0
|
1 |
(* Title: HOL/mono
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
|
|
6 |
Monotonicity of various operations
|
|
7 |
*)
|
|
8 |
|
|
9 |
val [prem] = goal Set.thy
|
|
10 |
"[| !!x. P(x) ==> Q(x) |] ==> Collect(P) <= Collect(Q)";
|
|
11 |
by (fast_tac (set_cs addIs [prem]) 1);
|
|
12 |
val Collect_mono = result();
|
|
13 |
|
|
14 |
goal Set.thy "!!A B. A<=B ==> f``A <= f``B";
|
|
15 |
by (fast_tac set_cs 1);
|
|
16 |
val image_mono = result();
|
|
17 |
|
|
18 |
goal Set.thy "!!A B. A<=B ==> Union(A) <= Union(B)";
|
|
19 |
by (fast_tac set_cs 1);
|
|
20 |
val Union_mono = result();
|
|
21 |
|
|
22 |
goal Set.thy "!!A B. B<=A ==> Inter(A) <= Inter(B)";
|
|
23 |
by (fast_tac set_cs 1);
|
|
24 |
val Inter_anti_mono = result();
|
|
25 |
|
|
26 |
val prems = goal Set.thy
|
|
27 |
"[| A<=B; !!x. x:A ==> f(x)<=g(x) |] ==> \
|
|
28 |
\ (UN x:A. f(x)) <= (UN x:B. g(x))";
|
|
29 |
by (fast_tac (set_cs addIs (prems RL [subsetD])) 1);
|
|
30 |
val UN_mono = result();
|
|
31 |
|
|
32 |
val [prem] = goal Set.thy
|
|
33 |
"[| !!x. f(x)<=g(x) |] ==> (UN x. f(x)) <= (UN x. g(x))";
|
|
34 |
by (fast_tac (set_cs addIs [prem RS subsetD]) 1);
|
|
35 |
val UN1_mono = result();
|
|
36 |
|
|
37 |
val prems = goal Set.thy
|
|
38 |
"[| B<=A; !!x. x:A ==> f(x)<=g(x) |] ==> \
|
|
39 |
\ (INT x:A. f(x)) <= (INT x:A. g(x))";
|
|
40 |
by (fast_tac (set_cs addIs (prems RL [subsetD])) 1);
|
|
41 |
val INT_anti_mono = result();
|
|
42 |
|
|
43 |
(*The inclusion is POSITIVE! *)
|
|
44 |
val [prem] = goal Set.thy
|
|
45 |
"[| !!x. f(x)<=g(x) |] ==> (INT x. f(x)) <= (INT x. g(x))";
|
|
46 |
by (fast_tac (set_cs addIs [prem RS subsetD]) 1);
|
|
47 |
val INT1_mono = result();
|
|
48 |
|
|
49 |
goal Set.thy "!!A B. [| A<=C; B<=D |] ==> A Un B <= C Un D";
|
|
50 |
by (fast_tac set_cs 1);
|
|
51 |
val Un_mono = result();
|
|
52 |
|
|
53 |
goal Set.thy "!!A B. [| A<=C; B<=D |] ==> A Int B <= C Int D";
|
|
54 |
by (fast_tac set_cs 1);
|
|
55 |
val Int_mono = result();
|
|
56 |
|
|
57 |
goal Set.thy "!!A::'a set. [| A<=C; D<=B |] ==> A-B <= C-D";
|
|
58 |
by (fast_tac set_cs 1);
|
|
59 |
val Diff_mono = result();
|
|
60 |
|
|
61 |
goal Set.thy "!!A B. A<=B ==> Compl(B) <= Compl(A)";
|
|
62 |
by (fast_tac set_cs 1);
|
|
63 |
val Compl_anti_mono = result();
|
|
64 |
|
|
65 |
val prems = goal Prod.thy
|
|
66 |
"[| A<=C; !!x. x:A ==> B<=D |] ==> Sigma(A,%x.B) <= Sigma(C,%x.D)";
|
|
67 |
by (cut_facts_tac prems 1);
|
|
68 |
by (fast_tac (set_cs addIs (prems RL [subsetD])
|
|
69 |
addSIs [SigmaI]
|
|
70 |
addSEs [SigmaE]) 1);
|
|
71 |
val Sigma_mono = result();
|
|
72 |
|