216
|
1 |
(* Title: Equiv.thy
|
|
2 |
ID: $Id$
|
|
3 |
Authors: Riccardo Mattolini, Dip. Sistemi e Informatica
|
|
4 |
Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
5 |
Copyright 1994 Universita' di Firenze
|
|
6 |
Copyright 1993 University of Cambridge
|
|
7 |
|
|
8 |
Equivalence relations in Higher-Order Set Theory
|
|
9 |
*)
|
|
10 |
|
|
11 |
Equiv = Relation +
|
|
12 |
consts
|
|
13 |
refl,equiv :: "['a set,('a*'a) set]=>bool"
|
|
14 |
sym :: "('a*'a) set=>bool"
|
|
15 |
"'/" :: "['a set,('a*'a) set]=>'a set set" (infixl 90)
|
|
16 |
(*set of equiv classes*)
|
|
17 |
congruent :: "[('a*'a) set,'a=>'b]=>bool"
|
|
18 |
congruent2 :: "[('a*'a) set,['a,'a]=>'b]=>bool"
|
|
19 |
|
|
20 |
defs
|
|
21 |
refl_def "refl(A,r) == r <= Sigma(A,%x.A) & (ALL x: A. <x,x> : r)"
|
|
22 |
sym_def "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
|
|
23 |
equiv_def "equiv(A,r) == refl(A,r) & sym(r) & trans(r)"
|
|
24 |
quotient_def "A/r == UN x:A. {r^^{x}}"
|
|
25 |
congruent_def "congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
|
249
|
26 |
congruent2_def "congruent2(r,b) == ALL y1 z1 y2 z2.
|
|
27 |
<y1,z1>:r --> <y2,z2>:r --> b(y1,y2) = b(z1,z2)"
|
216
|
28 |
end
|