IOA/meta_theory/Solve.thy
changeset 168 44ff2275d44f
parent 156 fd1be45b64bf
child 249 492493334e0f
equal deleted inserted replaced
167:37a6e2f55230 168:44ff2275d44f
     1 (* Methods of proof for IOA. *)
     1 (*  Title:      HOL/IOA/meta_theory/Solve.thy
       
     2     ID:         $Id$
       
     3     Author:     Tobias Nipkow & Konrad Slind
       
     4     Copyright   1994  TU Muenchen
       
     5 
       
     6 Weak possibilities mapping (abstraction)
       
     7 *)
     2 
     8 
     3 Solve = IOA +
     9 Solve = IOA +
     4 
    10 
     5 consts
    11 consts
     6 
    12 
     7   is_weak_pmap :: "['c => 'a, ('action,'c)ioa,('action,'a)ioa] => bool"
    13   is_weak_pmap :: "['c => 'a, ('action,'c)ioa,('action,'a)ioa] => bool"
     8 
    14 
     9 rules
    15 defs
    10 
    16 
    11 is_weak_pmap_def
    17 is_weak_pmap_def
    12   "is_weak_pmap(f,C,A) ==                           \
    18   "is_weak_pmap(f,C,A) ==                       \
    13 \   (!s:starts_of(C). f(s):starts_of(A)) &        \
    19 \   (!s:starts_of(C). f(s):starts_of(A)) &      \
    14 \   (!s t a. reachable(C,s) &                       \
    20 \   (!s t a. reachable(C,s) &                   \
    15 \            <s,a,t>:trans_of(C)                    \
    21 \            <s,a,t>:trans_of(C)                \
    16 \            --> if(a:externals(asig_of(C)),        \
    22 \            --> if(a:externals(asig_of(C)),    \
    17 \                   <f(s),a,f(t)>:trans_of(A),      \
    23 \                   <f(s),a,f(t)>:trans_of(A),  \
    18 \                   f(s)=f(t)))"
    24 \                   f(s)=f(t)))"
    19 
    25 
    20 end
    26 end