author | lcp |
Tue, 06 Sep 1994 10:54:46 +0200 | |
changeset 134 | 4b7da5a895e7 |
parent 133 | 4a2bb4fbc168 |
child 145 | a9f7ff3a464c |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/set.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
Set = Ord + |
|
8 |
||
9 |
types |
|
49 | 10 |
'a set |
0 | 11 |
|
12 |
arities |
|
13 |
set :: (term) term |
|
14 |
set :: (term) ord |
|
15 |
set :: (term) minus |
|
16 |
||
17 |
||
18 |
consts |
|
19 |
||
20 |
(* Constants *) |
|
21 |
||
12 | 22 |
Collect :: "('a => bool) => 'a set" (*comprehension*) |
23 |
Compl :: "('a set) => 'a set" (*complement*) |
|
24 |
Int :: "['a set, 'a set] => 'a set" (infixl 70) |
|
25 |
Un :: "['a set, 'a set] => 'a set" (infixl 65) |
|
26 |
UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*) |
|
27 |
UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10) |
|
28 |
INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10) |
|
29 |
Union, Inter :: "(('a set)set) => 'a set" (*of a set*) |
|
128 | 30 |
Pow :: "'a set => 'a set set" (*powerset*) |
12 | 31 |
range :: "('a => 'b) => 'b set" (*of function*) |
32 |
Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*) |
|
33 |
inj, surj :: "('a => 'b) => bool" (*inj/surjective*) |
|
0 | 34 |
inj_onto :: "['a => 'b, 'a set] => bool" |
12 | 35 |
"``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90) |
36 |
":" :: "['a, 'a set] => bool" (infixl 50) (*membership*) |
|
37 |
"~:" :: "['a, 'a set] => bool" ("(_ ~:/ _)" [50, 51] 50) |
|
0 | 38 |
|
39 |
(* Finite Sets *) |
|
40 |
||
41 |
insert :: "['a, 'a set] => 'a set" |
|
4 | 42 |
"{}" :: "'a set" ("{}") |
43 |
"@Finset" :: "args => 'a set" ("{(_)}") |
|
0 | 44 |
|
45 |
||
46 |
(** Binding Constants **) |
|
47 |
||
79 | 48 |
"@Coll" :: "[idt, bool] => 'a set" ("(1{_./ _})") |
133
4a2bb4fbc168
Added IMP, which necessiated changes in intr_elim.tex (mk_cases).
nipkow
parents:
128
diff
changeset
|
49 |
"@SetCompr" :: "['a, idts, bool] => 'a set" ("(1{_ |/_./ _})") |
0 | 50 |
|
51 |
(* Big Intersection / Union *) |
|
52 |
||
4 | 53 |
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(3INT _:_./ _)" 10) |
54 |
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(3UN _:_./ _)" 10) |
|
0 | 55 |
|
56 |
(* Bounded Quantifiers *) |
|
57 |
||
4 | 58 |
"@Ball" :: "[idt, 'a set, bool] => bool" ("(3! _:_./ _)" 10) |
59 |
"@Bex" :: "[idt, 'a set, bool] => bool" ("(3? _:_./ _)" 10) |
|
60 |
"*Ball" :: "[idt, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10) |
|
61 |
"*Bex" :: "[idt, 'a set, bool] => bool" ("(3EX _:_./ _)" 10) |
|
0 | 62 |
|
63 |
||
64 |
translations |
|
12 | 65 |
"x ~: y" == "~ (x : y)" |
66 |
"{x, xs}" == "insert(x, {xs})" |
|
67 |
"{x}" == "insert(x, {})" |
|
0 | 68 |
"{x. P}" == "Collect(%x. P)" |
69 |
"INT x:A. B" == "INTER(A, %x. B)" |
|
70 |
"UN x:A. B" == "UNION(A, %x. B)" |
|
71 |
"! x:A. P" == "Ball(A, %x. P)" |
|
72 |
"? x:A. P" == "Bex(A, %x. P)" |
|
73 |
"ALL x:A. P" => "Ball(A, %x. P)" |
|
74 |
"EX x:A. P" => "Bex(A, %x. P)" |
|
75 |
||
76 |
||
77 |
rules |
|
78 |
||
79 |
(* Isomorphisms between Predicates and Sets *) |
|
80 |
||
81 |
mem_Collect_eq "(a : {x.P(x)}) = P(a)" |
|
82 |
Collect_mem_eq "{x.x:A} = A" |
|
83 |
||
84 |
||
128 | 85 |
defs |
0 | 86 |
Ball_def "Ball(A, P) == ! x. x:A --> P(x)" |
87 |
Bex_def "Bex(A, P) == ? x. x:A & P(x)" |
|
88 |
subset_def "A <= B == ! x:A. x:B" |
|
89 |
Compl_def "Compl(A) == {x. ~x:A}" |
|
90 |
Un_def "A Un B == {x.x:A | x:B}" |
|
91 |
Int_def "A Int B == {x.x:A & x:B}" |
|
92 |
set_diff_def "A-B == {x. x:A & ~x:B}" |
|
93 |
INTER_def "INTER(A, B) == {y. ! x:A. y: B(x)}" |
|
94 |
UNION_def "UNION(A, B) == {y. ? x:A. y: B(x)}" |
|
95 |
INTER1_def "INTER1(B) == INTER({x.True}, B)" |
|
96 |
UNION1_def "UNION1(B) == UNION({x.True}, B)" |
|
97 |
Inter_def "Inter(S) == (INT x:S. x)" |
|
98 |
Union_def "Union(S) == (UN x:S. x)" |
|
128 | 99 |
Pow_def "Pow(A) == {B. B <= A}" |
0 | 100 |
empty_def "{} == {x. False}" |
101 |
insert_def "insert(a, B) == {x.x=a} Un B" |
|
102 |
range_def "range(f) == {y. ? x. y=f(x)}" |
|
103 |
image_def "f``A == {y. ? x:A. y=f(x)}" |
|
104 |
inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y" |
|
105 |
inj_onto_def "inj_onto(f, A) == ! x:A. ! y:A. f(x)=f(y) --> x=y" |
|
106 |
surj_def "surj(f) == ! y. ? x. y=f(x)" |
|
107 |
||
108 |
end |
|
109 |
||
79 | 110 |
ML |
0 | 111 |
|
79 | 112 |
local |
113 |
||
114 |
(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *) |
|
115 |
||
116 |
fun dummyC(s) = Const(s,dummyT); |
|
117 |
||
118 |
val ex_tr = snd(mk_binder_tr("? ","Ex")); |
|
119 |
||
120 |
fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1 |
|
121 |
| nvars(_) = 1; |
|
122 |
||
123 |
fun setcompr_tr[e,idts,b] = |
|
124 |
let val eq = dummyC("op =") $ Bound(nvars(idts)) $ e |
|
125 |
val P = dummyC("op &") $ eq $ b |
|
126 |
val exP = ex_tr [idts,P] |
|
127 |
in dummyC("Collect") $ Abs("",dummyT,exP) end; |
|
128 |
||
129 |
val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY")); |
|
130 |
||
131 |
fun setcompr_tr'[Abs(_,_,P)] = |
|
132 |
let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1) |
|
133 |
| ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ _) $ _, n) = |
|
134 |
if n>0 andalso m=n then () else raise Match |
|
135 |
||
136 |
fun tr'(_ $ abs) = |
|
137 |
let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs] |
|
138 |
in dummyC("@SetCompr") $ e $ idts $ Q end |
|
139 |
in ok(P,0); tr'(P) end; |
|
140 |
||
141 |
in |
|
142 |
||
143 |
val parse_translation = [("@SetCompr",setcompr_tr)]; |
|
144 |
val print_translation = [("Collect",setcompr_tr')]; |
|
0 | 145 |
|
146 |
val print_ast_translation = |
|
4 | 147 |
map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")]; |
0 | 148 |
|
79 | 149 |
end; |
150 |