|
347 |
||
348 |
val prems = goalw Set.thy [INTER_def] |
|
349 |
"(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"; |
|
350 |
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1)); |
|
171 | 351 |
qed "INT_I"; |
0 | 352 |
|
353 |
val major::prems = goalw Set.thy [INTER_def] |
|
354 |
"[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)"; |
|
355 |
by (rtac (major RS CollectD RS bspec) 1); |
|
356 |
by (resolve_tac prems 1); |
|
171 | 357 |
qed "INT_D"; |
0 | 358 |
|
359 |
(*"Classical" elimination -- by the Excluded Middle on a:A *) |
|
360 |
val major::prems = goalw Set.thy [INTER_def] |
|
5 | 361 |
"[| b : (INT x:A. B(x)); b: B(a) ==> R; a~:A ==> R |] ==> R"; |
0 | 362 |
by (rtac (major RS CollectD RS ballE) 1); |
363 |
by (REPEAT (eresolve_tac prems 1)); |
|
171 | 364 |
qed "INT_E"; |
0 | 365 |
|
366 |
val prems = goal Set.thy |
|
367 |
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ |
|
368 |
\ (INT x:A. C(x)) = (INT x:B. D(x))"; |
|
369 |
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI])); |
|
370 |
by (REPEAT (dtac INT_D 1 |
|
371 |
ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1)); |
|
171 | 372 |
qed "INT_cong"; |
0 | 373 |
|
374 |
||
375 |
(*** Unions over a type; UNION1(B) = Union(range(B)) ***) |
|
376 |
||
377 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
|
378 |
val prems = goalw Set.thy [UNION1_def] |
|
379 |
"b: B(x) ==> b: (UN x. B(x))"; |
|
380 |
by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1)); |
|
171 | 381 |
qed "UN1_I"; |
0 | 382 |
|
383 |
val major::prems = goalw Set.thy [UNION1_def] |
|
384 |
"[| b : (UN x. B(x)); !!x. b: B(x) ==> R |] ==> R"; |
|
385 |
by (rtac (major RS UN_E) 1); |
|
386 |
by (REPEAT (ares_tac prems 1)); |
|
171 | 387 |
qed "UN1_E"; |
0 | 388 |
|
389 |
||
390 |
(*** Intersections over a type; INTER1(B) = Inter(range(B)) *) |
|
391 |
||
392 |
val prems = goalw Set.thy [INTER1_def] |
|
393 |
"(!!x. b: B(x)) ==> b : (INT x. B(x))"; |
|
394 |
by (REPEAT (ares_tac (INT_I::prems) 1)); |
|
171 | 395 |
qed "INT1_I"; |
0 | 396 |
|
397 |
val [major] = goalw Set.thy [INTER1_def] |
|
398 |
"b : (INT x. B(x)) ==> b: B(a)"; |
|
399 |
by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1); |
|
171 | 400 |
qed "INT1_D"; |
0 | 401 |
|
402 |
(*** Unions ***) |
|
403 |
||
404 |
(*The order of the premises presupposes that C is rigid; A may be flexible*) |
|
405 |
val prems = goalw Set.thy [Union_def] |
|
406 |
"[| X:C; A:X |] ==> A : Union(C)"; |
|
407 |
by (REPEAT (resolve_tac (prems @ [UN_I]) 1)); |
|
171 | 408 |
qed "UnionI"; |
0 | 409 |
|
410 |
val major::prems = goalw Set.thy [Union_def] |
|
411 |
"[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R"; |
|
412 |
by (rtac (major RS UN_E) 1); |
|
413 |
by (REPEAT (ares_tac prems 1)); |
|
171 | 414 |
qed "UnionE"; |
0 | 415 |
|
416 |
(*** Inter ***) |
|
417 |
||
418 |
val prems = goalw Set.thy [Inter_def] |
|
419 |
"[| !!X. X:C ==> A:X |] ==> A : Inter(C)"; |
|
420 |
by (REPEAT (ares_tac ([INT_I] @ prems) 1)); |
|
171 | 421 |
qed "InterI"; |
0 | 422 |
|
423 |
(*A "destruct" rule -- every X in C contains A as an element, but |
|
424 |
A:X can hold when X:C does not! This rule is analogous to "spec". *) |
|
425 |
val major::prems = goalw Set.thy [Inter_def] |
|
426 |
"[| A : Inter(C); X:C |] ==> A:X"; |
|
427 |
by (rtac (major RS INT_D) 1); |
|
428 |
by (resolve_tac prems 1); |
|
171 | 429 |
qed "InterD"; |
0 | 430 |
|
431 |
(*"Classical" elimination rule -- does not require proving X:C *) |
|
432 |
val major::prems = goalw Set.thy [Inter_def] |
|
5 | 433 |
"[| A : Inter(C); A:X ==> R; X~:C ==> R |] ==> R"; |
0 | 434 |
by (rtac (major RS INT_E) 1); |
435 |
by (REPEAT (eresolve_tac prems 1)); |
|
171 | 436 |
qed "InterE"; |
128 | 437 |
|
438 |
(*** Powerset ***) |
|
439 |
||
179 | 440 |
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)" |
128 | 441 |
(fn _ => [ (etac CollectI 1) ]); |
442 |
||
179 | 443 |
qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B) ==> A<=B" |
128 | 444 |
(fn _=> [ (etac CollectD 1) ]); |
445 |
||
446 |
val Pow_bottom = empty_subsetI RS PowI; (* {}: Pow(B) *) |
|
447 |
val Pow_top = subset_refl RS PowI; (* A : Pow(A) *) |