author | nipkow |
Mon, 15 Aug 1994 15:20:34 +0200 | |
changeset 103 | c57ab3ce997e |
parent 90 | 5c7a69cef18b |
child 108 | 82c4117aff7f |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/trancl |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
For trancl.thy. Theorems about the transitive closure of a relation |
|
7 |
*) |
|
8 |
||
9 |
open Trancl; |
|
10 |
||
11 |
(** Natural deduction for trans(r) **) |
|
12 |
||
13 |
val prems = goalw Trancl.thy [trans_def] |
|
14 |
"(!! x y z. [| <x,y>:r; <y,z>:r |] ==> <x,z>:r) ==> trans(r)"; |
|
15 |
by (REPEAT (ares_tac (prems@[allI,impI]) 1)); |
|
16 |
val transI = result(); |
|
17 |
||
18 |
val major::prems = goalw Trancl.thy [trans_def] |
|
19 |
"[| trans(r); <a,b>:r; <b,c>:r |] ==> <a,c>:r"; |
|
20 |
by (cut_facts_tac [major] 1); |
|
21 |
by (fast_tac (HOL_cs addIs prems) 1); |
|
22 |
val transD = result(); |
|
23 |
||
24 |
(** Identity relation **) |
|
25 |
||
26 |
goalw Trancl.thy [id_def] "<a,a> : id"; |
|
27 |
by (rtac CollectI 1); |
|
28 |
by (rtac exI 1); |
|
29 |
by (rtac refl 1); |
|
30 |
val idI = result(); |
|
31 |
||
32 |
val major::prems = goalw Trancl.thy [id_def] |
|
33 |
"[| p: id; !!x.[| p = <x,x> |] ==> P \ |
|
34 |
\ |] ==> P"; |
|
35 |
by (rtac (major RS CollectE) 1); |
|
36 |
by (etac exE 1); |
|
37 |
by (eresolve_tac prems 1); |
|
38 |
val idE = result(); |
|
39 |
||
40 |
(** Composition of two relations **) |
|
41 |
||
42 |
val prems = goalw Trancl.thy [comp_def] |
|
43 |
"[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s"; |
|
44 |
by (fast_tac (set_cs addIs prems) 1); |
|
45 |
val compI = result(); |
|
46 |
||
47 |
(*proof requires higher-level assumptions or a delaying of hyp_subst_tac*) |
|
48 |
val prems = goalw Trancl.thy [comp_def] |
|
49 |
"[| xz : r O s; \ |
|
50 |
\ !!x y z. [| xz = <x,z>; <x,y>:s; <y,z>:r |] ==> P \ |
|
51 |
\ |] ==> P"; |
|
52 |
by (cut_facts_tac prems 1); |
|
53 |
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1)); |
|
54 |
val compE = result(); |
|
55 |
||
56 |
val prems = goal Trancl.thy |
|
57 |
"[| <a,c> : r O s; \ |
|
58 |
\ !!y. [| <a,y>:s; <y,c>:r |] ==> P \ |
|
59 |
\ |] ==> P"; |
|
60 |
by (rtac compE 1); |
|
61 |
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1)); |
|
62 |
val compEpair = result(); |
|
63 |
||
64 |
val comp_cs = set_cs addIs [compI,idI] |
|
65 |
addSEs [compE,idE,Pair_inject]; |
|
66 |
||
67 |
val prems = goal Trancl.thy |
|
68 |
"[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"; |
|
69 |
by (cut_facts_tac prems 1); |
|
70 |
by (fast_tac comp_cs 1); |
|
71 |
val comp_mono = result(); |
|
72 |
||
73 |
val prems = goal Trancl.thy |
|
74 |
"[| s <= Sigma(A,%x.B); r <= Sigma(B,%x.C) |] ==> \ |
|
75 |
\ (r O s) <= Sigma(A,%x.C)"; |
|
76 |
by (cut_facts_tac prems 1); |
|
77 |
by (fast_tac (comp_cs addIs [SigmaI] addSEs [SigmaE2]) 1); |
|
78 |
val comp_subset_Sigma = result(); |
|
79 |
||
80 |
||
81 |
(** The relation rtrancl **) |
|
82 |
||
83 |
goal Trancl.thy "mono(%s. id Un (r O s))"; |
|
84 |
by (rtac monoI 1); |
|
85 |
by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1)); |
|
86 |
val rtrancl_fun_mono = result(); |
|
87 |
||
88 |
val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski); |
|
89 |
||
90 |
(*Reflexivity of rtrancl*) |
|
91 |
goal Trancl.thy "<a,a> : r^*"; |
|
92 |
by (stac rtrancl_unfold 1); |
|
93 |
by (fast_tac comp_cs 1); |
|
94 |
val rtrancl_refl = result(); |
|
95 |
||
96 |
(*Closure under composition with r*) |
|
97 |
val prems = goal Trancl.thy |
|
98 |
"[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^*"; |
|
99 |
by (stac rtrancl_unfold 1); |
|
100 |
by (fast_tac (comp_cs addIs prems) 1); |
|
101 |
val rtrancl_into_rtrancl = result(); |
|
102 |
||
103 |
(*rtrancl of r contains r*) |
|
104 |
val [prem] = goal Trancl.thy "[| <a,b> : r |] ==> <a,b> : r^*"; |
|
105 |
by (rtac (rtrancl_refl RS rtrancl_into_rtrancl) 1); |
|
106 |
by (rtac prem 1); |
|
107 |
val r_into_rtrancl = result(); |
|
108 |
||
109 |
(*monotonicity of rtrancl*) |
|
110 |
goalw Trancl.thy [rtrancl_def] "!!r s. r <= s ==> r^* <= s^*"; |
|
111 |
by(REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1)); |
|
112 |
val rtrancl_mono = result(); |
|
113 |
||
114 |
(** standard induction rule **) |
|
115 |
||
116 |
val major::prems = goal Trancl.thy |
|
117 |
"[| <a,b> : r^*; \ |
|
118 |
\ !!x. P(<x,x>); \ |
|
119 |
\ !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |] ==> P(<x,z>) |] \ |
|
120 |
\ ==> P(<a,b>)"; |
|
121 |
by (rtac (major RS (rtrancl_def RS def_induct)) 1); |
|
122 |
by (rtac rtrancl_fun_mono 1); |
|
123 |
by (fast_tac (comp_cs addIs prems) 1); |
|
124 |
val rtrancl_full_induct = result(); |
|
125 |
||
126 |
(*nice induction rule*) |
|
127 |
val major::prems = goal Trancl.thy |
|
128 |
"[| <a::'a,b> : r^*; \ |
|
129 |
\ P(a); \ |
|
130 |
\ !!y z.[| <a,y> : r^*; <y,z> : r; P(y) |] ==> P(z) |] \ |
|
131 |
\ ==> P(b)"; |
|
132 |
(*by induction on this formula*) |
|
133 |
by (subgoal_tac "! y. <a::'a,b> = <a,y> --> P(y)" 1); |
|
134 |
(*now solve first subgoal: this formula is sufficient*) |
|
135 |
by (fast_tac HOL_cs 1); |
|
136 |
(*now do the induction*) |
|
137 |
by (resolve_tac [major RS rtrancl_full_induct] 1); |
|
138 |
by (fast_tac (comp_cs addIs prems) 1); |
|
139 |
by (fast_tac (comp_cs addIs prems) 1); |
|
140 |
val rtrancl_induct = result(); |
|
141 |
||
142 |
(*transitivity of transitive closure!! -- by induction.*) |
|
143 |
goal Trancl.thy "trans(r^*)"; |
|
144 |
by (rtac transI 1); |
|
145 |
by (res_inst_tac [("b","z")] rtrancl_induct 1); |
|
146 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1)); |
|
147 |
val trans_rtrancl = result(); |
|
148 |
||
149 |
(*elimination of rtrancl -- by induction on a special formula*) |
|
150 |
val major::prems = goal Trancl.thy |
|
151 |
"[| <a::'a,b> : r^*; (a = b) ==> P; \ |
|
152 |
\ !!y.[| <a,y> : r^*; <y,b> : r |] ==> P \ |
|
153 |
\ |] ==> P"; |
|
90
5c7a69cef18b
added parentheses made necessary by change of constrain's precedence
clasohm
parents:
0
diff
changeset
|
154 |
by (subgoal_tac "(a::'a) = b | (? y. <a,y> : r^* & <y,b> : r)" 1); |
0 | 155 |
by (rtac (major RS rtrancl_induct) 2); |
156 |
by (fast_tac (set_cs addIs prems) 2); |
|
157 |
by (fast_tac (set_cs addIs prems) 2); |
|
158 |
by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1)); |
|
159 |
val rtranclE = result(); |
|
160 |
||
161 |
||
162 |
(**** The relation trancl ****) |
|
163 |
||
164 |
(** Conversions between trancl and rtrancl **) |
|
165 |
||
166 |
val [major] = goalw Trancl.thy [trancl_def] |
|
167 |
"<a,b> : r^+ ==> <a,b> : r^*"; |
|
168 |
by (resolve_tac [major RS compEpair] 1); |
|
169 |
by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1)); |
|
170 |
val trancl_into_rtrancl = result(); |
|
171 |
||
172 |
(*r^+ contains r*) |
|
173 |
val [prem] = goalw Trancl.thy [trancl_def] |
|
174 |
"[| <a,b> : r |] ==> <a,b> : r^+"; |
|
175 |
by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1)); |
|
176 |
val r_into_trancl = result(); |
|
177 |
||
178 |
(*intro rule by definition: from rtrancl and r*) |
|
179 |
val prems = goalw Trancl.thy [trancl_def] |
|
180 |
"[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^+"; |
|
181 |
by (REPEAT (resolve_tac ([compI]@prems) 1)); |
|
182 |
val rtrancl_into_trancl1 = result(); |
|
183 |
||
184 |
(*intro rule from r and rtrancl*) |
|
185 |
val prems = goal Trancl.thy |
|
186 |
"[| <a,b> : r; <b,c> : r^* |] ==> <a,c> : r^+"; |
|
187 |
by (resolve_tac (prems RL [rtranclE]) 1); |
|
188 |
by (etac subst 1); |
|
189 |
by (resolve_tac (prems RL [r_into_trancl]) 1); |
|
190 |
by (rtac (trans_rtrancl RS transD RS rtrancl_into_trancl1) 1); |
|
191 |
by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1)); |
|
192 |
val rtrancl_into_trancl2 = result(); |
|
193 |
||
194 |
(*elimination of r^+ -- NOT an induction rule*) |
|
195 |
val major::prems = goal Trancl.thy |
|
196 |
"[| <a::'a,b> : r^+; \ |
|
197 |
\ <a,b> : r ==> P; \ |
|
198 |
\ !!y.[| <a,y> : r^+; <y,b> : r |] ==> P \ |
|
199 |
\ |] ==> P"; |
|
200 |
by (subgoal_tac "<a::'a,b> : r | (? y. <a,y> : r^+ & <y,b> : r)" 1); |
|
201 |
by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1)); |
|
202 |
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1); |
|
203 |
by (etac rtranclE 1); |
|
204 |
by (fast_tac comp_cs 1); |
|
205 |
by (fast_tac (comp_cs addSIs [rtrancl_into_trancl1]) 1); |
|
206 |
val tranclE = result(); |
|
207 |
||
208 |
(*Transitivity of r^+. |
|
209 |
Proved by unfolding since it uses transitivity of rtrancl. *) |
|
210 |
goalw Trancl.thy [trancl_def] "trans(r^+)"; |
|
211 |
by (rtac transI 1); |
|
212 |
by (REPEAT (etac compEpair 1)); |
|
213 |
by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1); |
|
214 |
by (REPEAT (assume_tac 1)); |
|
215 |
val trans_trancl = result(); |
|
216 |
||
217 |
val prems = goal Trancl.thy |
|
218 |
"[| <a,b> : r; <b,c> : r^+ |] ==> <a,c> : r^+"; |
|
219 |
by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1); |
|
220 |
by (resolve_tac prems 1); |
|
221 |
by (resolve_tac prems 1); |
|
222 |
val trancl_into_trancl2 = result(); |
|
223 |
||
224 |
||
225 |
val major::prems = goal Trancl.thy |
|
226 |
"[| <a,b> : r^*; r <= Sigma(A,%x.A) |] ==> a=b | a:A"; |
|
227 |
by (cut_facts_tac prems 1); |
|
228 |
by (rtac (major RS rtrancl_induct) 1); |
|
229 |
by (rtac (refl RS disjI1) 1); |
|
230 |
by (fast_tac (comp_cs addSEs [SigmaE2]) 1); |
|
231 |
val trancl_subset_Sigma_lemma = result(); |
|
232 |
||
233 |
val prems = goalw Trancl.thy [trancl_def] |
|
234 |
"r <= Sigma(A,%x.A) ==> trancl(r) <= Sigma(A,%x.A)"; |
|
235 |
by (cut_facts_tac prems 1); |
|
236 |
by (fast_tac (comp_cs addIs [SigmaI] |
|
237 |
addSDs [trancl_subset_Sigma_lemma] |
|
238 |
addSEs [SigmaE2]) 1); |
|
239 |
val trancl_subset_Sigma = result(); |
|
240 |