author | lcp |
Thu, 06 Apr 1995 11:27:54 +0200 | |
changeset 241 | b67c8e01ae04 |
parent 229 | 97e2565f13e8 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/wf.ML |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
For wf.thy. Well-founded Recursion |
|
7 |
*) |
|
8 |
||
9 |
open WF; |
|
10 |
||
229
97e2565f13e8
Removed unecessary type constraint because instantiations do not freeze type
nipkow
parents:
202
diff
changeset
|
11 |
val H_cong = read_instantiate [("f","H")] (standard(refl RS cong RS cong)); |
0 | 12 |
val H_cong1 = refl RS H_cong; |
13 |
||
14 |
(*Restriction to domain A. If r is well-founded over A then wf(r)*) |
|
15 |
val [prem1,prem2] = goalw WF.thy [wf_def] |
|
16 |
"[| r <= Sigma(A, %u.A); \ |
|
17 |
\ !!x P. [| ! x. (! y. <y,x> : r --> P(y)) --> P(x); x:A |] ==> P(x) |] \ |
|
18 |
\ ==> wf(r)"; |
|
19 |
by (strip_tac 1); |
|
20 |
by (rtac allE 1); |
|
21 |
by (assume_tac 1); |
|
22 |
by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1); |
|
171 | 23 |
qed "wfI"; |
0 | 24 |
|
25 |
val major::prems = goalw WF.thy [wf_def] |
|
26 |
"[| wf(r); \ |
|
27 |
\ !!x.[| ! y. <y,x>: r --> P(y) |] ==> P(x) \ |
|
28 |
\ |] ==> P(a)"; |
|
29 |
by (rtac (major RS spec RS mp RS spec) 1); |
|
30 |
by (fast_tac (HOL_cs addEs prems) 1); |
|
171 | 31 |
qed "wf_induct"; |
0 | 32 |
|
33 |
(*Perform induction on i, then prove the wf(r) subgoal using prems. *) |
|
34 |
fun wf_ind_tac a prems i = |
|
35 |
EVERY [res_inst_tac [("a",a)] wf_induct i, |
|
36 |
rename_last_tac a ["1"] (i+1), |
|
37 |
ares_tac prems i]; |
|
38 |
||
39 |
val prems = goal WF.thy "[| wf(r); <a,x>:r; <x,a>:r |] ==> P"; |
|
40 |
by (subgoal_tac "! x. <a,x>:r --> <x,a>:r --> P" 1); |
|
41 |
by (fast_tac (HOL_cs addIs prems) 1); |
|
42 |
by (wf_ind_tac "a" prems 1); |
|
43 |
by (fast_tac set_cs 1); |
|
171 | 44 |
qed "wf_asym"; |
0 | 45 |
|
46 |
val prems = goal WF.thy "[| wf(r); <a,a>: r |] ==> P"; |
|
88 | 47 |
by (rtac wf_asym 1); |
0 | 48 |
by (REPEAT (resolve_tac prems 1)); |
171 | 49 |
qed "wf_anti_refl"; |
0 | 50 |
|
51 |
(*transitive closure of a WF relation is WF!*) |
|
52 |
val [prem] = goal WF.thy "wf(r) ==> wf(r^+)"; |
|
53 |
by (rewtac wf_def); |
|
54 |
by (strip_tac 1); |
|
55 |
(*must retain the universal formula for later use!*) |
|
56 |
by (rtac allE 1 THEN assume_tac 1); |
|
57 |
by (etac mp 1); |
|
58 |
by (res_inst_tac [("a","x")] (prem RS wf_induct) 1); |
|
59 |
by (rtac (impI RS allI) 1); |
|
60 |
by (etac tranclE 1); |
|
61 |
by (fast_tac HOL_cs 1); |
|
62 |
by (fast_tac HOL_cs 1); |
|
171 | 63 |
qed "wf_trancl"; |
0 | 64 |
|
65 |
||
66 |
(** cut **) |
|
67 |
||
68 |
(*This rewrite rule works upon formulae; thus it requires explicit use of |
|
69 |
H_cong to expose the equality*) |
|
70 |
goalw WF.thy [cut_def] |
|
71 |
"(cut(f,r,x) = cut(g,r,x)) = (!y. <y,x>:r --> f(y)=g(y))"; |
|
72 |
by(simp_tac (HOL_ss addsimps [expand_fun_eq] |
|
73 |
setloop (split_tac [expand_if])) 1); |
|
171 | 74 |
qed "cut_cut_eq"; |
0 | 75 |
|
76 |
goalw WF.thy [cut_def] "!!x. <x,a>:r ==> cut(f,r,a)(x) = f(x)"; |
|
77 |
by(asm_simp_tac HOL_ss 1); |
|
171 | 78 |
qed "cut_apply"; |
0 | 79 |
|
80 |
||
81 |
(*** is_recfun ***) |
|
82 |
||
83 |
goalw WF.thy [is_recfun_def,cut_def] |
|
84 |
"!!f. [| is_recfun(r,a,H,f); ~<b,a>:r |] ==> f(b) = (@z.True)"; |
|
85 |
by (etac ssubst 1); |
|
86 |
by(asm_simp_tac HOL_ss 1); |
|
171 | 87 |
qed "is_recfun_undef"; |
0 | 88 |
|
89 |
(*eresolve_tac transD solves <a,b>:r using transitivity AT MOST ONCE |
|
90 |
mp amd allE instantiate induction hypotheses*) |
|
91 |
fun indhyp_tac hyps = |
|
92 |
ares_tac (TrueI::hyps) ORELSE' |
|
93 |
(cut_facts_tac hyps THEN' |
|
94 |
DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' |
|
95 |
eresolve_tac [transD, mp, allE])); |
|
96 |
||
97 |
(*** NOTE! some simplifications need a different finish_tac!! ***) |
|
98 |
fun indhyp_tac hyps = |
|
99 |
resolve_tac (TrueI::refl::hyps) ORELSE' |
|
100 |
(cut_facts_tac hyps THEN' |
|
101 |
DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' |
|
102 |
eresolve_tac [transD, mp, allE])); |
|
103 |
val wf_super_ss = HOL_ss setsolver indhyp_tac; |
|
104 |
||
105 |
val prems = goalw WF.thy [is_recfun_def,cut_def] |
|
106 |
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,b,H,g) |] ==> \ |
|
107 |
\ <x,a>:r --> <x,b>:r --> f(x)=g(x)"; |
|
108 |
by (cut_facts_tac prems 1); |
|
109 |
by (etac wf_induct 1); |
|
110 |
by (REPEAT (rtac impI 1 ORELSE etac ssubst 1)); |
|
111 |
by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1); |
|
171 | 112 |
qed "is_recfun_equal_lemma"; |
202 | 113 |
bind_thm ("is_recfun_equal", (is_recfun_equal_lemma RS mp RS mp)); |
0 | 114 |
|
115 |
||
116 |
val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def] |
|
117 |
"[| wf(r); trans(r); \ |
|
118 |
\ is_recfun(r,a,H,f); is_recfun(r,b,H,g); <b,a>:r |] ==> \ |
|
119 |
\ cut(f,r,b) = g"; |
|
120 |
val gundef = recgb RS is_recfun_undef |
|
121 |
and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal))); |
|
122 |
by (cut_facts_tac prems 1); |
|
123 |
by (rtac ext 1); |
|
124 |
by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg] |
|
125 |
setloop (split_tac [expand_if])) 1); |
|
171 | 126 |
qed "is_recfun_cut"; |
0 | 127 |
|
128 |
(*** Main Existence Lemma -- Basic Properties of the_recfun ***) |
|
129 |
||
130 |
val prems = goalw WF.thy [the_recfun_def] |
|
131 |
"is_recfun(r,a,H,f) ==> is_recfun(r, a, H, the_recfun(r,a,H))"; |
|
132 |
by (res_inst_tac [("P", "is_recfun(r,a,H)")] selectI 1); |
|
133 |
by (resolve_tac prems 1); |
|
171 | 134 |
qed "is_the_recfun"; |
0 | 135 |
|
136 |
val prems = goal WF.thy |
|
137 |
"[| wf(r); trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))"; |
|
138 |
by (cut_facts_tac prems 1); |
|
139 |
by (wf_ind_tac "a" prems 1); |
|
140 |
by (res_inst_tac [("f", "cut(%y. wftrec(r,y,H), r, a1)")] is_the_recfun 1); |
|
141 |
by (rewrite_goals_tac [is_recfun_def, wftrec_def]); |
|
142 |
by (rtac (cut_cut_eq RS ssubst) 1); |
|
143 |
(*Applying the substitution: must keep the quantified assumption!!*) |
|
144 |
by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac, |
|
145 |
etac (mp RS ssubst), atac]); |
|
146 |
by (fold_tac [is_recfun_def]); |
|
147 |
by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1); |
|
171 | 148 |
qed "unfold_the_recfun"; |
0 | 149 |
|
150 |
||
151 |
(*Beware incompleteness of unification!*) |
|
152 |
val prems = goal WF.thy |
|
153 |
"[| wf(r); trans(r); <c,a>:r; <c,b>:r |] \ |
|
154 |
\ ==> the_recfun(r,a,H,c) = the_recfun(r,b,H,c)"; |
|
155 |
by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1)); |
|
171 | 156 |
qed "the_recfun_equal"; |
0 | 157 |
|
158 |
val prems = goal WF.thy |
|
159 |
"[| wf(r); trans(r); <b,a>:r |] \ |
|
160 |
\ ==> cut(the_recfun(r,a,H),r,b) = the_recfun(r,b,H)"; |
|
161 |
by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1)); |
|
171 | 162 |
qed "the_recfun_cut"; |
0 | 163 |
|
164 |
(*** Unfolding wftrec ***) |
|
165 |
||
166 |
goalw WF.thy [wftrec_def] |
|
167 |
"!!r. [| wf(r); trans(r) |] ==> \ |
|
168 |
\ wftrec(r,a,H) = H(a, cut(%x.wftrec(r,x,H), r, a))"; |
|
169 |
by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun), |
|
170 |
REPEAT o atac, rtac H_cong1]); |
|
171 |
by (asm_simp_tac (HOL_ss addsimps [cut_cut_eq,the_recfun_cut]) 1); |
|
171 | 172 |
qed "wftrec"; |
0 | 173 |
|
174 |
(*Unused but perhaps interesting*) |
|
175 |
val prems = goal WF.thy |
|
176 |
"[| wf(r); trans(r); !!f x. H(x, cut(f,r,x)) = H(x,f) |] ==> \ |
|
177 |
\ wftrec(r,a,H) = H(a, %x.wftrec(r,x,H))"; |
|
178 |
by (rtac (wftrec RS trans) 1); |
|
179 |
by (REPEAT (resolve_tac prems 1)); |
|
171 | 180 |
qed "wftrec2"; |
0 | 181 |
|
182 |
(** Removal of the premise trans(r) **) |
|
183 |
||
184 |
goalw WF.thy [wfrec_def] |
|
185 |
"!!r. wf(r) ==> wfrec(r,a,H) = H(a, cut(%x.wfrec(r,x,H), r, a))"; |
|
186 |
by (etac (wf_trancl RS wftrec RS ssubst) 1); |
|
187 |
by (rtac trans_trancl 1); |
|
188 |
by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*) |
|
189 |
by (simp_tac (HOL_ss addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1); |
|
171 | 190 |
qed "wfrec"; |
0 | 191 |
|
192 |
(*This form avoids giant explosions in proofs. NOTE USE OF == *) |
|
193 |
val rew::prems = goal WF.thy |
|
194 |
"[| !!x. f(x)==wfrec(r,x,H); wf(r) |] ==> f(a) = H(a, cut(%x.f(x),r,a))"; |
|
195 |
by (rewtac rew); |
|
196 |
by (REPEAT (resolve_tac (prems@[wfrec]) 1)); |
|
171 | 197 |
qed "def_wfrec"; |