ex/pl0.ML
author clasohm
Wed, 02 Nov 1994 11:50:09 +0100
changeset 156 fd1be45b64bf
parent 56 385d51d74f71
permissions -rw-r--r--
added IOA to isabelle/HOL
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     1
(*  Title: 	HOL/ex/pl0.ML
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     2
    ID:         $Id$
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     3
    Author: 	Tobias Nipkow
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     4
    Copyright   1994  TU Muenchen
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     5
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     6
Inductive definition of propositional logic formulae.
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     7
*)
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     8
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     9
structure PL0 = DeclaredDatatype
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
    10
(val base = PL0.thy
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
    11
 val data = "'a pl = false | var('a) | \"op->\"('a pl,'a pl)"
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
    12
);