217
|
1 |
(* Title: Relation.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Riccardo Mattolini, Dip. Sistemi e Informatica
|
|
4 |
and Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
5 |
Copyright 1994 Universita' di Firenze
|
|
6 |
Copyright 1993 University of Cambridge
|
|
7 |
|
|
8 |
Functions represented as relations in Higher-Order Set Theory
|
|
9 |
*)
|
|
10 |
|
|
11 |
Relation = Trancl +
|
|
12 |
consts
|
|
13 |
converse :: "('a*'a) set => ('a*'a) set"
|
|
14 |
"^^" :: "[('a*'a) set,'a set] => 'a set" (infixl 90)
|
|
15 |
Domain :: "('a*'a) set => 'a set"
|
|
16 |
Range :: "('a*'a) set => 'a set"
|
|
17 |
|
|
18 |
defs
|
|
19 |
converse_def "converse(r) == {z. (? w:r. ? x y. w=<x,y> & z=<y,x>)}"
|
|
20 |
Domain_def "Domain(r) == {z. ! x. (z=x --> (? y. <x,y>:r))}"
|
|
21 |
Range_def "Range(r) == Domain(converse(r))"
|
|
22 |
Image_def "r ^^ s == {y. y:Range(r) & (? x:s. <x,y>:r)}"
|
|
23 |
|
|
24 |
end
|