135
|
1 |
(* Title: HOL/ex/PropLog.thy
|
130
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1994 TU Muenchen
|
|
5 |
|
|
6 |
Inductive definition of propositional logic.
|
|
7 |
*)
|
|
8 |
|
|
9 |
PropLog = Finite +
|
|
10 |
datatype
|
|
11 |
'a pl = false | var ('a) ("#_" [1000]) | "->" ('a pl,'a pl) (infixr 90)
|
|
12 |
consts
|
|
13 |
thms :: "'a pl set => 'a pl set"
|
|
14 |
"|-" :: "['a pl set, 'a pl] => bool" (infixl 50)
|
|
15 |
"|=" :: "['a pl set, 'a pl] => bool" (infixl 50)
|
|
16 |
eval2 :: "['a pl, 'a set] => bool"
|
|
17 |
eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100)
|
|
18 |
hyps :: "['a pl, 'a set] => 'a pl set"
|
|
19 |
|
|
20 |
translations
|
|
21 |
"H |- p" == "p : thms(H)"
|
|
22 |
|
|
23 |
inductive "thms(H)"
|
|
24 |
intrs
|
|
25 |
H "p:H ==> H |- p"
|
|
26 |
K "H |- p->q->p"
|
|
27 |
S "H |- (p->q->r) -> (p->q) -> p->r"
|
|
28 |
DN "H |- ((p->false) -> false) -> p"
|
|
29 |
MP "[| H |- p->q; H |- p |] ==> H |- q"
|
|
30 |
|
135
|
31 |
defs
|
|
32 |
sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])"
|
130
|
33 |
eval_def "tt[p] == eval2(p,tt)"
|
|
34 |
|
|
35 |
primrec eval2 pl
|
|
36 |
eval2_false "eval2(false) = (%x.False)"
|
|
37 |
eval2_var "eval2(#v) = (%tt.v:tt)"
|
|
38 |
eval2_imp "eval2(p->q) = (%tt.eval2(p,tt)-->eval2(q,tt))"
|
|
39 |
|
|
40 |
primrec hyps pl
|
|
41 |
hyps_false "hyps(false) = (%tt.{})"
|
|
42 |
hyps_var "hyps(#v) = (%tt.{if(v:tt, #v, #v->false)})"
|
|
43 |
hyps_imp "hyps(p->q) = (%tt.hyps(p,tt) Un hyps(q,tt))"
|
|
44 |
|
|
45 |
end
|