9 open Set; |
9 open Set; |
10 |
10 |
11 val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}"; |
11 val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}"; |
12 by (rtac (mem_Collect_eq RS ssubst) 1); |
12 by (rtac (mem_Collect_eq RS ssubst) 1); |
13 by (rtac prem 1); |
13 by (rtac prem 1); |
14 val CollectI = result(); |
14 qed "CollectI"; |
15 |
15 |
16 val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)"; |
16 val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)"; |
17 by (resolve_tac (prems RL [mem_Collect_eq RS subst]) 1); |
17 by (resolve_tac (prems RL [mem_Collect_eq RS subst]) 1); |
18 val CollectD = result(); |
18 qed "CollectD"; |
19 |
19 |
20 val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B"; |
20 val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B"; |
21 by (rtac (prem RS ext RS arg_cong RS box_equals) 1); |
21 by (rtac (prem RS ext RS arg_cong RS box_equals) 1); |
22 by (rtac Collect_mem_eq 1); |
22 by (rtac Collect_mem_eq 1); |
23 by (rtac Collect_mem_eq 1); |
23 by (rtac Collect_mem_eq 1); |
24 val set_ext = result(); |
24 qed "set_ext"; |
25 |
25 |
26 val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}"; |
26 val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}"; |
27 by (rtac (prem RS ext RS arg_cong) 1); |
27 by (rtac (prem RS ext RS arg_cong) 1); |
28 val Collect_cong = result(); |
28 qed "Collect_cong"; |
29 |
29 |
30 val CollectE = make_elim CollectD; |
30 val CollectE = make_elim CollectD; |
31 |
31 |
32 (*** Bounded quantifiers ***) |
32 (*** Bounded quantifiers ***) |
33 |
33 |
34 val prems = goalw Set.thy [Ball_def] |
34 val prems = goalw Set.thy [Ball_def] |
35 "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)"; |
35 "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)"; |
36 by (REPEAT (ares_tac (prems @ [allI,impI]) 1)); |
36 by (REPEAT (ares_tac (prems @ [allI,impI]) 1)); |
37 val ballI = result(); |
37 qed "ballI"; |
38 |
38 |
39 val [major,minor] = goalw Set.thy [Ball_def] |
39 val [major,minor] = goalw Set.thy [Ball_def] |
40 "[| ! x:A. P(x); x:A |] ==> P(x)"; |
40 "[| ! x:A. P(x); x:A |] ==> P(x)"; |
41 by (rtac (minor RS (major RS spec RS mp)) 1); |
41 by (rtac (minor RS (major RS spec RS mp)) 1); |
42 val bspec = result(); |
42 qed "bspec"; |
43 |
43 |
44 val major::prems = goalw Set.thy [Ball_def] |
44 val major::prems = goalw Set.thy [Ball_def] |
45 "[| ! x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q"; |
45 "[| ! x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q"; |
46 by (rtac (major RS spec RS impCE) 1); |
46 by (rtac (major RS spec RS impCE) 1); |
47 by (REPEAT (eresolve_tac prems 1)); |
47 by (REPEAT (eresolve_tac prems 1)); |
48 val ballE = result(); |
48 qed "ballE"; |
49 |
49 |
50 (*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*) |
50 (*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*) |
51 fun ball_tac i = etac ballE i THEN contr_tac (i+1); |
51 fun ball_tac i = etac ballE i THEN contr_tac (i+1); |
52 |
52 |
53 val prems = goalw Set.thy [Bex_def] |
53 val prems = goalw Set.thy [Bex_def] |
54 "[| P(x); x:A |] ==> ? x:A. P(x)"; |
54 "[| P(x); x:A |] ==> ? x:A. P(x)"; |
55 by (REPEAT (ares_tac (prems @ [exI,conjI]) 1)); |
55 by (REPEAT (ares_tac (prems @ [exI,conjI]) 1)); |
56 val bexI = result(); |
56 qed "bexI"; |
57 |
57 |
58 val bexCI = prove_goal Set.thy |
58 val bexCI = prove_goal Set.thy |
59 "[| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A.P(x)" |
59 "[| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A.P(x)" |
60 (fn prems=> |
60 (fn prems=> |
61 [ (rtac classical 1), |
61 [ (rtac classical 1), |
63 |
63 |
64 val major::prems = goalw Set.thy [Bex_def] |
64 val major::prems = goalw Set.thy [Bex_def] |
65 "[| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q"; |
65 "[| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q"; |
66 by (rtac (major RS exE) 1); |
66 by (rtac (major RS exE) 1); |
67 by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)); |
67 by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)); |
68 val bexE = result(); |
68 qed "bexE"; |
69 |
69 |
70 (*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*) |
70 (*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*) |
71 val prems = goal Set.thy |
71 val prems = goal Set.thy |
72 "(! x:A. True) = True"; |
72 "(! x:A. True) = True"; |
73 by (REPEAT (ares_tac [TrueI,ballI,iffI] 1)); |
73 by (REPEAT (ares_tac [TrueI,ballI,iffI] 1)); |
74 val ball_rew = result(); |
74 qed "ball_rew"; |
75 |
75 |
76 (** Congruence rules **) |
76 (** Congruence rules **) |
77 |
77 |
78 val prems = goal Set.thy |
78 val prems = goal Set.thy |
79 "[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \ |
79 "[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \ |
80 \ (! x:A. P(x)) = (! x:B. Q(x))"; |
80 \ (! x:A. P(x)) = (! x:B. Q(x))"; |
81 by (resolve_tac (prems RL [ssubst]) 1); |
81 by (resolve_tac (prems RL [ssubst]) 1); |
82 by (REPEAT (ares_tac [ballI,iffI] 1 |
82 by (REPEAT (ares_tac [ballI,iffI] 1 |
83 ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1)); |
83 ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1)); |
84 val ball_cong = result(); |
84 qed "ball_cong"; |
85 |
85 |
86 val prems = goal Set.thy |
86 val prems = goal Set.thy |
87 "[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \ |
87 "[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \ |
88 \ (? x:A. P(x)) = (? x:B. Q(x))"; |
88 \ (? x:A. P(x)) = (? x:B. Q(x))"; |
89 by (resolve_tac (prems RL [ssubst]) 1); |
89 by (resolve_tac (prems RL [ssubst]) 1); |
90 by (REPEAT (etac bexE 1 |
90 by (REPEAT (etac bexE 1 |
91 ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1)); |
91 ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1)); |
92 val bex_cong = result(); |
92 qed "bex_cong"; |
93 |
93 |
94 (*** Subsets ***) |
94 (*** Subsets ***) |
95 |
95 |
96 val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B"; |
96 val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B"; |
97 by (REPEAT (ares_tac (prems @ [ballI]) 1)); |
97 by (REPEAT (ares_tac (prems @ [ballI]) 1)); |
98 val subsetI = result(); |
98 qed "subsetI"; |
99 |
99 |
100 (*Rule in Modus Ponens style*) |
100 (*Rule in Modus Ponens style*) |
101 val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B"; |
101 val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B"; |
102 by (rtac (major RS bspec) 1); |
102 by (rtac (major RS bspec) 1); |
103 by (resolve_tac prems 1); |
103 by (resolve_tac prems 1); |
104 val subsetD = result(); |
104 qed "subsetD"; |
105 |
105 |
106 (*The same, with reversed premises for use with etac -- cf rev_mp*) |
106 (*The same, with reversed premises for use with etac -- cf rev_mp*) |
107 val rev_subsetD = prove_goal Set.thy "[| c:A; A <= B |] ==> c:B" |
107 val rev_subsetD = prove_goal Set.thy "[| c:A; A <= B |] ==> c:B" |
108 (fn prems=> [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]); |
108 (fn prems=> [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]); |
109 |
109 |
110 (*Classical elimination rule*) |
110 (*Classical elimination rule*) |
111 val major::prems = goalw Set.thy [subset_def] |
111 val major::prems = goalw Set.thy [subset_def] |
112 "[| A <= B; c~:A ==> P; c:B ==> P |] ==> P"; |
112 "[| A <= B; c~:A ==> P; c:B ==> P |] ==> P"; |
113 by (rtac (major RS ballE) 1); |
113 by (rtac (major RS ballE) 1); |
114 by (REPEAT (eresolve_tac prems 1)); |
114 by (REPEAT (eresolve_tac prems 1)); |
115 val subsetCE = result(); |
115 qed "subsetCE"; |
116 |
116 |
117 (*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
117 (*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
118 fun set_mp_tac i = etac subsetCE i THEN mp_tac i; |
118 fun set_mp_tac i = etac subsetCE i THEN mp_tac i; |
119 |
119 |
120 val subset_refl = prove_goal Set.thy "A <= (A::'a set)" |
120 val subset_refl = prove_goal Set.thy "A <= (A::'a set)" |
121 (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]); |
121 (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]); |
122 |
122 |
123 val prems = goal Set.thy "[| A<=B; B<=C |] ==> A<=(C::'a set)"; |
123 val prems = goal Set.thy "[| A<=B; B<=C |] ==> A<=(C::'a set)"; |
124 by (cut_facts_tac prems 1); |
124 by (cut_facts_tac prems 1); |
125 by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1)); |
125 by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1)); |
126 val subset_trans = result(); |
126 qed "subset_trans"; |
127 |
127 |
128 |
128 |
129 (*** Equality ***) |
129 (*** Equality ***) |
130 |
130 |
131 (*Anti-symmetry of the subset relation*) |
131 (*Anti-symmetry of the subset relation*) |
132 val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = (B::'a set)"; |
132 val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = (B::'a set)"; |
133 by (rtac (iffI RS set_ext) 1); |
133 by (rtac (iffI RS set_ext) 1); |
134 by (REPEAT (ares_tac (prems RL [subsetD]) 1)); |
134 by (REPEAT (ares_tac (prems RL [subsetD]) 1)); |
135 val subset_antisym = result(); |
135 qed "subset_antisym"; |
136 val equalityI = subset_antisym; |
136 val equalityI = subset_antisym; |
137 |
137 |
138 (* Equality rules from ZF set theory -- are they appropriate here? *) |
138 (* Equality rules from ZF set theory -- are they appropriate here? *) |
139 val prems = goal Set.thy "A = B ==> A<=(B::'a set)"; |
139 val prems = goal Set.thy "A = B ==> A<=(B::'a set)"; |
140 by (resolve_tac (prems RL [subst]) 1); |
140 by (resolve_tac (prems RL [subst]) 1); |
141 by (rtac subset_refl 1); |
141 by (rtac subset_refl 1); |
142 val equalityD1 = result(); |
142 qed "equalityD1"; |
143 |
143 |
144 val prems = goal Set.thy "A = B ==> B<=(A::'a set)"; |
144 val prems = goal Set.thy "A = B ==> B<=(A::'a set)"; |
145 by (resolve_tac (prems RL [subst]) 1); |
145 by (resolve_tac (prems RL [subst]) 1); |
146 by (rtac subset_refl 1); |
146 by (rtac subset_refl 1); |
147 val equalityD2 = result(); |
147 qed "equalityD2"; |
148 |
148 |
149 val prems = goal Set.thy |
149 val prems = goal Set.thy |
150 "[| A = B; [| A<=B; B<=(A::'a set) |] ==> P |] ==> P"; |
150 "[| A = B; [| A<=B; B<=(A::'a set) |] ==> P |] ==> P"; |
151 by (resolve_tac prems 1); |
151 by (resolve_tac prems 1); |
152 by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1)); |
152 by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1)); |
153 val equalityE = result(); |
153 qed "equalityE"; |
154 |
154 |
155 val major::prems = goal Set.thy |
155 val major::prems = goal Set.thy |
156 "[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P"; |
156 "[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P"; |
157 by (rtac (major RS equalityE) 1); |
157 by (rtac (major RS equalityE) 1); |
158 by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)); |
158 by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)); |
159 val equalityCE = result(); |
159 qed "equalityCE"; |
160 |
160 |
161 (*Lemma for creating induction formulae -- for "pattern matching" on p |
161 (*Lemma for creating induction formulae -- for "pattern matching" on p |
162 To make the induction hypotheses usable, apply "spec" or "bspec" to |
162 To make the induction hypotheses usable, apply "spec" or "bspec" to |
163 put universal quantifiers over the free variables in p. *) |
163 put universal quantifiers over the free variables in p. *) |
164 val prems = goal Set.thy |
164 val prems = goal Set.thy |
165 "[| p:A; !!z. z:A ==> p=z --> R |] ==> R"; |
165 "[| p:A; !!z. z:A ==> p=z --> R |] ==> R"; |
166 by (rtac mp 1); |
166 by (rtac mp 1); |
167 by (REPEAT (resolve_tac (refl::prems) 1)); |
167 by (REPEAT (resolve_tac (refl::prems) 1)); |
168 val setup_induction = result(); |
168 qed "setup_induction"; |
169 |
169 |
170 |
170 |
171 (*** Set complement -- Compl ***) |
171 (*** Set complement -- Compl ***) |
172 |
172 |
173 val prems = goalw Set.thy [Compl_def] |
173 val prems = goalw Set.thy [Compl_def] |
174 "[| c:A ==> False |] ==> c : Compl(A)"; |
174 "[| c:A ==> False |] ==> c : Compl(A)"; |
175 by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1)); |
175 by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1)); |
176 val ComplI = result(); |
176 qed "ComplI"; |
177 |
177 |
178 (*This form, with negated conclusion, works well with the Classical prover. |
178 (*This form, with negated conclusion, works well with the Classical prover. |
179 Negated assumptions behave like formulae on the right side of the notional |
179 Negated assumptions behave like formulae on the right side of the notional |
180 turnstile...*) |
180 turnstile...*) |
181 val major::prems = goalw Set.thy [Compl_def] |
181 val major::prems = goalw Set.thy [Compl_def] |
182 "[| c : Compl(A) |] ==> c~:A"; |
182 "[| c : Compl(A) |] ==> c~:A"; |
183 by (rtac (major RS CollectD) 1); |
183 by (rtac (major RS CollectD) 1); |
184 val ComplD = result(); |
184 qed "ComplD"; |
185 |
185 |
186 val ComplE = make_elim ComplD; |
186 val ComplE = make_elim ComplD; |
187 |
187 |
188 |
188 |
189 (*** Binary union -- Un ***) |
189 (*** Binary union -- Un ***) |
190 |
190 |
191 val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B"; |
191 val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B"; |
192 by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1)); |
192 by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1)); |
193 val UnI1 = result(); |
193 qed "UnI1"; |
194 |
194 |
195 val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B"; |
195 val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B"; |
196 by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1)); |
196 by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1)); |
197 val UnI2 = result(); |
197 qed "UnI2"; |
198 |
198 |
199 (*Classical introduction rule: no commitment to A vs B*) |
199 (*Classical introduction rule: no commitment to A vs B*) |
200 val UnCI = prove_goal Set.thy "(c~:B ==> c:A) ==> c : A Un B" |
200 val UnCI = prove_goal Set.thy "(c~:B ==> c:A) ==> c : A Un B" |
201 (fn prems=> |
201 (fn prems=> |
202 [ (rtac classical 1), |
202 [ (rtac classical 1), |
309 [ (rtac (major RS insertE) 1), |
309 [ (rtac (major RS insertE) 1), |
310 (REPEAT (eresolve_tac (prems @ [emptyE]) 1)) ]); |
310 (REPEAT (eresolve_tac (prems @ [emptyE]) 1)) ]); |
311 |
311 |
312 goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a"; |
312 goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a"; |
313 by(fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1); |
313 by(fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1); |
314 val singletonD = result(); |
314 qed "singletonD"; |
315 |
315 |
316 val singletonE = make_elim singletonD; |
316 val singletonE = make_elim singletonD; |
317 |
317 |
318 val [major] = goal Set.thy "{a}={b} ==> a=b"; |
318 val [major] = goal Set.thy "{a}={b} ==> a=b"; |
319 by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1); |
319 by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1); |
320 by (rtac singletonI 1); |
320 by (rtac singletonI 1); |
321 val singleton_inject = result(); |
321 qed "singleton_inject"; |
322 |
322 |
323 (*** Unions of families -- UNION x:A. B(x) is Union(B``A) ***) |
323 (*** Unions of families -- UNION x:A. B(x) is Union(B``A) ***) |
324 |
324 |
325 (*The order of the premises presupposes that A is rigid; b may be flexible*) |
325 (*The order of the premises presupposes that A is rigid; b may be flexible*) |
326 val prems = goalw Set.thy [UNION_def] |
326 val prems = goalw Set.thy [UNION_def] |
327 "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))"; |
327 "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))"; |
328 by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1)); |
328 by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1)); |
329 val UN_I = result(); |
329 qed "UN_I"; |
330 |
330 |
331 val major::prems = goalw Set.thy [UNION_def] |
331 val major::prems = goalw Set.thy [UNION_def] |
332 "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R"; |
332 "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R"; |
333 by (rtac (major RS CollectD RS bexE) 1); |
333 by (rtac (major RS CollectD RS bexE) 1); |
334 by (REPEAT (ares_tac prems 1)); |
334 by (REPEAT (ares_tac prems 1)); |
335 val UN_E = result(); |
335 qed "UN_E"; |
336 |
336 |
337 val prems = goal Set.thy |
337 val prems = goal Set.thy |
338 "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ |
338 "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ |
339 \ (UN x:A. C(x)) = (UN x:B. D(x))"; |
339 \ (UN x:A. C(x)) = (UN x:B. D(x))"; |
340 by (REPEAT (etac UN_E 1 |
340 by (REPEAT (etac UN_E 1 |
341 ORELSE ares_tac ([UN_I,equalityI,subsetI] @ |
341 ORELSE ares_tac ([UN_I,equalityI,subsetI] @ |
342 (prems RL [equalityD1,equalityD2] RL [subsetD])) 1)); |
342 (prems RL [equalityD1,equalityD2] RL [subsetD])) 1)); |
343 val UN_cong = result(); |
343 qed "UN_cong"; |
344 |
344 |
345 |
345 |
346 (*** Intersections of families -- INTER x:A. B(x) is Inter(B``A) *) |
346 (*** Intersections of families -- INTER x:A. B(x) is Inter(B``A) *) |
347 |
347 |
348 val prems = goalw Set.thy [INTER_def] |
348 val prems = goalw Set.thy [INTER_def] |
349 "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"; |
349 "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"; |
350 by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1)); |
350 by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1)); |
351 val INT_I = result(); |
351 qed "INT_I"; |
352 |
352 |
353 val major::prems = goalw Set.thy [INTER_def] |
353 val major::prems = goalw Set.thy [INTER_def] |
354 "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)"; |
354 "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)"; |
355 by (rtac (major RS CollectD RS bspec) 1); |
355 by (rtac (major RS CollectD RS bspec) 1); |
356 by (resolve_tac prems 1); |
356 by (resolve_tac prems 1); |
357 val INT_D = result(); |
357 qed "INT_D"; |
358 |
358 |
359 (*"Classical" elimination -- by the Excluded Middle on a:A *) |
359 (*"Classical" elimination -- by the Excluded Middle on a:A *) |
360 val major::prems = goalw Set.thy [INTER_def] |
360 val major::prems = goalw Set.thy [INTER_def] |
361 "[| b : (INT x:A. B(x)); b: B(a) ==> R; a~:A ==> R |] ==> R"; |
361 "[| b : (INT x:A. B(x)); b: B(a) ==> R; a~:A ==> R |] ==> R"; |
362 by (rtac (major RS CollectD RS ballE) 1); |
362 by (rtac (major RS CollectD RS ballE) 1); |
363 by (REPEAT (eresolve_tac prems 1)); |
363 by (REPEAT (eresolve_tac prems 1)); |
364 val INT_E = result(); |
364 qed "INT_E"; |
365 |
365 |
366 val prems = goal Set.thy |
366 val prems = goal Set.thy |
367 "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ |
367 "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ |
368 \ (INT x:A. C(x)) = (INT x:B. D(x))"; |
368 \ (INT x:A. C(x)) = (INT x:B. D(x))"; |
369 by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI])); |
369 by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI])); |
370 by (REPEAT (dtac INT_D 1 |
370 by (REPEAT (dtac INT_D 1 |
371 ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1)); |
371 ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1)); |
372 val INT_cong = result(); |
372 qed "INT_cong"; |
373 |
373 |
374 |
374 |
375 (*** Unions over a type; UNION1(B) = Union(range(B)) ***) |
375 (*** Unions over a type; UNION1(B) = Union(range(B)) ***) |
376 |
376 |
377 (*The order of the premises presupposes that A is rigid; b may be flexible*) |
377 (*The order of the premises presupposes that A is rigid; b may be flexible*) |
378 val prems = goalw Set.thy [UNION1_def] |
378 val prems = goalw Set.thy [UNION1_def] |
379 "b: B(x) ==> b: (UN x. B(x))"; |
379 "b: B(x) ==> b: (UN x. B(x))"; |
380 by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1)); |
380 by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1)); |
381 val UN1_I = result(); |
381 qed "UN1_I"; |
382 |
382 |
383 val major::prems = goalw Set.thy [UNION1_def] |
383 val major::prems = goalw Set.thy [UNION1_def] |
384 "[| b : (UN x. B(x)); !!x. b: B(x) ==> R |] ==> R"; |
384 "[| b : (UN x. B(x)); !!x. b: B(x) ==> R |] ==> R"; |
385 by (rtac (major RS UN_E) 1); |
385 by (rtac (major RS UN_E) 1); |
386 by (REPEAT (ares_tac prems 1)); |
386 by (REPEAT (ares_tac prems 1)); |
387 val UN1_E = result(); |
387 qed "UN1_E"; |
388 |
388 |
389 |
389 |
390 (*** Intersections over a type; INTER1(B) = Inter(range(B)) *) |
390 (*** Intersections over a type; INTER1(B) = Inter(range(B)) *) |
391 |
391 |
392 val prems = goalw Set.thy [INTER1_def] |
392 val prems = goalw Set.thy [INTER1_def] |
393 "(!!x. b: B(x)) ==> b : (INT x. B(x))"; |
393 "(!!x. b: B(x)) ==> b : (INT x. B(x))"; |
394 by (REPEAT (ares_tac (INT_I::prems) 1)); |
394 by (REPEAT (ares_tac (INT_I::prems) 1)); |
395 val INT1_I = result(); |
395 qed "INT1_I"; |
396 |
396 |
397 val [major] = goalw Set.thy [INTER1_def] |
397 val [major] = goalw Set.thy [INTER1_def] |
398 "b : (INT x. B(x)) ==> b: B(a)"; |
398 "b : (INT x. B(x)) ==> b: B(a)"; |
399 by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1); |
399 by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1); |
400 val INT1_D = result(); |
400 qed "INT1_D"; |
401 |
401 |
402 (*** Unions ***) |
402 (*** Unions ***) |
403 |
403 |
404 (*The order of the premises presupposes that C is rigid; A may be flexible*) |
404 (*The order of the premises presupposes that C is rigid; A may be flexible*) |
405 val prems = goalw Set.thy [Union_def] |
405 val prems = goalw Set.thy [Union_def] |
406 "[| X:C; A:X |] ==> A : Union(C)"; |
406 "[| X:C; A:X |] ==> A : Union(C)"; |
407 by (REPEAT (resolve_tac (prems @ [UN_I]) 1)); |
407 by (REPEAT (resolve_tac (prems @ [UN_I]) 1)); |
408 val UnionI = result(); |
408 qed "UnionI"; |
409 |
409 |
410 val major::prems = goalw Set.thy [Union_def] |
410 val major::prems = goalw Set.thy [Union_def] |
411 "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R"; |
411 "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R"; |
412 by (rtac (major RS UN_E) 1); |
412 by (rtac (major RS UN_E) 1); |
413 by (REPEAT (ares_tac prems 1)); |
413 by (REPEAT (ares_tac prems 1)); |
414 val UnionE = result(); |
414 qed "UnionE"; |
415 |
415 |
416 (*** Inter ***) |
416 (*** Inter ***) |
417 |
417 |
418 val prems = goalw Set.thy [Inter_def] |
418 val prems = goalw Set.thy [Inter_def] |
419 "[| !!X. X:C ==> A:X |] ==> A : Inter(C)"; |
419 "[| !!X. X:C ==> A:X |] ==> A : Inter(C)"; |
420 by (REPEAT (ares_tac ([INT_I] @ prems) 1)); |
420 by (REPEAT (ares_tac ([INT_I] @ prems) 1)); |
421 val InterI = result(); |
421 qed "InterI"; |
422 |
422 |
423 (*A "destruct" rule -- every X in C contains A as an element, but |
423 (*A "destruct" rule -- every X in C contains A as an element, but |
424 A:X can hold when X:C does not! This rule is analogous to "spec". *) |
424 A:X can hold when X:C does not! This rule is analogous to "spec". *) |
425 val major::prems = goalw Set.thy [Inter_def] |
425 val major::prems = goalw Set.thy [Inter_def] |
426 "[| A : Inter(C); X:C |] ==> A:X"; |
426 "[| A : Inter(C); X:C |] ==> A:X"; |
427 by (rtac (major RS INT_D) 1); |
427 by (rtac (major RS INT_D) 1); |
428 by (resolve_tac prems 1); |
428 by (resolve_tac prems 1); |
429 val InterD = result(); |
429 qed "InterD"; |
430 |
430 |
431 (*"Classical" elimination rule -- does not require proving X:C *) |
431 (*"Classical" elimination rule -- does not require proving X:C *) |
432 val major::prems = goalw Set.thy [Inter_def] |
432 val major::prems = goalw Set.thy [Inter_def] |
433 "[| A : Inter(C); A:X ==> R; X~:C ==> R |] ==> R"; |
433 "[| A : Inter(C); A:X ==> R; X~:C ==> R |] ==> R"; |
434 by (rtac (major RS INT_E) 1); |
434 by (rtac (major RS INT_E) 1); |
435 by (REPEAT (eresolve_tac prems 1)); |
435 by (REPEAT (eresolve_tac prems 1)); |
436 val InterE = result(); |
436 qed "InterE"; |
437 |
437 |
438 (*** Powerset ***) |
438 (*** Powerset ***) |
439 |
439 |
440 val PowI = prove_goalw Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)" |
440 val PowI = prove_goalw Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)" |
441 (fn _ => [ (etac CollectI 1) ]); |
441 (fn _ => [ (etac CollectI 1) ]); |