author | clasohm |
Wed, 02 Nov 1994 11:50:09 +0100 | |
changeset 156 | fd1be45b64bf |
parent 128 | 89669c58e506 |
child 196 | 61620d959717 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/list |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
Definition of type 'a list by a least fixed point |
|
7 |
||
128 | 8 |
We use list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z) |
9 |
and not list == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z) |
|
10 |
so that list can serve as a "functor" for defining other recursive types |
|
0 | 11 |
*) |
12 |
||
13 |
List = Sexp + |
|
14 |
||
15 |
types |
|
49 | 16 |
'a list |
0 | 17 |
|
18 |
arities |
|
19 |
list :: (term) term |
|
20 |
||
21 |
||
22 |
consts |
|
23 |
||
128 | 24 |
list :: "'a item set => 'a item set" |
25 |
Rep_list :: "'a list => 'a item" |
|
26 |
Abs_list :: "'a item => 'a list" |
|
27 |
NIL :: "'a item" |
|
28 |
CONS :: "['a item, 'a item] => 'a item" |
|
113 | 29 |
Nil :: "'a list" |
30 |
"#" :: "['a, 'a list] => 'a list" (infixr 65) |
|
128 | 31 |
List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" |
32 |
List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" |
|
33 |
list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" |
|
113 | 34 |
list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" |
128 | 35 |
Rep_map :: "('b => 'a item) => ('b list => 'a item)" |
36 |
Abs_map :: "('a item => 'b) => 'a item => 'b list" |
|
113 | 37 |
null :: "'a list => bool" |
38 |
hd :: "'a list => 'a" |
|
39 |
tl,ttl :: "'a list => 'a list" |
|
34 | 40 |
mem :: "['a, 'a list] => bool" (infixl 55) |
113 | 41 |
list_all :: "('a => bool) => ('a list => bool)" |
42 |
map :: "('a=>'b) => ('a list => 'b list)" |
|
43 |
"@" :: "['a list, 'a list] => 'a list" (infixr 65) |
|
44 |
filter :: "['a => bool, 'a list] => 'a list" |
|
0 | 45 |
|
128 | 46 |
(* list Enumeration *) |
0 | 47 |
|
113 | 48 |
"[]" :: "'a list" ("[]") |
128 | 49 |
"@list" :: "args => 'a list" ("[(_)]") |
0 | 50 |
|
34 | 51 |
(* Special syntax for list_all and filter *) |
39 | 52 |
"@Alls" :: "[idt, 'a list, bool] => bool" ("(2Alls _:_./ _)" 10) |
53 |
"@filter" :: "[idt, 'a list, bool] => 'a list" ("(1[_:_ ./ _])") |
|
0 | 54 |
|
55 |
translations |
|
48
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
42
diff
changeset
|
56 |
"[x, xs]" == "x#[xs]" |
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
42
diff
changeset
|
57 |
"[x]" == "x#[]" |
0 | 58 |
"[]" == "Nil" |
59 |
||
113 | 60 |
"case xs of Nil => a | y#ys => b" == "list_case(a, %y ys.b, xs)" |
42 | 61 |
|
34 | 62 |
"[x:xs . P]" == "filter(%x.P,xs)" |
63 |
"Alls x:xs.P" == "list_all(%x.P,xs)" |
|
0 | 64 |
|
128 | 65 |
defs |
0 | 66 |
(* Defining the Concrete Constructors *) |
67 |
NIL_def "NIL == In0(Numb(0))" |
|
48
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
42
diff
changeset
|
68 |
CONS_def "CONS(M, N) == In1(M $ N)" |
0 | 69 |
|
128 | 70 |
inductive "list(A)" |
71 |
intrs |
|
72 |
NIL_I "NIL: list(A)" |
|
73 |
CONS_I "[| a: A; M: list(A) |] ==> CONS(a,M) : list(A)" |
|
0 | 74 |
|
128 | 75 |
rules |
76 |
(* Faking a Type Definition ... *) |
|
77 |
Rep_list "Rep_list(xs): list(range(Leaf))" |
|
78 |
Rep_list_inverse "Abs_list(Rep_list(xs)) = xs" |
|
79 |
Abs_list_inverse "M: list(range(Leaf)) ==> Rep_list(Abs_list(M)) = M" |
|
80 |
||
81 |
||
82 |
defs |
|
83 |
(* Defining the Abstract Constructors *) |
|
84 |
Nil_def "Nil == Abs_list(NIL)" |
|
85 |
Cons_def "x#xs == Abs_list(CONS(Leaf(x), Rep_list(xs)))" |
|
0 | 86 |
|
113 | 87 |
List_case_def "List_case(c, d) == Case(%x.c, Split(d))" |
0 | 88 |
|
128 | 89 |
(* list Recursion -- the trancl is Essential; see list.ML *) |
0 | 90 |
|
91 |
List_rec_def |
|
128 | 92 |
"List_rec(M, c, d) == wfrec(trancl(pred_sexp), M, \ |
113 | 93 |
\ List_case(%g.c, %x y g. d(x, y, g(y))))" |
0 | 94 |
|
95 |
list_rec_def |
|
96 |
"list_rec(l, c, d) == \ |
|
128 | 97 |
\ List_rec(Rep_list(l), c, %x y r. d(Inv(Leaf, x), Abs_list(y), r))" |
0 | 98 |
|
99 |
(* Generalized Map Functionals *) |
|
100 |
||
128 | 101 |
Rep_map_def "Rep_map(f, xs) == list_rec(xs, NIL, %x l r. CONS(f(x), r))" |
102 |
Abs_map_def "Abs_map(g, M) == List_rec(M, Nil, %N L r. g(N)#r)" |
|
0 | 103 |
|
104 |
null_def "null(xs) == list_rec(xs, True, %x xs r.False)" |
|
105 |
hd_def "hd(xs) == list_rec(xs, @x.True, %x xs r.x)" |
|
106 |
tl_def "tl(xs) == list_rec(xs, @xs.True, %x xs r.xs)" |
|
40 | 107 |
(* a total version of tl: *) |
108 |
ttl_def "ttl(xs) == list_rec(xs, [], %x xs r.xs)" |
|
128 | 109 |
|
34 | 110 |
mem_def "x mem xs == \ |
111 |
\ list_rec(xs, False, %y ys r. if(y=x, True, r))" |
|
0 | 112 |
list_all_def "list_all(P, xs) == list_rec(xs, True, %x l r. P(x) & r)" |
48
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
42
diff
changeset
|
113 |
map_def "map(f, xs) == list_rec(xs, [], %x l r. f(x)#r)" |
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
42
diff
changeset
|
114 |
append_def "xs@ys == list_rec(xs, ys, %x l r. x#r)" |
34 | 115 |
filter_def "filter(P,xs) == \ |
48
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
42
diff
changeset
|
116 |
\ list_rec(xs, [], %x xs r. if(P(x), x#r, r))" |
128 | 117 |
|
113 | 118 |
list_case_def "list_case(a, f, xs) == list_rec(xs, a, %x xs r.f(x, xs))" |
0 | 119 |
|
120 |
end |