0
|
1 |
(* Title: HOL/univ
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
|
|
6 |
For univ.thy
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Univ;
|
|
10 |
|
|
11 |
(** LEAST -- the least number operator **)
|
|
12 |
|
|
13 |
|
|
14 |
val [prem1,prem2] = goalw Univ.thy [Least_def]
|
|
15 |
"[| P(k); !!x. x<k ==> ~P(x) |] ==> (LEAST x.P(x)) = k";
|
|
16 |
by (rtac select_equality 1);
|
|
17 |
by (fast_tac (HOL_cs addSIs [prem1,prem2]) 1);
|
|
18 |
by (cut_facts_tac [less_linear] 1);
|
|
19 |
by (fast_tac (HOL_cs addSIs [prem1] addSDs [prem2]) 1);
|
|
20 |
val Least_equality = result();
|
|
21 |
|
|
22 |
val [prem] = goal Univ.thy "P(k) ==> P(LEAST x.P(x))";
|
|
23 |
by (rtac (prem RS rev_mp) 1);
|
|
24 |
by (res_inst_tac [("n","k")] less_induct 1);
|
|
25 |
by (rtac impI 1);
|
|
26 |
by (rtac classical 1);
|
|
27 |
by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1);
|
|
28 |
by (assume_tac 1);
|
|
29 |
by (assume_tac 2);
|
|
30 |
by (fast_tac HOL_cs 1);
|
|
31 |
val LeastI = result();
|
|
32 |
|
|
33 |
(*Proof is almost identical to the one above!*)
|
|
34 |
val [prem] = goal Univ.thy "P(k) ==> (LEAST x.P(x)) <= k";
|
|
35 |
by (rtac (prem RS rev_mp) 1);
|
|
36 |
by (res_inst_tac [("n","k")] less_induct 1);
|
|
37 |
by (rtac impI 1);
|
|
38 |
by (rtac classical 1);
|
|
39 |
by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1);
|
|
40 |
by (assume_tac 1);
|
|
41 |
by (rtac le_refl 2);
|
|
42 |
by (fast_tac (HOL_cs addIs [less_imp_le,le_trans]) 1);
|
|
43 |
val Least_le = result();
|
|
44 |
|
|
45 |
val [prem] = goal Univ.thy "k < (LEAST x.P(x)) ==> ~P(k)";
|
|
46 |
by (rtac notI 1);
|
|
47 |
by (etac (rewrite_rule [le_def] Least_le RS notE) 1);
|
|
48 |
by (rtac prem 1);
|
|
49 |
val not_less_Least = result();
|
|
50 |
|
|
51 |
|
|
52 |
(** apfst -- can be used in similar type definitions **)
|
|
53 |
|
|
54 |
goalw Univ.thy [apfst_def] "apfst(f,<a,b>) = <f(a),b>";
|
|
55 |
by (rtac split 1);
|
|
56 |
val apfst = result();
|
|
57 |
|
|
58 |
val [major,minor] = goal Univ.thy
|
|
59 |
"[| q = apfst(f,p); !!x y. [| p = <x,y>; q = <f(x),y> |] ==> R \
|
|
60 |
\ |] ==> R";
|
|
61 |
by (rtac PairE 1);
|
|
62 |
by (rtac minor 1);
|
|
63 |
by (assume_tac 1);
|
|
64 |
by (rtac (major RS trans) 1);
|
|
65 |
by (etac ssubst 1);
|
|
66 |
by (rtac apfst 1);
|
|
67 |
val apfstE = result();
|
|
68 |
|
|
69 |
(** Push -- an injection, analogous to Cons on lists **)
|
|
70 |
|
|
71 |
val [major] = goalw Univ.thy [Push_def] "Push(i,f)=Push(j,g) ==> i=j";
|
|
72 |
by (rtac (major RS fun_cong RS box_equals RS Suc_inject) 1);
|
|
73 |
by (rtac nat_case_0 1);
|
|
74 |
by (rtac nat_case_0 1);
|
|
75 |
val Push_inject1 = result();
|
|
76 |
|
|
77 |
val [major] = goalw Univ.thy [Push_def] "Push(i,f)=Push(j,g) ==> f=g";
|
|
78 |
by (rtac (major RS fun_cong RS ext RS box_equals) 1);
|
|
79 |
by (rtac (nat_case_Suc RS ext) 1);
|
|
80 |
by (rtac (nat_case_Suc RS ext) 1);
|
|
81 |
val Push_inject2 = result();
|
|
82 |
|
|
83 |
val [major,minor] = goal Univ.thy
|
|
84 |
"[| Push(i,f)=Push(j,g); [| i=j; f=g |] ==> P \
|
|
85 |
\ |] ==> P";
|
|
86 |
by (rtac ((major RS Push_inject2) RS ((major RS Push_inject1) RS minor)) 1);
|
|
87 |
val Push_inject = result();
|
|
88 |
|
|
89 |
val [major] = goalw Univ.thy [Push_def] "Push(k,f)=(%z.0) ==> P";
|
|
90 |
by (rtac (major RS fun_cong RS box_equals RS Suc_neq_Zero) 1);
|
|
91 |
by (rtac nat_case_0 1);
|
|
92 |
by (rtac refl 1);
|
|
93 |
val Push_neq_K0 = result();
|
|
94 |
|
|
95 |
(*** Isomorphisms ***)
|
|
96 |
|
|
97 |
goal Univ.thy "inj(Rep_Node)";
|
|
98 |
by (rtac inj_inverseI 1); (*cannot combine by RS: multiple unifiers*)
|
|
99 |
by (rtac Rep_Node_inverse 1);
|
|
100 |
val inj_Rep_Node = result();
|
|
101 |
|
|
102 |
goal Univ.thy "inj_onto(Abs_Node,Node)";
|
|
103 |
by (rtac inj_onto_inverseI 1);
|
|
104 |
by (etac Abs_Node_inverse 1);
|
|
105 |
val inj_onto_Abs_Node = result();
|
|
106 |
|
|
107 |
val Abs_Node_inject = inj_onto_Abs_Node RS inj_ontoD;
|
|
108 |
|
|
109 |
|
|
110 |
(*** Introduction rules for Node ***)
|
|
111 |
|
|
112 |
goalw Univ.thy [Node_def] "<%k. 0,a> : Node";
|
|
113 |
by (fast_tac set_cs 1);
|
|
114 |
val Node_K0_I = result();
|
|
115 |
|
|
116 |
goalw Univ.thy [Node_def,Push_def]
|
|
117 |
"!!p. p: Node ==> apfst(Push(i), p) : Node";
|
|
118 |
by (fast_tac (set_cs addSIs [apfst, nat_case_Suc RS trans]) 1);
|
|
119 |
val Node_Push_I = result();
|
|
120 |
|
|
121 |
|
|
122 |
(*** Distinctness of constructors ***)
|
|
123 |
|
|
124 |
(** Scons vs Atom **)
|
|
125 |
|
5
|
126 |
goalw Univ.thy [Atom_def,Scons_def,Push_Node_def] "(M.N) ~= Atom(a)";
|
0
|
127 |
by (rtac notI 1);
|
|
128 |
by (etac (equalityD2 RS subsetD RS UnE) 1);
|
|
129 |
by (rtac singletonI 1);
|
|
130 |
by (REPEAT (eresolve_tac [imageE, Abs_Node_inject RS apfstE,
|
|
131 |
Pair_inject, sym RS Push_neq_K0] 1
|
|
132 |
ORELSE resolve_tac [Node_K0_I, Rep_Node RS Node_Push_I] 1));
|
|
133 |
val Scons_not_Atom = result();
|
|
134 |
val Atom_not_Scons = standard (Scons_not_Atom RS not_sym);
|
|
135 |
|
|
136 |
val Scons_neq_Atom = standard (Scons_not_Atom RS notE);
|
|
137 |
val Atom_neq_Scons = sym RS Scons_neq_Atom;
|
|
138 |
|
|
139 |
(*** Injectiveness ***)
|
|
140 |
|
|
141 |
(** Atomic nodes **)
|
|
142 |
|
|
143 |
goalw Univ.thy [Atom_def] "inj(Atom)";
|
|
144 |
by (rtac injI 1);
|
|
145 |
by (etac (singleton_inject RS Abs_Node_inject RS Pair_inject) 1);
|
|
146 |
by (REPEAT (ares_tac [Node_K0_I] 1));
|
|
147 |
val inj_Atom = result();
|
|
148 |
val Atom_inject = inj_Atom RS injD;
|
|
149 |
|
|
150 |
goalw Univ.thy [Leaf_def] "inj(Leaf)";
|
|
151 |
by (stac o_def 1);
|
|
152 |
by (rtac injI 1);
|
|
153 |
by (etac (Atom_inject RS Inl_inject) 1);
|
|
154 |
val inj_Leaf = result();
|
|
155 |
|
|
156 |
val Leaf_inject = inj_Leaf RS injD;
|
|
157 |
|
|
158 |
goalw Univ.thy [Numb_def] "inj(Numb)";
|
|
159 |
by (stac o_def 1);
|
|
160 |
by (rtac injI 1);
|
|
161 |
by (etac (Atom_inject RS Inr_inject) 1);
|
|
162 |
val inj_Numb = result();
|
|
163 |
|
|
164 |
val Numb_inject = inj_Numb RS injD;
|
|
165 |
|
|
166 |
(** Injectiveness of Push_Node **)
|
|
167 |
|
|
168 |
val [major,minor] = goalw Univ.thy [Push_Node_def]
|
|
169 |
"[| Push_Node(i,m)=Push_Node(j,n); [| i=j; m=n |] ==> P \
|
|
170 |
\ |] ==> P";
|
|
171 |
by (rtac (major RS Abs_Node_inject RS apfstE) 1);
|
|
172 |
by (REPEAT (resolve_tac [Rep_Node RS Node_Push_I] 1));
|
|
173 |
by (etac (sym RS apfstE) 1);
|
|
174 |
by (rtac minor 1);
|
|
175 |
by (etac Pair_inject 1);
|
|
176 |
by (etac (Push_inject1 RS sym) 1);
|
|
177 |
by (rtac (inj_Rep_Node RS injD) 1);
|
|
178 |
by (etac trans 1);
|
|
179 |
by (safe_tac (HOL_cs addSEs [Pair_inject,Push_inject,sym]));
|
|
180 |
val Push_Node_inject = result();
|
|
181 |
|
|
182 |
|
|
183 |
(** Injectiveness of Scons **)
|
|
184 |
|
|
185 |
val [major] = goalw Univ.thy [Scons_def] "M.N <= M'.N' ==> M<=M'";
|
|
186 |
by (cut_facts_tac [major] 1);
|
|
187 |
by (fast_tac (set_cs addSDs [Suc_inject]
|
|
188 |
addSEs [Push_Node_inject, Zero_neq_Suc]) 1);
|
|
189 |
val Scons_inject_lemma1 = result();
|
|
190 |
|
|
191 |
val [major] = goalw Univ.thy [Scons_def] "M.N <= M'.N' ==> N<=N'";
|
|
192 |
by (cut_facts_tac [major] 1);
|
|
193 |
by (fast_tac (set_cs addSDs [Suc_inject]
|
|
194 |
addSEs [Push_Node_inject, Suc_neq_Zero]) 1);
|
|
195 |
val Scons_inject_lemma2 = result();
|
|
196 |
|
|
197 |
val [major] = goal Univ.thy "M.N = M'.N' ==> M=M'";
|
|
198 |
by (rtac (major RS equalityE) 1);
|
|
199 |
by (REPEAT (ares_tac [equalityI, Scons_inject_lemma1] 1));
|
|
200 |
val Scons_inject1 = result();
|
|
201 |
|
|
202 |
val [major] = goal Univ.thy "M.N = M'.N' ==> N=N'";
|
|
203 |
by (rtac (major RS equalityE) 1);
|
|
204 |
by (REPEAT (ares_tac [equalityI, Scons_inject_lemma2] 1));
|
|
205 |
val Scons_inject2 = result();
|
|
206 |
|
|
207 |
val [major,minor] = goal Univ.thy
|
|
208 |
"[| M.N = M'.N'; [| M=M'; N=N' |] ==> P \
|
|
209 |
\ |] ==> P";
|
|
210 |
by (rtac ((major RS Scons_inject2) RS ((major RS Scons_inject1) RS minor)) 1);
|
|
211 |
val Scons_inject = result();
|
|
212 |
|
|
213 |
(*rewrite rules*)
|
|
214 |
goal Univ.thy "(Atom(a)=Atom(b)) = (a=b)";
|
|
215 |
by (fast_tac (HOL_cs addSEs [Atom_inject]) 1);
|
|
216 |
val Atom_Atom_eq = result();
|
|
217 |
|
|
218 |
goal Univ.thy "(M.N = M'.N') = (M=M' & N=N')";
|
|
219 |
by (fast_tac (HOL_cs addSEs [Scons_inject]) 1);
|
|
220 |
val Scons_Scons_eq = result();
|
|
221 |
|
|
222 |
(*** Distinctness involving Leaf and Numb ***)
|
|
223 |
|
|
224 |
(** Scons vs Leaf **)
|
|
225 |
|
5
|
226 |
goalw Univ.thy [Leaf_def] "(M.N) ~= Leaf(a)";
|
0
|
227 |
by (stac o_def 1);
|
|
228 |
by (rtac Scons_not_Atom 1);
|
|
229 |
val Scons_not_Leaf = result();
|
|
230 |
val Leaf_not_Scons = standard (Scons_not_Leaf RS not_sym);
|
|
231 |
|
|
232 |
val Scons_neq_Leaf = standard (Scons_not_Leaf RS notE);
|
|
233 |
val Leaf_neq_Scons = sym RS Scons_neq_Leaf;
|
|
234 |
|
|
235 |
(** Scons vs Numb **)
|
|
236 |
|
5
|
237 |
goalw Univ.thy [Numb_def] "(M.N) ~= Numb(k)";
|
0
|
238 |
by (stac o_def 1);
|
|
239 |
by (rtac Scons_not_Atom 1);
|
|
240 |
val Scons_not_Numb = result();
|
|
241 |
val Numb_not_Scons = standard (Scons_not_Numb RS not_sym);
|
|
242 |
|
|
243 |
val Scons_neq_Numb = standard (Scons_not_Numb RS notE);
|
|
244 |
val Numb_neq_Scons = sym RS Scons_neq_Numb;
|
|
245 |
|
|
246 |
(** Leaf vs Numb **)
|
|
247 |
|
5
|
248 |
goalw Univ.thy [Leaf_def,Numb_def] "Leaf(a) ~= Numb(k)";
|
0
|
249 |
by (simp_tac (HOL_ss addsimps [Atom_Atom_eq,Inl_not_Inr]) 1);
|
|
250 |
val Leaf_not_Numb = result();
|
|
251 |
val Numb_not_Leaf = standard (Leaf_not_Numb RS not_sym);
|
|
252 |
|
|
253 |
val Leaf_neq_Numb = standard (Leaf_not_Numb RS notE);
|
|
254 |
val Numb_neq_Leaf = sym RS Leaf_neq_Numb;
|
|
255 |
|
|
256 |
|
|
257 |
(*** ndepth -- the depth of a node ***)
|
|
258 |
|
|
259 |
val univ_simps = [apfst,Scons_not_Atom,Atom_not_Scons,Scons_Scons_eq];
|
|
260 |
val univ_ss = nat_ss addsimps univ_simps;
|
|
261 |
|
|
262 |
|
|
263 |
goalw Univ.thy [ndepth_def] "ndepth (Abs_Node(<%k.0, x>)) = 0";
|
|
264 |
by (sstac [Node_K0_I RS Abs_Node_inverse, split] 1);
|
|
265 |
by (rtac Least_equality 1);
|
|
266 |
by (rtac refl 1);
|
|
267 |
by (etac less_zeroE 1);
|
|
268 |
val ndepth_K0 = result();
|
|
269 |
|
5
|
270 |
goal Univ.thy "k < Suc(LEAST x. f(x)=0) --> nat_case(k, Suc(i), f) ~= 0";
|
0
|
271 |
by (nat_ind_tac "k" 1);
|
|
272 |
by (ALLGOALS (simp_tac nat_ss));
|
|
273 |
by (rtac impI 1);
|
|
274 |
by (etac not_less_Least 1);
|
|
275 |
val ndepth_Push_lemma = result();
|
|
276 |
|
|
277 |
goalw Univ.thy [ndepth_def,Push_Node_def]
|
|
278 |
"ndepth (Push_Node(i,n)) = Suc(ndepth(n))";
|
|
279 |
by (stac (Rep_Node RS Node_Push_I RS Abs_Node_inverse) 1);
|
|
280 |
by (cut_facts_tac [rewrite_rule [Node_def] Rep_Node] 1);
|
|
281 |
by (safe_tac set_cs);
|
|
282 |
be ssubst 1; (*instantiates type variables!*)
|
|
283 |
by (simp_tac univ_ss 1);
|
|
284 |
by (rtac Least_equality 1);
|
|
285 |
by (rewtac Push_def);
|
|
286 |
by (rtac (nat_case_Suc RS trans) 1);
|
|
287 |
by (etac LeastI 1);
|
|
288 |
by (etac (ndepth_Push_lemma RS mp) 1);
|
|
289 |
val ndepth_Push_Node = result();
|
|
290 |
|
|
291 |
|
|
292 |
(*** ntrunc applied to the various node sets ***)
|
|
293 |
|
|
294 |
goalw Univ.thy [ntrunc_def] "ntrunc(0, M) = {}";
|
|
295 |
by (safe_tac (set_cs addSIs [equalityI] addSEs [less_zeroE]));
|
|
296 |
val ntrunc_0 = result();
|
|
297 |
|
|
298 |
goalw Univ.thy [Atom_def,ntrunc_def] "ntrunc(Suc(k), Atom(a)) = Atom(a)";
|
|
299 |
by (safe_tac (set_cs addSIs [equalityI]));
|
|
300 |
by (stac ndepth_K0 1);
|
|
301 |
by (rtac zero_less_Suc 1);
|
|
302 |
val ntrunc_Atom = result();
|
|
303 |
|
|
304 |
goalw Univ.thy [Leaf_def] "ntrunc(Suc(k), Leaf(a)) = Leaf(a)";
|
|
305 |
by (stac o_def 1);
|
|
306 |
by (rtac ntrunc_Atom 1);
|
|
307 |
val ntrunc_Leaf = result();
|
|
308 |
|
|
309 |
goalw Univ.thy [Numb_def] "ntrunc(Suc(k), Numb(i)) = Numb(i)";
|
|
310 |
by (stac o_def 1);
|
|
311 |
by (rtac ntrunc_Atom 1);
|
|
312 |
val ntrunc_Numb = result();
|
|
313 |
|
|
314 |
goalw Univ.thy [Scons_def,ntrunc_def]
|
|
315 |
"ntrunc(Suc(k), M.N) = ntrunc(k,M) . ntrunc(k,N)";
|
|
316 |
by (safe_tac (set_cs addSIs [equalityI,imageI]));
|
|
317 |
by (REPEAT (stac ndepth_Push_Node 3 THEN etac Suc_mono 3));
|
|
318 |
by (REPEAT (rtac Suc_less_SucD 1 THEN
|
|
319 |
rtac (ndepth_Push_Node RS subst) 1 THEN
|
|
320 |
assume_tac 1));
|
|
321 |
val ntrunc_Scons = result();
|
|
322 |
|
|
323 |
(** Injection nodes **)
|
|
324 |
|
|
325 |
goalw Univ.thy [In0_def] "ntrunc(Suc(0), In0(M)) = {}";
|
|
326 |
by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_0]) 1);
|
|
327 |
by (rewtac Scons_def);
|
|
328 |
by (safe_tac (set_cs addSIs [equalityI]));
|
|
329 |
val ntrunc_one_In0 = result();
|
|
330 |
|
|
331 |
goalw Univ.thy [In0_def]
|
|
332 |
"ntrunc(Suc(Suc(k)), In0(M)) = In0 (ntrunc(Suc(k),M))";
|
|
333 |
by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_Numb]) 1);
|
|
334 |
val ntrunc_In0 = result();
|
|
335 |
|
|
336 |
goalw Univ.thy [In1_def] "ntrunc(Suc(0), In1(M)) = {}";
|
|
337 |
by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_0]) 1);
|
|
338 |
by (rewtac Scons_def);
|
|
339 |
by (safe_tac (set_cs addSIs [equalityI]));
|
|
340 |
val ntrunc_one_In1 = result();
|
|
341 |
|
|
342 |
goalw Univ.thy [In1_def]
|
|
343 |
"ntrunc(Suc(Suc(k)), In1(M)) = In1 (ntrunc(Suc(k),M))";
|
|
344 |
by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_Numb]) 1);
|
|
345 |
val ntrunc_In1 = result();
|
|
346 |
|
|
347 |
|
|
348 |
(*** Cartesian Product ***)
|
|
349 |
|
|
350 |
goalw Univ.thy [uprod_def] "!!M N. [| M:A; N:B |] ==> (M.N) : A<*>B";
|
|
351 |
by (REPEAT (ares_tac [singletonI,UN_I] 1));
|
|
352 |
val uprodI = result();
|
|
353 |
|
|
354 |
(*The general elimination rule*)
|
|
355 |
val major::prems = goalw Univ.thy [uprod_def]
|
|
356 |
"[| c : A<*>B; \
|
|
357 |
\ !!x y. [| x:A; y:B; c=x.y |] ==> P \
|
|
358 |
\ |] ==> P";
|
|
359 |
by (cut_facts_tac [major] 1);
|
|
360 |
by (REPEAT (eresolve_tac [asm_rl,singletonE,UN_E] 1
|
|
361 |
ORELSE resolve_tac prems 1));
|
|
362 |
val uprodE = result();
|
|
363 |
|
|
364 |
(*Elimination of a pair -- introduces no eigenvariables*)
|
|
365 |
val prems = goal Univ.thy
|
|
366 |
"[| (M.N) : A<*>B; [| M:A; N:B |] ==> P \
|
|
367 |
\ |] ==> P";
|
|
368 |
by (rtac uprodE 1);
|
|
369 |
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Scons_inject,ssubst] 1));
|
|
370 |
val uprodE2 = result();
|
|
371 |
|
|
372 |
|
|
373 |
(*** Disjoint Sum ***)
|
|
374 |
|
|
375 |
goalw Univ.thy [usum_def] "!!M. M:A ==> In0(M) : A<+>B";
|
|
376 |
by (fast_tac set_cs 1);
|
|
377 |
val usum_In0I = result();
|
|
378 |
|
|
379 |
goalw Univ.thy [usum_def] "!!N. N:B ==> In1(N) : A<+>B";
|
|
380 |
by (fast_tac set_cs 1);
|
|
381 |
val usum_In1I = result();
|
|
382 |
|
|
383 |
val major::prems = goalw Univ.thy [usum_def]
|
|
384 |
"[| u : A<+>B; \
|
|
385 |
\ !!x. [| x:A; u=In0(x) |] ==> P; \
|
|
386 |
\ !!y. [| y:B; u=In1(y) |] ==> P \
|
|
387 |
\ |] ==> P";
|
|
388 |
by (rtac (major RS UnE) 1);
|
|
389 |
by (REPEAT (rtac refl 1
|
|
390 |
ORELSE eresolve_tac (prems@[imageE,ssubst]) 1));
|
|
391 |
val usumE = result();
|
|
392 |
|
|
393 |
|
|
394 |
(** Injection **)
|
|
395 |
|
5
|
396 |
goalw Univ.thy [In0_def,In1_def] "In0(M) ~= In1(N)";
|
0
|
397 |
by (rtac notI 1);
|
|
398 |
by (etac (Scons_inject1 RS Numb_inject RS Zero_neq_Suc) 1);
|
|
399 |
val In0_not_In1 = result();
|
|
400 |
|
|
401 |
val In1_not_In0 = standard (In0_not_In1 RS not_sym);
|
|
402 |
val In0_neq_In1 = standard (In0_not_In1 RS notE);
|
|
403 |
val In1_neq_In0 = sym RS In0_neq_In1;
|
|
404 |
|
|
405 |
val [major] = goalw Univ.thy [In0_def] "In0(M) = In0(N) ==> M=N";
|
|
406 |
by (rtac (major RS Scons_inject2) 1);
|
|
407 |
val In0_inject = result();
|
|
408 |
|
|
409 |
val [major] = goalw Univ.thy [In1_def] "In1(M) = In1(N) ==> M=N";
|
|
410 |
by (rtac (major RS Scons_inject2) 1);
|
|
411 |
val In1_inject = result();
|
|
412 |
|
|
413 |
|
|
414 |
(*** proving equality of sets and functions using ntrunc ***)
|
|
415 |
|
|
416 |
goalw Univ.thy [ntrunc_def] "ntrunc(k,M) <= M";
|
|
417 |
by (fast_tac set_cs 1);
|
|
418 |
val ntrunc_subsetI = result();
|
|
419 |
|
|
420 |
val [major] = goalw Univ.thy [ntrunc_def]
|
|
421 |
"(!!k. ntrunc(k,M) <= N) ==> M<=N";
|
|
422 |
by (fast_tac (set_cs addIs [less_add_Suc1, less_add_Suc2,
|
|
423 |
major RS subsetD]) 1);
|
|
424 |
val ntrunc_subsetD = result();
|
|
425 |
|
|
426 |
(*A generalized form of the take-lemma*)
|
|
427 |
val [major] = goal Univ.thy "(!!k. ntrunc(k,M) = ntrunc(k,N)) ==> M=N";
|
|
428 |
by (rtac equalityI 1);
|
|
429 |
by (ALLGOALS (rtac ntrunc_subsetD));
|
|
430 |
by (ALLGOALS (rtac (ntrunc_subsetI RSN (2, subset_trans))));
|
|
431 |
by (rtac (major RS equalityD1) 1);
|
|
432 |
by (rtac (major RS equalityD2) 1);
|
|
433 |
val ntrunc_equality = result();
|
|
434 |
|
|
435 |
val [major] = goal Univ.thy
|
|
436 |
"[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2";
|
|
437 |
by (rtac (ntrunc_equality RS ext) 1);
|
|
438 |
by (resolve_tac ([major RS fun_cong] RL [o_def RS subst]) 1);
|
|
439 |
val ntrunc_o_equality = result();
|
|
440 |
|
|
441 |
(*** Monotonicity ***)
|
|
442 |
|
|
443 |
goalw Univ.thy [uprod_def] "!!A B. [| A<=A'; B<=B' |] ==> A<*>B <= A'<*>B'";
|
|
444 |
by (fast_tac set_cs 1);
|
|
445 |
val uprod_mono = result();
|
|
446 |
|
|
447 |
goalw Univ.thy [usum_def] "!!A B. [| A<=A'; B<=B' |] ==> A<+>B <= A'<+>B'";
|
|
448 |
by (fast_tac set_cs 1);
|
|
449 |
val usum_mono = result();
|
|
450 |
|
|
451 |
goalw Univ.thy [Scons_def] "!!M N. [| M<=M'; N<=N' |] ==> M.N <= M'.N'";
|
|
452 |
by (fast_tac set_cs 1);
|
|
453 |
val Scons_mono = result();
|
|
454 |
|
|
455 |
goalw Univ.thy [In0_def] "!!M N. M<=N ==> In0(M) <= In0(N)";
|
|
456 |
by (REPEAT (ares_tac [subset_refl,Scons_mono] 1));
|
|
457 |
val In0_mono = result();
|
|
458 |
|
|
459 |
goalw Univ.thy [In1_def] "!!M N. M<=N ==> In1(M) <= In1(N)";
|
|
460 |
by (REPEAT (ares_tac [subset_refl,Scons_mono] 1));
|
|
461 |
val In1_mono = result();
|
|
462 |
|
|
463 |
|
|
464 |
(*** Split and Case ***)
|
|
465 |
|
|
466 |
goalw Univ.thy [Split_def] "Split(M.N, c) = c(M,N)";
|
|
467 |
by (fast_tac (set_cs addIs [select_equality] addEs [Scons_inject]) 1);
|
|
468 |
val Split = result();
|
|
469 |
|
|
470 |
goalw Univ.thy [Case_def] "Case(In0(M), c, d) = c(M)";
|
|
471 |
by (fast_tac (set_cs addIs [select_equality]
|
|
472 |
addEs [make_elim In0_inject, In0_neq_In1]) 1);
|
|
473 |
val Case_In0 = result();
|
|
474 |
|
|
475 |
goalw Univ.thy [Case_def] "Case(In1(N), c, d) = d(N)";
|
|
476 |
by (fast_tac (set_cs addIs [select_equality]
|
|
477 |
addEs [make_elim In1_inject, In1_neq_In0]) 1);
|
|
478 |
val Case_In1 = result();
|
|
479 |
|
|
480 |
(**** UN x. B(x) rules ****)
|
|
481 |
|
|
482 |
goalw Univ.thy [ntrunc_def] "ntrunc(k, UN x.f(x)) = (UN x. ntrunc(k, f(x)))";
|
|
483 |
by (fast_tac (set_cs addIs [equalityI]) 1);
|
|
484 |
val ntrunc_UN1 = result();
|
|
485 |
|
|
486 |
goalw Univ.thy [Scons_def] "(UN x.f(x)) . M = (UN x. f(x) . M)";
|
|
487 |
by (fast_tac (set_cs addIs [equalityI]) 1);
|
|
488 |
val Scons_UN1_x = result();
|
|
489 |
|
|
490 |
goalw Univ.thy [Scons_def] "M . (UN x.f(x)) = (UN x. M . f(x))";
|
|
491 |
by (fast_tac (set_cs addIs [equalityI]) 1);
|
|
492 |
val Scons_UN1_y = result();
|
|
493 |
|
|
494 |
goalw Univ.thy [In0_def] "In0(UN x.f(x)) = (UN x. In0(f(x)))";
|
|
495 |
br Scons_UN1_y 1;
|
|
496 |
val In0_UN1 = result();
|
|
497 |
|
|
498 |
goalw Univ.thy [In1_def] "In1(UN x.f(x)) = (UN x. In1(f(x)))";
|
|
499 |
br Scons_UN1_y 1;
|
|
500 |
val In1_UN1 = result();
|
|
501 |
|
|
502 |
|
|
503 |
(*** Equality : the diagonal relation ***)
|
|
504 |
|
|
505 |
goalw Univ.thy [diag_def] "!!a A. a:A ==> <a,a> : diag(A)";
|
|
506 |
by (REPEAT (ares_tac [singletonI,UN_I] 1));
|
|
507 |
val diagI = result();
|
|
508 |
|
|
509 |
(*The general elimination rule*)
|
|
510 |
val major::prems = goalw Univ.thy [diag_def]
|
|
511 |
"[| c : diag(A); \
|
|
512 |
\ !!x y. [| x:A; c = <x,x> |] ==> P \
|
|
513 |
\ |] ==> P";
|
|
514 |
by (rtac (major RS UN_E) 1);
|
|
515 |
by (REPEAT (eresolve_tac [asm_rl,singletonE] 1 ORELSE resolve_tac prems 1));
|
|
516 |
val diagE = result();
|
|
517 |
|
|
518 |
(*** Equality for Cartesian Product ***)
|
|
519 |
|
|
520 |
goal Univ.thy
|
|
521 |
"split(<M,M'>, %x x'. split(<N,N'>, %y y'. {<x.y,x'.y'>})) = {<M.N, M'.N'>}";
|
|
522 |
by (simp_tac univ_ss 1);
|
|
523 |
val dprod_lemma = result();
|
|
524 |
|
|
525 |
goalw Univ.thy [dprod_def]
|
|
526 |
"!!r s. [| <M,M'>:r; <N,N'>:s |] ==> <M.N, M'.N'> : r<**>s";
|
|
527 |
by (REPEAT (ares_tac [UN_I] 1));
|
|
528 |
by (rtac (singletonI RS (dprod_lemma RS equalityD2 RS subsetD)) 1);
|
|
529 |
val dprodI = result();
|
|
530 |
|
|
531 |
(*The general elimination rule*)
|
|
532 |
val major::prems = goalw Univ.thy [dprod_def]
|
|
533 |
"[| c : r<**>s; \
|
|
534 |
\ !!x y x' y'. [| <x,x'> : r; <y,y'> : s; c = <x.y,x'.y'> |] ==> P \
|
|
535 |
\ |] ==> P";
|
|
536 |
by (cut_facts_tac [major] 1);
|
|
537 |
by (REPEAT (eresolve_tac [asm_rl,singletonE,UN_E] 1));
|
|
538 |
by (res_inst_tac [("p","u")] PairE 1);
|
|
539 |
by (res_inst_tac [("p","v")] PairE 1);
|
|
540 |
by (safe_tac HOL_cs);
|
|
541 |
by (REPEAT (ares_tac prems 1));
|
|
542 |
by (safe_tac (set_cs addSDs [dprod_lemma RS equalityD1 RS subsetD]));
|
|
543 |
val dprodE = result();
|
|
544 |
|
|
545 |
|
|
546 |
(*** Equality for Disjoint Sum ***)
|
|
547 |
|
|
548 |
goalw Univ.thy [dsum_def] "!!r. <M,M'>:r ==> <In0(M), In0(M')> : r<++>s";
|
|
549 |
by (fast_tac (set_cs addSIs [split RS equalityD2 RS subsetD]) 1);
|
|
550 |
val dsum_In0I = result();
|
|
551 |
|
|
552 |
goalw Univ.thy [dsum_def] "!!r. <N,N'>:s ==> <In1(N), In1(N')> : r<++>s";
|
|
553 |
by (fast_tac (set_cs addSIs [split RS equalityD2 RS subsetD]) 1);
|
|
554 |
val dsum_In1I = result();
|
|
555 |
|
|
556 |
val major::prems = goalw Univ.thy [dsum_def]
|
|
557 |
"[| w : r<++>s; \
|
|
558 |
\ !!x x'. [| <x,x'> : r; w = <In0(x), In0(x')> |] ==> P; \
|
|
559 |
\ !!y y'. [| <y,y'> : s; w = <In1(y), In1(y')> |] ==> P \
|
|
560 |
\ |] ==> P";
|
|
561 |
by (rtac (major RS UnE) 1);
|
|
562 |
by (safe_tac set_cs);
|
|
563 |
by (res_inst_tac [("p","u")] PairE 1);
|
|
564 |
by (res_inst_tac [("p","v")] PairE 2);
|
|
565 |
by (safe_tac (set_cs addSEs prems
|
|
566 |
addSDs [split RS equalityD1 RS subsetD]));
|
|
567 |
val dsumE = result();
|
|
568 |
|
|
569 |
|
|
570 |
(*** Monotonicity ***)
|
|
571 |
|
|
572 |
goalw Univ.thy [dprod_def] "!!r s. [| r<=r'; s<=s' |] ==> r<**>s <= r'<**>s'";
|
|
573 |
by (fast_tac set_cs 1);
|
|
574 |
val dprod_mono = result();
|
|
575 |
|
|
576 |
goalw Univ.thy [dsum_def] "!!r s. [| r<=r'; s<=s' |] ==> r<++>s <= r'<++>s'";
|
|
577 |
by (fast_tac set_cs 1);
|
|
578 |
val dsum_mono = result();
|
|
579 |
|
|
580 |
|
|
581 |
(*** Bounding theorems ***)
|
|
582 |
|
|
583 |
goal Univ.thy "diag(A) <= Sigma(A,%x.A)";
|
|
584 |
by (fast_tac (set_cs addIs [SigmaI] addSEs [diagE]) 1);
|
|
585 |
val diag_subset_Sigma = result();
|
|
586 |
|
|
587 |
val prems = goal Univ.thy
|
|
588 |
"[| r <= Sigma(A,%x.B); s <= Sigma(C,%x.D) |] ==> \
|
|
589 |
\ (r<**>s) <= Sigma(A<*>C, %z. B<*>D)";
|
|
590 |
by (cut_facts_tac prems 1);
|
|
591 |
by (fast_tac (set_cs addSIs [SigmaI,uprodI]
|
|
592 |
addSEs [dprodE,SigmaE2]) 1);
|
|
593 |
val dprod_subset_Sigma = result();
|
|
594 |
|
|
595 |
goal Univ.thy
|
|
596 |
"!!r s. [| r <= Sigma(A,B); s <= Sigma(C,D) |] ==> \
|
|
597 |
\ (r<**>s) <= Sigma(A<*>C, %z. Split(z, %x y. B(x)<*>D(y)))";
|
|
598 |
by (safe_tac (set_cs addSIs [SigmaI,uprodI] addSEs [dprodE]));
|
|
599 |
by (stac Split 3);
|
|
600 |
by (ALLGOALS (fast_tac (set_cs addSIs [uprodI] addSEs [SigmaE2])));
|
|
601 |
val dprod_subset_Sigma2 = result();
|
|
602 |
|
|
603 |
goal Univ.thy
|
|
604 |
"!!r s. [| r <= Sigma(A,%x.B); s <= Sigma(C,%x.D) |] ==> \
|
|
605 |
\ (r<++>s) <= Sigma(A<+>C, %z. B<+>D)";
|
|
606 |
by (fast_tac (set_cs addSIs [SigmaI,usum_In0I,usum_In1I]
|
|
607 |
addSEs [dsumE,SigmaE2]) 1);
|
|
608 |
val dsum_subset_Sigma = result();
|
|
609 |
|
|
610 |
|
|
611 |
(*** Domain ***)
|
|
612 |
|
|
613 |
goal Univ.thy "fst `` diag(A) = A";
|
|
614 |
by (fast_tac (set_cs addIs [equalityI, fst_imageI, diagI]
|
|
615 |
addSEs [fst_imageE, Pair_inject, diagE]) 1);
|
|
616 |
val fst_image_diag = result();
|
|
617 |
|
|
618 |
goal Univ.thy "fst `` (r<**>s) = (fst``r) <*> (fst``s)";
|
|
619 |
by (fast_tac (set_cs addIs [equalityI, fst_imageI, uprodI, dprodI]
|
|
620 |
addSEs [fst_imageE, Pair_inject, uprodE, dprodE]) 1);
|
|
621 |
val fst_image_dprod = result();
|
|
622 |
|
|
623 |
goal Univ.thy "fst `` (r<++>s) = (fst``r) <+> (fst``s)";
|
|
624 |
by (fast_tac (set_cs addIs [equalityI, fst_imageI, usum_In0I, usum_In1I,
|
|
625 |
dsum_In0I, dsum_In1I]
|
|
626 |
addSEs [fst_imageE, Pair_inject, usumE, dsumE]) 1);
|
|
627 |
val fst_image_dsum = result();
|
|
628 |
|
|
629 |
val fst_image_simps = [fst_image_diag, fst_image_dprod, fst_image_dsum];
|
|
630 |
val fst_image_ss = univ_ss addsimps fst_image_simps;
|
|
631 |
|
|
632 |
val univ_cs =
|
|
633 |
set_cs addSIs [SigmaI,uprodI,dprodI]
|
|
634 |
addIs [usum_In0I,usum_In1I,dsum_In0I,dsum_In1I]
|
|
635 |
addSEs [diagE,uprodE,dprodE,usumE,dsumE,SigmaE2,Pair_inject];
|