| author | lcp | 
| Mon, 22 Aug 1994 10:56:45 +0200 | |
| changeset 122 | 6927e1cb2c07 | 
| parent 90 | 5c7a69cef18b | 
| child 171 | 16c4ea954511 | 
| permissions | -rw-r--r-- | 
| 0 | 1 | (* Title: HOL/subset | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1991 University of Cambridge | |
| 5 | ||
| 6 | Derived rules involving subsets | |
| 7 | Union and Intersection as lattice operations | |
| 8 | *) | |
| 9 | ||
| 10 | (*** insert ***) | |
| 11 | ||
| 12 | val subset_insertI = prove_goal Set.thy "B <= insert(a,B)" | |
| 13 | (fn _=> [ (rtac subsetI 1), (etac insertI2 1) ]); | |
| 14 | ||
| 15 | (*** Big Union -- least upper bound of a set ***) | |
| 16 | ||
| 17 | val prems = goal Set.thy | |
| 18 | "B:A ==> B <= Union(A)"; | |
| 19 | by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1)); | |
| 20 | val Union_upper = result(); | |
| 21 | ||
| 22 | val [prem] = goal Set.thy | |
| 23 | "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C"; | |
| 24 | br subsetI 1; | |
| 25 | by (REPEAT (eresolve_tac [asm_rl, UnionE, prem RS subsetD] 1)); | |
| 26 | val Union_least = result(); | |
| 27 | ||
| 28 | (** General union **) | |
| 29 | ||
| 30 | val prems = goal Set.thy | |
| 31 | "a:A ==> B(a) <= (UN x:A. B(x))"; | |
| 32 | by (REPEAT (ares_tac (prems@[UN_I RS subsetI]) 1)); | |
| 33 | val UN_upper = result(); | |
| 34 | ||
| 35 | val [prem] = goal Set.thy | |
| 36 | "[| !!x. x:A ==> B(x)<=C |] ==> (UN x:A. B(x)) <= C"; | |
| 37 | br subsetI 1; | |
| 38 | by (REPEAT (eresolve_tac [asm_rl, UN_E, prem RS subsetD] 1)); | |
| 39 | val UN_least = result(); | |
| 40 | ||
| 41 | goal Set.thy "B(a) <= (UN x. B(x))"; | |
| 42 | by (REPEAT (ares_tac [UN1_I RS subsetI] 1)); | |
| 43 | val UN1_upper = result(); | |
| 44 | ||
| 45 | val [prem] = goal Set.thy "[| !!x. B(x)<=C |] ==> (UN x. B(x)) <= C"; | |
| 46 | br subsetI 1; | |
| 47 | by (REPEAT (eresolve_tac [asm_rl, UN1_E, prem RS subsetD] 1)); | |
| 48 | val UN1_least = result(); | |
| 49 | ||
| 50 | ||
| 51 | (*** Big Intersection -- greatest lower bound of a set ***) | |
| 52 | ||
| 53 | val prems = goal Set.thy "B:A ==> Inter(A) <= B"; | |
| 54 | br subsetI 1; | |
| 55 | by (REPEAT (resolve_tac prems 1 ORELSE etac InterD 1)); | |
| 56 | val Inter_lower = result(); | |
| 57 | ||
| 58 | val [prem] = goal Set.thy | |
| 59 | "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)"; | |
| 60 | br (InterI RS subsetI) 1; | |
| 61 | by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1)); | |
| 62 | val Inter_greatest = result(); | |
| 63 | ||
| 64 | val prems = goal Set.thy "a:A ==> (INT x:A. B(x)) <= B(a)"; | |
| 65 | br subsetI 1; | |
| 66 | by (REPEAT (resolve_tac prems 1 ORELSE etac INT_D 1)); | |
| 67 | val INT_lower = result(); | |
| 68 | ||
| 69 | val [prem] = goal Set.thy | |
| 70 | "[| !!x. x:A ==> C<=B(x) |] ==> C <= (INT x:A. B(x))"; | |
| 71 | br (INT_I RS subsetI) 1; | |
| 72 | by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1)); | |
| 73 | val INT_greatest = result(); | |
| 74 | ||
| 75 | goal Set.thy "(INT x. B(x)) <= B(a)"; | |
| 76 | br subsetI 1; | |
| 77 | by (REPEAT (resolve_tac prems 1 ORELSE etac INT1_D 1)); | |
| 78 | val INT1_lower = result(); | |
| 79 | ||
| 80 | val [prem] = goal Set.thy | |
| 81 | "[| !!x. C<=B(x) |] ==> C <= (INT x. B(x))"; | |
| 82 | br (INT1_I RS subsetI) 1; | |
| 83 | by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1)); | |
| 84 | val INT1_greatest = result(); | |
| 85 | ||
| 86 | (*** Finite Union -- the least upper bound of 2 sets ***) | |
| 87 | ||
| 88 | goal Set.thy "A <= A Un B"; | |
| 89 | by (REPEAT (ares_tac [subsetI,UnI1] 1)); | |
| 90 | val Un_upper1 = result(); | |
| 91 | ||
| 92 | goal Set.thy "B <= A Un B"; | |
| 93 | by (REPEAT (ares_tac [subsetI,UnI2] 1)); | |
| 94 | val Un_upper2 = result(); | |
| 95 | ||
| 96 | val prems = goal Set.thy "[| A<=C; B<=C |] ==> A Un B <= C"; | |
| 97 | by (cut_facts_tac prems 1); | |
| 98 | by (DEPTH_SOLVE (ares_tac [subsetI] 1 | |
| 99 | ORELSE eresolve_tac [UnE,subsetD] 1)); | |
| 100 | val Un_least = result(); | |
| 101 | ||
| 102 | (*** Finite Intersection -- the greatest lower bound of 2 sets *) | |
| 103 | ||
| 104 | goal Set.thy "A Int B <= A"; | |
| 105 | by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)); | |
| 106 | val Int_lower1 = result(); | |
| 107 | ||
| 108 | goal Set.thy "A Int B <= B"; | |
| 109 | by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)); | |
| 110 | val Int_lower2 = result(); | |
| 111 | ||
| 112 | val prems = goal Set.thy "[| C<=A; C<=B |] ==> C <= A Int B"; | |
| 113 | by (cut_facts_tac prems 1); | |
| 114 | by (REPEAT (ares_tac [subsetI,IntI] 1 | |
| 115 | ORELSE etac subsetD 1)); | |
| 116 | val Int_greatest = result(); | |
| 117 | ||
| 118 | (*** Set difference ***) | |
| 119 | ||
| 90 
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
 clasohm parents: 
57diff
changeset | 120 | val Diff_subset = prove_goal Set.thy "A-B <= (A::'a set)" | 
| 0 | 121 | (fn _ => [ (REPEAT (ares_tac [subsetI] 1 ORELSE etac DiffE 1)) ]); | 
| 122 | ||
| 123 | (*** Monotonicity ***) | |
| 124 | ||
| 125 | val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)"; | |
| 126 | by (rtac Un_least 1); | |
| 127 | by (rtac (Un_upper1 RS (prem RS monoD)) 1); | |
| 128 | by (rtac (Un_upper2 RS (prem RS monoD)) 1); | |
| 129 | val mono_Un = result(); | |
| 130 | ||
| 131 | val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)"; | |
| 132 | by (rtac Int_greatest 1); | |
| 133 | by (rtac (Int_lower1 RS (prem RS monoD)) 1); | |
| 134 | by (rtac (Int_lower2 RS (prem RS monoD)) 1); | |
| 135 | val mono_Int = result(); |