author | lcp |
Fri, 19 Aug 1994 11:10:56 +0200 | |
changeset 116 | ab4328bbff70 |
parent 90 | 5c7a69cef18b |
child 145 | a9f7ff3a464c |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/hol.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
Higher-Order Logic |
|
7 |
*) |
|
8 |
||
9 |
HOL = Pure + |
|
10 |
||
11 |
classes |
|
12 |
term < logic |
|
13 |
plus < term |
|
14 |
minus < term |
|
15 |
times < term |
|
16 |
||
11 | 17 |
default |
18 |
term |
|
0 | 19 |
|
20 |
types |
|
49 | 21 |
bool |
71 | 22 |
letbinds letbind |
23 |
case_syn cases_syn |
|
0 | 24 |
|
25 |
arities |
|
26 |
fun :: (term, term) term |
|
27 |
bool :: term |
|
28 |
||
29 |
||
30 |
consts |
|
31 |
||
32 |
(* Constants *) |
|
33 |
||
4 | 34 |
Trueprop :: "bool => prop" ("(_)" 5) |
35 |
not :: "bool => bool" ("~ _" [40] 40) |
|
0 | 36 |
True, False :: "bool" |
37 |
if :: "[bool, 'a, 'a] => 'a" |
|
38 |
Inv :: "('a => 'b) => ('b => 'a)" |
|
39 |
||
40 |
(* Binders *) |
|
41 |
||
4 | 42 |
Eps :: "('a => bool) => 'a" (binder "@" 10) |
43 |
All :: "('a => bool) => bool" (binder "! " 10) |
|
44 |
Ex :: "('a => bool) => bool" (binder "? " 10) |
|
45 |
Ex1 :: "('a => bool) => bool" (binder "?! " 10) |
|
0 | 46 |
|
4 | 47 |
Let :: "['a, 'a => 'b] => 'b" |
25 | 48 |
"_bind" :: "[idt, 'a] => letbind" ("(2_ =/ _)" 10) |
49 |
"" :: "letbind => letbinds" ("_") |
|
50 |
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _") |
|
51 |
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" 10) |
|
0 | 52 |
|
38 | 53 |
(* Case expressions *) |
54 |
||
55 |
"@case" :: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10) |
|
56 |
"@case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10) |
|
57 |
"" :: "case_syn => cases_syn" ("_") |
|
58 |
"@case2" :: "[case_syn,cases_syn] => cases_syn" ("_/ | _") |
|
59 |
||
0 | 60 |
(* Alternative Quantifiers *) |
61 |
||
4 | 62 |
"*All" :: "[idts, bool] => bool" ("(3ALL _./ _)" 10) |
63 |
"*Ex" :: "[idts, bool] => bool" ("(3EX _./ _)" 10) |
|
64 |
"*Ex1" :: "[idts, bool] => bool" ("(3EX! _./ _)" 10) |
|
0 | 65 |
|
66 |
(* Infixes *) |
|
67 |
||
4 | 68 |
o :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixr 50) |
11 | 69 |
"=" :: "['a, 'a] => bool" (infixl 50) |
70 |
"~=" :: "['a, 'a] => bool" ("(_ ~=/ _)" [50, 51] 50) |
|
4 | 71 |
"&" :: "[bool, bool] => bool" (infixr 35) |
72 |
"|" :: "[bool, bool] => bool" (infixr 30) |
|
73 |
"-->" :: "[bool, bool] => bool" (infixr 25) |
|
0 | 74 |
|
75 |
(* Overloaded Constants *) |
|
76 |
||
4 | 77 |
"+" :: "['a::plus, 'a] => 'a" (infixl 65) |
78 |
"-" :: "['a::minus, 'a] => 'a" (infixl 65) |
|
79 |
"*" :: "['a::times, 'a] => 'a" (infixl 70) |
|
0 | 80 |
|
81 |
||
82 |
translations |
|
83 |
"ALL xs. P" => "! xs. P" |
|
84 |
"EX xs. P" => "? xs. P" |
|
85 |
"EX! xs. P" => "?! xs. P" |
|
11 | 86 |
"x ~= y" == "~ (x = y)" |
25 | 87 |
"_Let(_binds(b, bs), e)" == "_Let(b, _Let(bs, e))" |
88 |
"let x = a in e" == "Let(a, %x. e)" |
|
0 | 89 |
|
90 |
rules |
|
91 |
||
92 |
eq_reflection "(x=y) ==> (x==y)" |
|
93 |
||
94 |
(* Basic Rules *) |
|
95 |
||
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
71
diff
changeset
|
96 |
refl "t = (t::'a)" |
0 | 97 |
subst "[| s = t; P(s) |] ==> P(t::'a)" |
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
71
diff
changeset
|
98 |
ext "(!!x::'a. (f(x)::'b) = g(x)) ==> (%x.f(x)) = (%x.g(x))" |
0 | 99 |
selectI "P(x::'a) ==> P(@x.P(x))" |
100 |
||
101 |
impI "(P ==> Q) ==> P-->Q" |
|
102 |
mp "[| P-->Q; P |] ==> Q" |
|
103 |
||
104 |
(* Definitions *) |
|
105 |
||
71 | 106 |
True_def "True == ((%x::bool.x)=(%x.x))" |
107 |
All_def "All(P) == (P = (%x.True))" |
|
108 |
Ex_def "Ex(P) == P(@x.P(x))" |
|
109 |
False_def "False == (!P.P)" |
|
110 |
not_def "~ P == P-->False" |
|
111 |
and_def "P & Q == !R. (P-->Q-->R) --> R" |
|
112 |
or_def "P | Q == !R. (P-->R) --> (Q-->R) --> R" |
|
113 |
Ex1_def "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" |
|
114 |
Let_def "Let(s,f) == f(s)" |
|
0 | 115 |
|
116 |
(* Axioms *) |
|
117 |
||
118 |
iff "(P-->Q) --> (Q-->P) --> (P=Q)" |
|
119 |
True_or_False "(P=True) | (P=False)" |
|
120 |
||
121 |
(* Misc Definitions *) |
|
122 |
||
71 | 123 |
Inv_def "Inv(f::'a=>'b) == (% y. @x. f(x)=y)" |
124 |
o_def "(f::'b=>'c) o g == (%(x::'a). f(g(x)))" |
|
125 |
if_def "if(P,x,y) == @z::'a. (P=True --> z=x) & (P=False --> z=y)" |
|
0 | 126 |
|
127 |
end |
|
128 |
||
129 |
||
130 |
ML |
|
131 |
||
132 |
(** Choice between the HOL and Isabelle style of quantifiers **) |
|
133 |
||
134 |
val HOL_quantifiers = ref true; |
|
135 |
||
4 | 136 |
fun alt_ast_tr' (name, alt_name) = |
0 | 137 |
let |
138 |
fun ast_tr' (*name*) args = |
|
139 |
if ! HOL_quantifiers then raise Match |
|
4 | 140 |
else Syntax.mk_appl (Syntax.Constant alt_name) args; |
0 | 141 |
in |
142 |
(name, ast_tr') |
|
143 |
end; |
|
144 |
||
145 |
||
146 |
val print_ast_translation = |
|
7 | 147 |
map alt_ast_tr' [("! ", "*All"), ("? ", "*Ex"), ("?! ", "*Ex1")]; |
0 | 148 |