26 Rep_List :: "'a list => 'a node set" |
26 Rep_List :: "'a list => 'a node set" |
27 Abs_List :: "'a node set => 'a list" |
27 Abs_List :: "'a node set => 'a list" |
28 NIL :: "'a node set" |
28 NIL :: "'a node set" |
29 CONS :: "['a node set, 'a node set] => 'a node set" |
29 CONS :: "['a node set, 'a node set] => 'a node set" |
30 Nil :: "'a list" |
30 Nil :: "'a list" |
31 Cons :: "['a, 'a list] => 'a list" |
31 "#" :: "['a, 'a list] => 'a list" (infixr 65) |
32 List_case :: "['a node set, 'b, ['a node set, 'a node set]=>'b] => 'b" |
32 List_case :: "['a node set, 'b, ['a node set, 'a node set]=>'b] => 'b" |
33 List_rec :: "['a node set, 'b, ['a node set, 'a node set, 'b]=>'b] => 'b" |
33 List_rec :: "['a node set, 'b, ['a node set, 'a node set, 'b]=>'b] => 'b" |
34 list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" |
34 list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" |
35 Rep_map :: "('b => 'a node set) => ('b list => 'a node set)" |
35 Rep_map :: "('b => 'a node set) => ('b list => 'a node set)" |
36 Abs_map :: "('a node set => 'b) => 'a node set => 'b list" |
36 Abs_map :: "('a node set => 'b) => 'a node set => 'b list" |
38 hd :: "'a list => 'a" |
38 hd :: "'a list => 'a" |
39 tl,ttl :: "'a list => 'a list" |
39 tl,ttl :: "'a list => 'a list" |
40 mem :: "['a, 'a list] => bool" (infixl 55) |
40 mem :: "['a, 'a list] => bool" (infixl 55) |
41 list_all :: "('a => bool) => ('a list => bool)" |
41 list_all :: "('a => bool) => ('a list => bool)" |
42 map :: "('a=>'b) => ('a list => 'b list)" |
42 map :: "('a=>'b) => ('a list => 'b list)" |
43 "@" :: "['a list, 'a list] => 'a list" (infixr 65) |
43 "@" :: "['a list, 'a list] => 'a list" (infixl 65) |
44 list_case :: "['a list, 'b, ['a, 'a list]=>'b] => 'b" |
44 list_case :: "['a list, 'b, ['a, 'a list]=>'b] => 'b" |
45 filter :: "['a => bool, 'a list] => 'a list" |
45 filter :: "['a => bool, 'a list] => 'a list" |
46 |
46 |
47 (* List Enumeration *) |
47 (* List Enumeration *) |
48 |
48 |
52 (* Special syntax for list_all and filter *) |
52 (* Special syntax for list_all and filter *) |
53 "@Alls" :: "[idt, 'a list, bool] => bool" ("(2Alls _:_./ _)" 10) |
53 "@Alls" :: "[idt, 'a list, bool] => bool" ("(2Alls _:_./ _)" 10) |
54 "@filter" :: "[idt, 'a list, bool] => 'a list" ("(1[_:_ ./ _])") |
54 "@filter" :: "[idt, 'a list, bool] => 'a list" ("(1[_:_ ./ _])") |
55 |
55 |
56 translations |
56 translations |
57 "[x, xs]" == "Cons(x, [xs])" |
57 "[x, xs]" == "x#[xs]" |
58 "[x]" == "Cons(x, [])" |
58 "[x]" == "x#[]" |
59 "[]" == "Nil" |
59 "[]" == "Nil" |
60 |
60 |
61 "case xs of Nil => a | Cons(y,ys) => b" == "list_case(xs,a,%y ys.b)" |
61 "case xs of Nil => a | y#ys => b" == "list_case(xs,a,%y ys.b)" |
62 |
62 |
63 "[x:xs . P]" == "filter(%x.P,xs)" |
63 "[x:xs . P]" == "filter(%x.P,xs)" |
64 "Alls x:xs.P" == "list_all(%x.P,xs)" |
64 "Alls x:xs.P" == "list_all(%x.P,xs)" |
65 |
65 |
66 rules |
66 rules |
75 Abs_List_inverse "M: List(range(Leaf)) ==> Rep_List(Abs_List(M)) = M" |
75 Abs_List_inverse "M: List(range(Leaf)) ==> Rep_List(Abs_List(M)) = M" |
76 |
76 |
77 (* Defining the Concrete Constructors *) |
77 (* Defining the Concrete Constructors *) |
78 |
78 |
79 NIL_def "NIL == In0(Numb(0))" |
79 NIL_def "NIL == In0(Numb(0))" |
80 CONS_def "CONS(M, N) == In1(M . N)" |
80 CONS_def "CONS(M, N) == In1(M $ N)" |
81 |
81 |
82 (* Defining the Abstract Constructors *) |
82 (* Defining the Abstract Constructors *) |
83 |
83 |
84 Nil_def "Nil == Abs_List(NIL)" |
84 Nil_def "Nil == Abs_List(NIL)" |
85 Cons_def "Cons(x, xs) == Abs_List(CONS(Leaf(x), Rep_List(xs)))" |
85 Cons_def "x#xs == Abs_List(CONS(Leaf(x), Rep_List(xs)))" |
86 |
86 |
87 List_case_def "List_case(M, c, d) == Case(M, %x.c, %u. Split(u, %x y.d(x, y)))" |
87 List_case_def "List_case(M, c, d) == Case(M, %x.c, %u. Split(u, %x y.d(x, y)))" |
88 |
88 |
89 (* List Recursion -- the trancl is Essential; see list.ML *) |
89 (* List Recursion -- the trancl is Essential; see list.ML *) |
90 |
90 |
99 (* Generalized Map Functionals *) |
99 (* Generalized Map Functionals *) |
100 |
100 |
101 Rep_map_def |
101 Rep_map_def |
102 "Rep_map(f, xs) == list_rec(xs, NIL, %x l r. CONS(f(x), r))" |
102 "Rep_map(f, xs) == list_rec(xs, NIL, %x l r. CONS(f(x), r))" |
103 Abs_map_def |
103 Abs_map_def |
104 "Abs_map(g, M) == List_rec(M, Nil, %N L r. Cons(g(N), r))" |
104 "Abs_map(g, M) == List_rec(M, Nil, %N L r. g(N)#r)" |
105 |
105 |
106 null_def "null(xs) == list_rec(xs, True, %x xs r.False)" |
106 null_def "null(xs) == list_rec(xs, True, %x xs r.False)" |
107 hd_def "hd(xs) == list_rec(xs, @x.True, %x xs r.x)" |
107 hd_def "hd(xs) == list_rec(xs, @x.True, %x xs r.x)" |
108 tl_def "tl(xs) == list_rec(xs, @xs.True, %x xs r.xs)" |
108 tl_def "tl(xs) == list_rec(xs, @xs.True, %x xs r.xs)" |
109 (* a total version of tl: *) |
109 (* a total version of tl: *) |
110 ttl_def "ttl(xs) == list_rec(xs, [], %x xs r.xs)" |
110 ttl_def "ttl(xs) == list_rec(xs, [], %x xs r.xs)" |
111 mem_def "x mem xs == \ |
111 mem_def "x mem xs == \ |
112 \ list_rec(xs, False, %y ys r. if(y=x, True, r))" |
112 \ list_rec(xs, False, %y ys r. if(y=x, True, r))" |
113 list_all_def "list_all(P, xs) == list_rec(xs, True, %x l r. P(x) & r)" |
113 list_all_def "list_all(P, xs) == list_rec(xs, True, %x l r. P(x) & r)" |
114 map_def "map(f, xs) == list_rec(xs, [], %x l r. Cons(f(x),r))" |
114 map_def "map(f, xs) == list_rec(xs, [], %x l r. f(x)#r)" |
115 append_def "xs@ys == list_rec(xs, ys, %x l r. Cons(x,r))" |
115 append_def "xs@ys == list_rec(xs, ys, %x l r. x#r)" |
116 filter_def "filter(P,xs) == \ |
116 filter_def "filter(P,xs) == \ |
117 \ list_rec(xs, [], %x xs r. if(P(x), Cons(x,r), r))" |
117 \ list_rec(xs, [], %x xs r. if(P(x), x#r, r))" |
118 list_case_def "list_case(xs, a, f) == list_rec(xs, a, %x xs r.f(x, xs))" |
118 list_case_def "list_case(xs, a, f) == list_rec(xs, a, %x xs r.f(x, xs))" |
119 |
119 |
120 end |
120 end |