128
|
1 |
(* Title: HOL/Sexp
|
0
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
S-expressions, general binary trees for defining recursive data structures
|
|
7 |
*)
|
|
8 |
|
|
9 |
Sexp = Univ +
|
|
10 |
consts
|
128
|
11 |
sexp :: "'a item set"
|
0
|
12 |
|
249
|
13 |
sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b,
|
|
14 |
'a item] => 'b"
|
0
|
15 |
|
249
|
16 |
sexp_rec :: "['a item, 'a=>'b, nat=>'b,
|
|
17 |
['a item, 'a item, 'b, 'b]=>'b] => 'b"
|
0
|
18 |
|
128
|
19 |
pred_sexp :: "('a item * 'a item)set"
|
|
20 |
|
|
21 |
inductive "sexp"
|
|
22 |
intrs
|
|
23 |
LeafI "Leaf(a): sexp"
|
|
24 |
NumbI "Numb(a): sexp"
|
|
25 |
SconsI "[| M: sexp; N: sexp |] ==> M$N : sexp"
|
0
|
26 |
|
178
|
27 |
defs
|
0
|
28 |
|
128
|
29 |
sexp_case_def
|
249
|
30 |
"sexp_case(c,d,e,M) == @ z. (? x. M=Leaf(x) & z=c(x))
|
|
31 |
| (? k. M=Numb(k) & z=d(k))
|
|
32 |
| (? N1 N2. M = N1 $ N2 & z=e(N1,N2))"
|
0
|
33 |
|
128
|
34 |
pred_sexp_def
|
|
35 |
"pred_sexp == UN M: sexp. UN N: sexp. {<M, M$N>, <N, M$N>}"
|
0
|
36 |
|
128
|
37 |
sexp_rec_def
|
249
|
38 |
"sexp_rec(M,c,d,e) == wfrec(pred_sexp, M,
|
|
39 |
%M g. sexp_case(c, d, %N1 N2. e(N1, N2, g(N1), g(N2)), M))"
|
0
|
40 |
end
|