author | nipkow |
Sun, 19 Feb 1995 15:04:39 +0100 | |
changeset 215 | 5f9d7ed4ea0c |
parent 56 | 385d51d74f71 |
permissions | -rw-r--r-- |
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
1 |
(* Title: HOL/ex/pl0.ML |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
3 |
Author: Tobias Nipkow |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
4 |
Copyright 1994 TU Muenchen |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
5 |
|
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
6 |
Inductive definition of propositional logic formulae. |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
7 |
*) |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
8 |
|
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
9 |
structure PL0 = DeclaredDatatype |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
10 |
(val base = PL0.thy |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
11 |
val data = "'a pl = false | var('a) | \"op->\"('a pl,'a pl)" |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff
changeset
|
12 |
); |