author | clasohm |
Wed, 02 Nov 1994 11:50:09 +0100 | |
changeset 156 | fd1be45b64bf |
parent 145 | a9f7ff3a464c |
child 191 | ec175b039523 |
permissions | -rw-r--r-- |
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
1 |
(* Title: HOL/Set.thy |
0 | 2 |
ID: $Id$ |
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
Set = Ord + |
|
8 |
||
9 |
types |
|
49 | 10 |
'a set |
0 | 11 |
|
12 |
arities |
|
13 |
set :: (term) term |
|
14 |
||
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
15 |
instance |
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
16 |
set :: (term) {ord, minus} |
0 | 17 |
|
18 |
consts |
|
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
19 |
"{}" :: "'a set" ("{}") |
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
20 |
insert :: "['a, 'a set] => 'a set" |
12 | 21 |
Collect :: "('a => bool) => 'a set" (*comprehension*) |
22 |
Compl :: "('a set) => 'a set" (*complement*) |
|
23 |
Int :: "['a set, 'a set] => 'a set" (infixl 70) |
|
24 |
Un :: "['a set, 'a set] => 'a set" (infixl 65) |
|
25 |
UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*) |
|
26 |
UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10) |
|
27 |
INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10) |
|
28 |
Union, Inter :: "(('a set)set) => 'a set" (*of a set*) |
|
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
29 |
Pow :: "'a set => 'a set set" (*powerset*) |
12 | 30 |
range :: "('a => 'b) => 'b set" (*of function*) |
31 |
Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*) |
|
32 |
inj, surj :: "('a => 'b) => bool" (*inj/surjective*) |
|
0 | 33 |
inj_onto :: "['a => 'b, 'a set] => bool" |
12 | 34 |
"``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90) |
35 |
":" :: "['a, 'a set] => bool" (infixl 50) (*membership*) |
|
0 | 36 |
|
37 |
||
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
38 |
syntax |
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
39 |
|
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
40 |
"~:" :: "['a, 'a set] => bool" (infixl 50) |
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
41 |
|
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
42 |
"@Finset" :: "args => 'a set" ("{(_)}") |
0 | 43 |
|
79 | 44 |
"@Coll" :: "[idt, bool] => 'a set" ("(1{_./ _})") |
133
4a2bb4fbc168
Added IMP, which necessiated changes in intr_elim.tex (mk_cases).
nipkow
parents:
128
diff
changeset
|
45 |
"@SetCompr" :: "['a, idts, bool] => 'a set" ("(1{_ |/_./ _})") |
0 | 46 |
|
47 |
(* Big Intersection / Union *) |
|
48 |
||
4 | 49 |
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(3INT _:_./ _)" 10) |
50 |
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(3UN _:_./ _)" 10) |
|
0 | 51 |
|
52 |
(* Bounded Quantifiers *) |
|
53 |
||
4 | 54 |
"@Ball" :: "[idt, 'a set, bool] => bool" ("(3! _:_./ _)" 10) |
55 |
"@Bex" :: "[idt, 'a set, bool] => bool" ("(3? _:_./ _)" 10) |
|
56 |
"*Ball" :: "[idt, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10) |
|
57 |
"*Bex" :: "[idt, 'a set, bool] => bool" ("(3EX _:_./ _)" 10) |
|
0 | 58 |
|
59 |
translations |
|
12 | 60 |
"x ~: y" == "~ (x : y)" |
61 |
"{x, xs}" == "insert(x, {xs})" |
|
62 |
"{x}" == "insert(x, {})" |
|
0 | 63 |
"{x. P}" == "Collect(%x. P)" |
64 |
"INT x:A. B" == "INTER(A, %x. B)" |
|
65 |
"UN x:A. B" == "UNION(A, %x. B)" |
|
66 |
"! x:A. P" == "Ball(A, %x. P)" |
|
67 |
"? x:A. P" == "Bex(A, %x. P)" |
|
68 |
"ALL x:A. P" => "Ball(A, %x. P)" |
|
69 |
"EX x:A. P" => "Bex(A, %x. P)" |
|
70 |
||
71 |
||
72 |
rules |
|
73 |
||
74 |
(* Isomorphisms between Predicates and Sets *) |
|
75 |
||
76 |
mem_Collect_eq "(a : {x.P(x)}) = P(a)" |
|
77 |
Collect_mem_eq "{x.x:A} = A" |
|
78 |
||
79 |
||
128 | 80 |
defs |
0 | 81 |
Ball_def "Ball(A, P) == ! x. x:A --> P(x)" |
82 |
Bex_def "Bex(A, P) == ? x. x:A & P(x)" |
|
83 |
subset_def "A <= B == ! x:A. x:B" |
|
84 |
Compl_def "Compl(A) == {x. ~x:A}" |
|
85 |
Un_def "A Un B == {x.x:A | x:B}" |
|
86 |
Int_def "A Int B == {x.x:A & x:B}" |
|
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
87 |
set_diff_def "A - B == {x. x:A & ~x:B}" |
0 | 88 |
INTER_def "INTER(A, B) == {y. ! x:A. y: B(x)}" |
89 |
UNION_def "UNION(A, B) == {y. ? x:A. y: B(x)}" |
|
90 |
INTER1_def "INTER1(B) == INTER({x.True}, B)" |
|
91 |
UNION1_def "UNION1(B) == UNION({x.True}, B)" |
|
92 |
Inter_def "Inter(S) == (INT x:S. x)" |
|
93 |
Union_def "Union(S) == (UN x:S. x)" |
|
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
94 |
Pow_def "Pow(A) == {B. B <= A}" |
0 | 95 |
empty_def "{} == {x. False}" |
96 |
insert_def "insert(a, B) == {x.x=a} Un B" |
|
97 |
range_def "range(f) == {y. ? x. y=f(x)}" |
|
98 |
image_def "f``A == {y. ? x:A. y=f(x)}" |
|
99 |
inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y" |
|
100 |
inj_onto_def "inj_onto(f, A) == ! x:A. ! y:A. f(x)=f(y) --> x=y" |
|
101 |
surj_def "surj(f) == ! y. ? x. y=f(x)" |
|
102 |
||
103 |
end |
|
104 |
||
79 | 105 |
ML |
0 | 106 |
|
79 | 107 |
local |
108 |
||
109 |
(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *) |
|
110 |
||
111 |
val ex_tr = snd(mk_binder_tr("? ","Ex")); |
|
112 |
||
113 |
fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1 |
|
114 |
| nvars(_) = 1; |
|
115 |
||
116 |
fun setcompr_tr[e,idts,b] = |
|
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
117 |
let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e |
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
118 |
val P = Syntax.const("op &") $ eq $ b |
79 | 119 |
val exP = ex_tr [idts,P] |
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
120 |
in Syntax.const("Collect") $ Abs("",dummyT,exP) end; |
79 | 121 |
|
122 |
val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY")); |
|
123 |
||
124 |
fun setcompr_tr'[Abs(_,_,P)] = |
|
125 |
let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1) |
|
126 |
| ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ _) $ _, n) = |
|
127 |
if n>0 andalso m=n then () else raise Match |
|
128 |
||
129 |
fun tr'(_ $ abs) = |
|
130 |
let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs] |
|
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
131 |
in Syntax.const("@SetCompr") $ e $ idts $ Q end |
79 | 132 |
in ok(P,0); tr'(P) end; |
133 |
||
134 |
in |
|
135 |
||
145
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
136 |
val parse_translation = [("@SetCompr", setcompr_tr)]; |
a9f7ff3a464c
minor cleanup, added 'axclass', 'instance', 'syntax', 'defs' sections;
wenzelm
parents:
133
diff
changeset
|
137 |
val print_translation = [("Collect", setcompr_tr')]; |
0 | 138 |
val print_ast_translation = |
4 | 139 |
map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")]; |
0 | 140 |
|
79 | 141 |
end; |
142 |